Review Article

从类黄酮中寻找新的抗真菌药物:白色念珠菌的遗传多样性对体外反应的影响

卷 26, 期 27, 2019

页: [5108 - 5123] 页: 16

弟呕挨: 10.2174/0929867325666171226102700

价格: $65

摘要

背景:在抗菌素耐药性以惊人的速度增长的时代,寻找对传统疗法具有抵抗力的病原微生物有效的新型抗菌剂非常重要。在过去几年天然药物发现研究中的显着突破中,有黄酮类化合物的鉴定和测试,黄酮类化合物是一组植物源性物质,能够促进对人类的多种有益作用。这些化合物显示出不同的生物学活性,例如抑制神经炎症和肿瘤生长以及对许多微生物病原体的抗微生物活性。 方法:我们集中研究了所研究菌株的遗传特性,从而对用于报告类黄酮对白色念珠菌具有抑制作用的研究中使用的方案和标准菌株进行了综述。此外,使用白色念珠菌MLST数据库,我们进行了系统发育分析,显示了该物种中发生的遗传变异。 结果:今天,我们有足够的信息来估计微生物物种内的遗传多样性,而最近的数据表明,大多数真菌病原体显示出复杂的种群结构,其中没有一个分离株可被指定为整个分类单元的代表。对于高度散布的真菌病原体白色念珠菌尤其如此,其中一个或几个“标准品系”可以代表整个物种的假设过于不切实际,应加以搁置。 结论:本文的目的是阐明白色念珠菌的遗传变异程度,以及该现象如何在很大程度上影响类黄酮对该物种的活性。

关键词: 类黄酮,天然化合物,植物提取物,抗菌活性,白色念珠菌,多基因座序列分型,抗真菌剂,基因型。

[1]
Del Poeta, M. Special Issue: novel antifungal drug discovery. J. Fungi (Basel), 2016, 2(4), 33.
[http://dx.doi.org/10.3390/jof2040033] [PMID: 28058254]
[2]
Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; Laxminarayan, R.; Lubroth, J.; Magnusson, U.; Thi Ngoc, P.; Van Boeckel, T.P.; Woolhouse, M.E. Antibiotic resistance is the quintessential one health issue. Trans. R. Soc. Trop. Med. Hyg., 2016, 110(7), 377-380.
[http://dx.doi.org/10.1093/trstmh/trw048] [PMID: 27475987]
[3]
O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations. The review on antimicrobial resistance ; HM Government and the Wellcome Trust: London, 2016. Available at: , https://amr-review.org/sites/default/files/160518_ Final%20paper_with%20cover.pdf
[4]
Blackwell, M. The fungi: 1, 2, 3... 5.1 million species? Am. J. Bot., 2011, 98(3), 426-438.
[http://dx.doi.org/10.3732/ajb.1000298] [PMID: 21613136]
[5]
Lass-Flörl, C. Current challenges in the diagnosis of fungal infections. Methods Mol. Biol., 2017, 1508, 3-15.
[http://dx.doi.org/10.1007/978-1-4939-6515-1_1] [PMID: 27837496]
[6]
Schmiedel, Y.; Zimmerli, S. Common invasive fungal diseases: an overview of invasive candidiasis, aspergillosis, cryptococcosis, and Pneumocystis pneumonia. Swiss Med. Wkly., 2016, 146w14281
[http://dx.doi.org/10.4414/smw.2016.14281] [PMID: 26901377]
[7]
Enoch, D.A.; Yang, H.; Aliyu, S.H.; Micallef, C. The changing epidemiology of invasive fungal infections. Methods Mol. Biol., 2017, 1508, 17-65.
[http://dx.doi.org/10.1007/978-1-4939-6515-1_2] [PMID: 27837497]
[8]
Romeo, O.; Criseo, G. What lies beyond genetic diversity in Sporothrix schenckii species complex?:New insights into virulence profiles, immunogenicity and protein secretion in S. schenckii sensu stricto isolates. Virulence, 2013, 4(3), 203-206.
[http://dx.doi.org/10.4161/viru.23467] [PMID: 23334066]
[9]
Chowdhary, A.; Meis, J.F.; Guarro, J.; de Hoog, G.S.; Kathuria, S.; Arendrup, M.C.; Arikan-Akdagli, S.; Akova, M.; Boekhout, T.; Caira, M.; Guinea, J.; Chakrabarti, A.; Dannaoui, E.; van Diepeningen, A.; Freiberger, T.; Groll, A.H.; Hope, W.W.; Johnson, E.; Lackner, M.; Lagrou, K.; Lanternier, F.; Lass-Flörl, C.; Lortholary, O.; Meletiadis, J.; Muñoz, P.; Pagano, L.; Petrikkos, G.; Richardson, M.D.; Roilides, E.; Skiada, A.; Tortorano, A.M.; Ullmann, A.J.; Verweij, P.E.; Cornely, O.A.; Cuenca-Estrella, M. European society of clinical microbiology and infectious diseases fungal infection study group european confederation of medical mycology. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. Clin. Microbiol. Infect., 2014, 20(Suppl. 3), 47-75.
[http://dx.doi.org/10.1111/1469-0691.12515] [PMID: 24483780]
[10]
Busca, A.; Tortorano, A.M.; Pagano, L. Reviewing the importance and evolution of fungal infections and potential antifungal resistance in haematological patients. J. Glob. Antimicrob. Resist., 2015, 3(4), 237-241.
[http://dx.doi.org/10.1016/j.jgar.2015.09.002] [PMID: 27842866]
[11]
Ruhnke, M.; Schwartz, S. Recent developments in the management of invasive fungal infections in patients with oncohematological diseases. Ther. Adv. Hematol., 2016, 7(6), 345-359.
[http://dx.doi.org/10.1177/2040620716656381] [PMID: 27904738]
[12]
van der Linden, J.W.; Snelders, E.; Kampinga, G.A.; Rijnders, B.J.; Mattsson, E.; Debets-Ossenkopp, Y.J.; Kuijper, E.J.; Van Tiel, F.H.; Melchers, W.J.; Verweij, P.E. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007-2009. Emerg. Infect. Dis., 2011, 17(10), 1846-1854.
[http://dx.doi.org/10.3201/eid1710.110226] [PMID: 22000354]
[13]
Alcazar-Fuoli, L.; Mellado, E. Current status of antifungal resistance and its impact on clinical practice. Br. J. Haematol., 2014, 166(4), 471-484.
[http://dx.doi.org/10.1111/bjh.12896] [PMID: 24749533]
[14]
Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol., 2016.
[http://dx.doi.org/10.1016/j.bcp.2016.11.019]
[15]
Lewis, R.E. Current concepts in antifungal pharmacology. Mayo Clin. Proc., 2011, 86(8), 805-817.
[http://dx.doi.org/10.4065/mcp.2011.0247] [PMID: 21803962]
[16]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[17]
Seleem, D.; Pardi, V.; Murata, R.M. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch. Oral Biol., 2017, 76, 76-83.
[http://dx.doi.org/10.1016/j.archoralbio.2016.08.030] [PMID: 27659902]
[18]
Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J., 2017, 25(2), 149-164.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[19]
Hirasawa, M.; Takada, K. Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans. J. Antimicrob. Chemother., 2004, 53(2), 225-229.
[http://dx.doi.org/10.1093/jac/dkh046] [PMID: 14688042]
[20]
Orhan, D.D.; Ozçelik, B.; Ozgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res., 2010, 165(6), 496-504.
[http://dx.doi.org/10.1016/j.micres.2009.09.002] [PMID: 19840899]
[21]
Edziri, H.; Mastouri, M.; Mahjoub, M.A.; Mighri, Z.; Mahjoub, A.; Verschaeve, L. Antibacterial, antifungal and cytotoxic activities of two flavonoids from Retama raetam flowers. Molecules, 2012, 17(6), 7284-7293.
[http://dx.doi.org/10.3390/molecules17067284] [PMID: 22695233]
[22]
Serpa, R.; França, E.J.; Furlaneto-Maia, L.; Andrade, C.G.; Diniz, A.; Furlaneto, M.C. In vitro antifungal activity of the flavonoid baicalein against Candida species. J. Med. Microbiol., 2012, 61(Pt 12), 1704-1708.
[http://dx.doi.org/10.1099/jmm.0.047852-0] [PMID: 22918868]
[23]
Vengurlekar, S.; Sharma, R.; Trivedi, P. Efficacy of some natural compounds as antifungal agents. Pharmacogn. Rev., 2012, 6(12), 91-99.
[http://dx.doi.org/10.4103/0973-7847.99942] [PMID: 23055634]
[24]
Robbins, N.; Spitzer, M.; Yu, T.; Cerone, R.P.; Averette, A.K.; Bahn, Y.S.; Heitman, J.; Sheppard, D.C.; Tyers, M.; Wright, G.D. An antifungal combination matrix identifies a rich pool of adjuvant molecules that enhance drug activity against diverse fungal pathogens. Cell Rep., 2015, 13(7), 1481-1492.
[http://dx.doi.org/10.1016/j.celrep.2015.10.018] [PMID: 26549450]
[25]
Virdi, J.S.; Gulati, P.; Pai, M. Genetic diversity of pathogenic microorganisms and its medical and public health significance. Indian J. Med. Microbiol., 2007, 25(1), 2-3.
[http://dx.doi.org/10.4103/0255-0857.31052] [PMID: 17377343]
[26]
Achtman, M.; Wagner, M. Microbial diversity and the genetic nature of microbial species. Nat. Rev. Microbiol., 2008, 6(6), 431-440.
[http://dx.doi.org/10.1038/nrmicro1872] [PMID: 18461076]
[27]
MacLean, R.C.; Hall, A.R.; Perron, G.G.; Buckling, A. The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts. Nat. Rev. Genet., 2010, 11(6), 405-414.
[http://dx.doi.org/10.1038/nrg2778] [PMID: 20479772]
[28]
Wilson, D.J. Insights from genomics into bacterial pathogen populations. PLoS Pathog., 2012, 8(9)e1002874
[http://dx.doi.org/10.1371/journal.ppat.1002874] [PMID: 22969423]
[29]
Taylor, J.W. Evolutionary perspectives on human fungal pathogens. Cold Spring Harb. Perspect. Med., 2014, 5(9)a019588
[http://dx.doi.org/10.1101/cshperspect.a019588] [PMID: 25384770]
[30]
Wilson, B.A.; Garud, N.R.; Feder, A.F.; Assaf, Z.J.; Pennings, P.S. The population genetics of drug resistance evolution in natural populations of viral, bacterial and eukaryotic pathogens. Mol. Ecol., 2016, 25(1), 42-66.
[http://dx.doi.org/10.1111/mec.13474] [PMID: 26578204]
[31]
Deurenberg, R.H.; Stobberingh, E.E. The evolution of Staphylococcus aureus. Infect. Genet. Evol., 2008, 8(6), 747-763.
[http://dx.doi.org/10.1016/j.meegid.2008.07.007] [PMID: 18718557]
[32]
Mira, A.; Martín-Cuadrado, A.B.; D’Auria, G.; Rodríguez-Valera, F. The bacterial pan-genome:a new paradigm in microbiology. Int. Microbiol., 2010, 13(2), 45-57.
[PMID: 20890839]
[33]
Chaudhuri, R.R.; Henderson, I.R. The evolution of the Escherichia coli phylogeny. Infect. Genet. Evol., 2012, 12(2), 214-226.
[http://dx.doi.org/10.1016/j.meegid.2012.01.005] [PMID: 22266241]
[34]
Suzuki, R.; Shiota, S.; Yamaoka, Y. Molecular epidemiology, population genetics, and pathogenic role of Helicobacter pylori. Infect. Genet. Evol., 2012, 12(2), 203-213.
[http://dx.doi.org/10.1016/j.meegid.2011.12.002] [PMID: 22197766]
[35]
McManus, B.A.; Coleman, D.C. Molecular epidemiology, phylogeny and evolution of Candida albicans. Infect. Genet. Evol., 2014, 21, 166-178.
[http://dx.doi.org/10.1016/j.meegid.2013.11.008] [PMID: 24269341]
[36]
Jacobsen, M.D.; Gow, N.A.; Maiden, M.C.; Shaw, D.J.; Odds, F.C. Strain typing and determination of population structure of Candida krusei by multilocus sequence typing. J. Clin. Microbiol., 2007, 45(2), 317-323.
[http://dx.doi.org/10.1128/JCM.01549-06] [PMID: 17122025]
[37]
Short, D.P.; O’Donnell, K.; Zhang, N.; Juba, J.H.; Geiser, D.M. Widespread occurrence of diverse human pathogenic types of the fungus Fusarium detected in plumbing drains. J. Clin. Microbiol., 2011, 49(12), 4264-4272.
[http://dx.doi.org/10.1128/JCM.05468-11] [PMID: 21976755]
[38]
Hagen, F.; Khayhan, K.; Theelen, B.; Kolecka, A.; Polacheck, I.; Sionov, E.; Falk, R.; Parnmen, S.; Lumbsch, H.T.; Boekhout, T. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet. Biol., 2015, 78, 16-48.
[http://dx.doi.org/10.1016/j.fgb.2015.02.009] [PMID: 25721988]
[39]
Zhang, Y.; Hagen, F.; Stielow, B.; Rodrigues, A.M.; Samerpitak, K.; Zhou, X.; Feng, P.; Yang, L.; Chen, M.; Deng, S.; Li, S.; Liao, W.; Li, R.; Li, F.; Meis, J.F.; Guarro, J.; Teixeira, M.; Al-Zahrani, H.S.; Pires de Camargo, Z.; Zhang, L.; de Hoog, G.S. Phylogeography and evolutionary patterns in Sporothrix spanning more than 14 000 human and animal case reports. Persoonia, 2015, 35, 1-20.
[http://dx.doi.org/10.3767/003158515X687416] [PMID: 26823625]
[40]
Chillemi, V.; Lo Passo, C.; van Diepeningen, A.D.; Rharmitt, S.; Delfino, D.; Cascio, A.; Nnadi, N.E.; Cilo, B.D.; Sampaio, P.; Tietz, H.J.; Pemán, J.; Criseo, G.; Romeo, O.; Scordino, F. Multilocus microsatellite analysis of European and African Candida glabrata isolates. Eur. J. Clin. Microbiol. Infect. Dis., 2016, 35(6), 885-892.
[http://dx.doi.org/10.1007/s10096-016-2610-3] [PMID: 26946511]
[41]
Wang, Y.; Shi, C.; Liu, J.Y.; Li, W.J.; Zhao, Y.; Xiang, M.J. Multilocus sequence typing of Candida tropicalis shows clonal cluster enrichment in azole-resistant isolates from patients in Shanghai, China. Infect. Genet. Evol., 2016, 44, 418-424.
[http://dx.doi.org/10.1016/j.meegid.2016.07.026] [PMID: 27456280]
[42]
Odds, F.C.; Bougnoux, M.E.; Shaw, D.J.; Bain, J.M.; Davidson, A.D.; Diogo, D.; Jacobsen, M.D.; Lecomte, M.; Li, S.Y.; Tavanti, A.; Maiden, M.C.; Gow, N.A.; d’Enfert, C. Molecular phylogenetics of Candida albicans. Eukaryot. Cell, 2007, 6(6), 1041-1052.
[http://dx.doi.org/10.1128/EC.00041-07] [PMID: 17416899]
[43]
MacCallum, D.M.; Castillo, L.; Nather, K.; Munro, C.A.; Brown, A.J.; Gow, N.A.; Odds, F.C. Property differences among the four major Candida albicans strain clades. Eukaryot. Cell, 2009, 8(3), 373-387.
[http://dx.doi.org/10.1128/EC.00387-08] [PMID: 19151328]
[44]
Bai, F.Y. Association of genotypes with infection types and antifungal susceptibilities in Candida albicans as revealed by recent molecular typing strategies. Mycology, 2014, 5(1), 1-9.
[http://dx.doi.org/10.1080/21501203.2014.899525] [PMID: 24772369]
[45]
Berbee, M.L.; Taylor, J.W. Dating the molecular clock in fungi-how close are we? Fungal Biol. Rev., 2010, 24, 1-16.
[http://dx.doi.org/10.1016/j.fbr.2010.03.001]
[46]
Prieto, M.; Wedin, M. Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS One, 2013, 8(6)e65576
[http://dx.doi.org/10.1371/journal.pone.0065576] [PMID: 23799026]
[47]
Heitman, J. Microbial pathogens in the fungal kingdom. Fungal Biol. Rev., 2011, 25(1), 48-60.
[http://dx.doi.org/10.1016/j.fbr.2011.01.003] [PMID: 21528015]
[48]
Fitzpatrick, D.A.; Logue, M.E.; Stajich, J.E.; Butler, G. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol. Biol., 2006, 6, 99.
[http://dx.doi.org/10.1186/1471-2148-6-99] [PMID: 17121679]
[49]
Kurtzman, C.P.; Fell, J.W.; Boekhout, T. The yeasts: a taxonomic study, 4th ed; Elsevier: Amsterdam, 2011.
[50]
Johnson, E.M. Rare and emerging Candida species. Curr. Fungal Infect. Rep., 2009, 3(3), 152-159.
[http://dx.doi.org/10.1007/s12281-009-0020-z]
[51]
Turner, S.A.; Butler, G. The Candida pathogenic species complex. Cold Spring Harb. Perspect. Med., 2014, 4(9)a019778
[http://dx.doi.org/10.1101/cshperspect.a019778] [PMID: 25183855]
[52]
Neville, B.A.; d’Enfert, C.; Bougnoux, M.E. Candida albicans commensalism in the gastrointestinal tract. FEMS Yeast Res, 2015, 15(7)pii.fov081.
[http://dx.doi.org/10.1093/femsyr/fov081] [PMID: 26347504]
[53]
Hani, U.; Shivakumar, H.G.; Vaghela, R.; Osmani, R.A.; Shrivastava, A. Candidiasis: a fungal infection--current challenges and progress in prevention and treatment. Infect. Disord. Drug Targets, 2015, 15(1), 42-52.
[http://dx.doi.org/10.2174/1871526515666150320162036] [PMID: 25809621]
[54]
Forche, A.; Alby, K.; Schaefer, D.; Johnson, A.D.; Berman, J.; Bennett, R.J. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol., 2008, 6(5)e110
[http://dx.doi.org/10.1371/journal.pbio.0060110] [PMID: 18462019]
[55]
Shin, J.H.; Bougnoux, M.E.; d’Enfert, C.; Kim, S.H.; Moon, C.J.; Joo, M.Y.; Lee, K.; Kim, M.N.; Lee, H.S.; Shin, M.G.; Suh, S.P.; Ryang, D.W. Genetic diversity among Korean Candida albicans bloodstream isolates: assessment by multilocus sequence typing and restriction endonuclease analysis of genomic DNA by use of BssHII. J. Clin. Microbiol., 2011, 49(7), 2572-2577.
[http://dx.doi.org/10.1128/JCM.02153-10] [PMID: 21562112]
[56]
Schmid, J.; Tortorano, A.M.; Jones, G.; Lazzarini, C.; Zhang, N.; Bendall, M.J.; Cogliati, M.; Wattimena, S.; Klingspor, L. ECMM Survey French Mycoses Study Group Increased mortality in young candidemia patients associated with presence of a Candida albicans general-purpose genotype. J. Clin. Microbiol., 2011, 49(9), 3250-3256.
[http://dx.doi.org/10.1128/JCM.00941-11] [PMID: 21775553]
[57]
Romeo, O.; Tietz, H.J.; Criseo, G. Candida africana: is it a fungal pathogen? Curr. Fungal Infect. Rep., 2013, 7(3), 192-197.
[http://dx.doi.org/10.1007/s12281-013-0142-1]
[58]
Yazdanparast, S.A.; Khodavaisy, S.; Fakhim, H.; Shokohi, T.; Haghani, I.; Nabili, M.; Gholami, H.; Ahmadi, I.; Badali, H. Molecular characterization of highly susceptible Candida africana from vulvovaginal candidiasis. Mycopathologia, 2015, 180(5-6), 317-323.
[http://dx.doi.org/10.1007/s11046-015-9924-z] [PMID: 26183965]
[59]
Dodgson, A.R.; Dodgson, K.J.; Pujol, C.; Pfaller, M.A.; Soll, D.R. Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candida albicans. Antimicrob. Agents Chemother., 2004, 48(6), 2223-2227.
[http://dx.doi.org/10.1128/AAC.48.6.2223-2227.2004] [PMID: 15155225]
[60]
Blignaut, E.; Molepo, J.; Pujol, C.; Soll, D.R.; Pfaller, M.A. Clade-related amphotericin B resistance among South African Candida albicans isolates. Diagn. Microbiol. Infect. Dis., 2005, 53(1), 29-31.
[http://dx.doi.org/10.1016/j.diagmicrobio.2005.03.013] [PMID: 16182076]
[61]
Odds, F.C. In Candida albicans, resistance to flucytosine and terbinafine is linked to MAT locus homozygosity and multilocus sequence typing clade 1. FEMS Yeast Res., 2009, 9(7), 1091-1101.
[http://dx.doi.org/10.1111/j.1567-1364.2009.00577.x] [PMID: 19799637]
[62]
Jacobsen, M.D.; Boekhout, T.; Odds, F.C. Multilocus sequence typing confirms synonymy but highlights differences between Candida albicans and Candida stellatoidea. FEMS Yeast Res., 2008, 8(5), 764-770.
[http://dx.doi.org/10.1111/j.1567-1364.2008.00392.x] [PMID: 18547330]
[63]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[64]
Nabavi, S.F.; Daglia, M.; D’Antona, G.; Sobarzo-Sánchez, E.; Talas, Z.S.; Nabavi, S.M. Natural compounds used as therapies targeting to amyotrophic lateral sclerosis. Curr. Pharm. Biotechnol., 2015, 16(3), 211-218.
[http://dx.doi.org/10.2174/1389201016666150118132224] [PMID: 25601606]
[65]
Libro, R.; Giacoppo, S.; Soundara Rajan, T.; Bramanti, P.; Mazzon, E. Natural phytochemicals in the treatment and prevention of dementia: an overview. Molecules, 2016, 21(4), 518.
[http://dx.doi.org/10.3390/molecules21040518] [PMID: 27110749]
[66]
Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res., 2017, 196, 44-68.
[http://dx.doi.org/10.1016/j.micres.2016.12.003] [PMID: 28164790]
[67]
Zubair, H.; Azim, S.; Ahmad, A.; Khan, M.A.; Patel, G.K.; Singh, S.; Singh, A.P. Cancer chemoprevention by phytochemicals: nature’s healing touch. Molecules, 2017, 22(3)E395
[http://dx.doi.org/10.3390/molecules22030395] [PMID: 28273819]
[68]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[69]
Forkmann, G.; Martens, S. Metabolic engineering and applications of flavonoids. Curr. Opin. Biotechnol., 2001, 12(2), 155-160.
[http://dx.doi.org/10.1016/S0958-1669(00)00192-0] [PMID: 11287230]
[70]
Ferrer, J.L.; Austin, M.B.; Stewart, C., Jr; Noel, J.P. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem., 2008, 46(3), 356-370.
[http://dx.doi.org/10.1016/j.plaphy.2007.12.009] [PMID: 18272377]
[71]
Buer, C.S.; Imin, N.; Djordjevic, M.A. Flavonoids: new roles for old molecules. J. Integr. Plant Biol., 2010, 52(1), 98-111.
[http://dx.doi.org/10.1111/j.1744-7909.2010.00905.x] [PMID: 20074144]
[72]
Stobiecki, M.; Kachlicki, P. Isolation and identification of flavonoids In: The Science of Flavonoids; Grotewold, Ed.; Springer: New York; , 2006, pp. pp. 47-69.
[http://dx.doi.org/10.1007/978-0-387-28822-2_2]
[73]
Mol, J.; Grotewold, E.; Koes, R. How genes paint flowers and seeds. Trends Plant Sci., 1998, 3, 212-217.
[http://dx.doi.org/10.1016/S1360-1385(98)01242-4]
[74]
Winkel-Shirley, B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol., 2002, 5(3), 218-223.
[http://dx.doi.org/10.1016/S1369-5266(02)00256-X] [PMID: 11960739]
[75]
Bradshaw, H.D.; Schemske, D.W. Allele substitution at a flower colour locus produces a pollinator shift in monkey flowers. Nature, 2003, 426(6963), 176-178.
[http://dx.doi.org/10.1038/nature02106] [PMID: 14614505]
[76]
Dai, G.H.; Nicole, M.; Andary, C.; Martinez, C.; Bresson, E.; Boher, B.; Daniel, J.F.; Geiger, J.P. Flavonoids accumulate in cell walls, middle lamellae and callose-rich papillae during an incompatible interaction between Xanthomonas campestris pv. malvacearum and cotton. Physiol. Mol. Plant Pathol., 1996, 49, 285-306.
[http://dx.doi.org/10.1006/pmpp.1996.0055]
[77]
Treutter, D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol (Stuttg), 2005, 7(6), 581-591.
[http://dx.doi.org/10.1055/s-2005-873009] [PMID: 16388461]
[78]
Zou, J.; Rodriguez-Zas, S.; Aldea, M.; Li, M.; Zhu, J.; Gonzalez, D.O.; Vodkin, L.O.; DeLucia, E.; Clough, S.J. Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR-specific downregulation of photosynthesis. Mol. Plant Microbe Interact., 2005, 18(11), 1161-1174.
[http://dx.doi.org/10.1094/MPMI-18-1161] [PMID: 16353551]
[79]
Foster-Hartnett, D.; Danesh, D.; Peñuela, S.; Sharopova, N.; Endre, G.; Vandenbosch, K.A.; Young, N.D.; Samac, D.A. Molecular and cytological responses of Medicago truncatula to Erysiphe pisi. Mol. Plant Pathol., 2007, 8(3), 307-319.
[http://dx.doi.org/10.1111/j.1364-3703.2007.00395.x] [PMID: 20507501]
[80]
Samac, D.A.; Graham, M.A. Recent advances in legume-microbe interactions: recognition, defense response, and symbiosis from a genomic perspective. Plant Physiol., 2007, 144(2), 582-587.
[http://dx.doi.org/10.1104/pp.107.096503] [PMID: 17556521]
[81]
Wu, T.; Zang, X.; He, M.; Pan, S.; Xu, X.; Wu, T.; Zang, X.; He, M.; Pan, S.; Xu, X. Structure-activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase. J. Agric. Food Chem., 2013, 61(34), 8185-8190.
[http://dx.doi.org/10.1021/jf402222v] [PMID: 23926942]
[82]
Iwashina, T. Flavonoid function and activity to plants and other organisms. Biol. Sci. Space, 2003, 17(1), 24-44.
[http://dx.doi.org/10.2187/bss.17.24] [PMID: 12897458]
[83]
Xiao, J.; Capanoglu, E.; Jassbi, A.R.; Miron, A. Advance on the flavonoid C-glycosides and health benefits. Crit. Rev. Food Sci. Nutr., 2016, 56(Suppl. 1), S29-S45.
[http://dx.doi.org/10.1080/10408398.2015.1067595] [PMID: 26462718]
[84]
George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant flavonoids in cancer chemoprevention: role in genome stability. J. Nutr. Biochem., 2017, 45, 1-14.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.007] [PMID: 27951449]
[85]
Singhal, S.S.; Singhal, S.; Singhal, P.; Singhal, J.; Horne, D.; Awasthi, S. Didymin: an orally active citrus flavonoid for targeting neuroblastoma. Oncotarget, 2017, 8(17), 29428-29441.
[http://dx.doi.org/10.18632/oncotarget.15204] [PMID: 28187004]
[86]
Touil, Y.S.; Auzeil, N.; Boulinguez, F.; Saighi, H.; Regazzetti, A.; Scherman, D.; Chabot, G.G. Fisetin disposition and metabolism in mice: Identification of geraldol as an active metabolite. Biochem. Pharmacol., 2011, 82(11), 1731-1739.
[http://dx.doi.org/10.1016/j.bcp.2011.07.097] [PMID: 21840301]
[87]
Tripathi, R.; Samadder, T.; Gupta, S.; Surolia, A.; Shaha, C. Anticancer activity of a combination of cisplatin and fisetin in embryonal carcinoma cells and xenograft tumors. Mol. Cancer Ther., 2011, 10(2), 255-268.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0606] [PMID: 21216935]
[88]
Yang, F.; Song, L.; Wang, H.; Wang, J.; Xu, Z.; Xing, N. Quercetin in prostate cancer: Chemotherapeutic and chemopreventive effects, mechanisms and clinical application potential. Oncol. Rep., 2015, 33(6), 2659-2668.
[http://dx.doi.org/10.3892/or.2015.3886] [PMID: 25845380]
[89]
Cotelle, N.; Bernier, J.L.; Catteau, J.P.; Pommery, J.; Wallet, J.C.; Gaydou, E.M. Antioxidant properties of hydroxy-flavones. Free Radic. Biol. Med., 1996, 20(1), 35-43.
[http://dx.doi.org/10.1016/0891-5849(95)02014-4] [PMID: 8903677]
[90]
Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 1996, 20(7), 933-956.
[http://dx.doi.org/10.1016/0891-5849(95)02227-9] [PMID: 8743980]
[91]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[92]
Liu, H.; Dong, Y.; Gao, Y.; Du, Z.; Wang, Y.; Cheng, P.; Chen, A.; Huang, H. The fascinating effects of baicalein on cancer: A Review. Int. J. Mol. Sci., 2016, 17(10)E1681
[http://dx.doi.org/10.3390/ijms17101681] [PMID: 27735841]
[93]
Dinda, B.; Dinda, S.; DasSharma, S.; Banik, R.; Chakraborty, A.; Dinda, M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur. J. Med. Chem., 2017, 131, 68-80.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.004] [PMID: 28288320]
[94]
Gao, Y.; Snyder, S.A.; Smith, J.N.; Chen, Y.C. Anticancer properties of baicalein: a review. Med. Chem. Res., 2016, 25(8), 1515-1523.
[http://dx.doi.org/10.1007/s00044-016-1607-x] [PMID: 28008217]
[95]
Cao, Y.; Dai, B.; Wang, Y.; Huang, S.; Xu, Y.; Cao, Y.; Gao, P.; Zhu, Z.; Jiang, Y. In vitro activity of baicalein against Candida albicans biofilms. Int. J. Antimicrob. Agents, 2008, 32(1), 73-77.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.01.026] [PMID: 18374543]
[96]
Shirley, K.P.; Windsor, L.J.; Eckert, G.J.; Gregory, R.L. In vitro effects of Plantago Major extract, aucubin, and baicalein on Candida albicans biofilm formation, metabolic activity, and cell surface hydrophobicity. J. Prosthodont., 2015, 0, 1-8.
[PMID: 26618515]
[97]
Huang, S.; Cao, Y.Y.; Dai, B.D.; Sun, X.R.; Zhu, Z.Y.; Cao, Y.B.; Wang, Y.; Gao, P.H.; Jiang, Y.Y. In vitro synergism of fluconazole and baicalein against clinical isolates of Candida albicans resistant to fluconazole. Biol. Pharm. Bull., 2008, 31(12), 2234-2236.
[http://dx.doi.org/10.1248/bpb.31.2234] [PMID: 19043205]
[98]
Fu, Z.; Lu, H.; Zhu, Z.; Yan, L.; Jiang, Y.; Cao, Y. Combination of baicalein and Amphotericin B accelerates Candida albicans apoptosis. Biol. Pharm. Bull., 2011, 34(2), 214-218.
[http://dx.doi.org/10.1248/bpb.34.214] [PMID: 21415530]
[99]
Dai, B.D.; Cao, Y.Y.; Huang, S.; Xu, Y.G.; Gao, P.H.; Wang, Y.; Jiang, Y.Y. Baicalein induces programmed cell death in Candida albicans. J. Microbiol. Biotechnol., 2009, 19(8), 803-809.
[PMID: 19734718]
[100]
Kang, K.; Fong, W.P.; Tsang, P.W. Antifungal activity of baicalein against Candida krusei does not involve apoptosis. Mycopathologia, 2010, 170(6), 391-396.
[http://dx.doi.org/10.1007/s11046-010-9341-2] [PMID: 20614252]
[101]
Salazar-Aranda, R.; Granados-Guzmán, G.; Pérez-Meseguer, J.; González, G.M.; de Torres, N.W. Activity of polyphenolic compounds against Candida glabrata. Molecules, 2015, 20(10), 17903-17912.
[http://dx.doi.org/10.3390/molecules201017903] [PMID: 26426003]
[102]
Soll, D.R.; Pujol, C. Candida albicans clades. FEMS Immunol. Med. Microbiol., 2003, 39(1), 1-7.
[http://dx.doi.org/10.1016/S0928-8244(03)00242-6] [PMID: 14556989]
[103]
Jianhua, W.; Hai, W. Antifungal susceptibility analysis of berberine, baicalin, eugenol and curcumin on Candida albicans. J. Med. Coll. PLA, 2009, 24, 142-147.
[http://dx.doi.org/10.1016/S1000-1948(09)60030-7]
[104]
Yang, S.; Fu, Y.; Wu, X.; Zhou, Z.; Xu, J.; Zeng, X.; Kuang, N.; Zeng, Y. Baicalin prevents Candida albicans infections via increasing its apoptosis rate. Biochem. Biophys. Res. Commun., 2014, 451(1), 36-41.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.040] [PMID: 25065741]
[105]
Wong, K.S.; Tsang, W.K. In vitro antifungal activity of the aqueous extract of Scutellaria baicalensis Georgi root against Candida albicans. Int. J. Antimicrob. Agents, 2009, 34(3), 284-285.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.03.007] [PMID: 19369042]
[106]
Wang, T.; Shi, G.; Shao, J.; Wu, D.; Yan, Y.; Zhang, M.; Cui, Y.; Wang, C. In vitro antifungal activity of baicalin against Candida albicans biofilms via apoptotic induction. Microb. Pathog., 2015, 87, 21-29.
[http://dx.doi.org/10.1016/j.micpath.2015.07.006] [PMID: 26169236]
[107]
Cabrera, C.; Artacho, R.; Giménez, R. Beneficial effects of green tea--a review. J. Am. Coll. Nutr., 2006, 25(2), 79-99.
[http://dx.doi.org/10.1080/07315724.2006.10719518] [PMID: 16582024]
[108]
Han, Y. Synergic anticandidal effect of epigallocatechin-O-gallate combined with amphotericin B in a murine model of disseminated candidiasis and its anticandidal mechanism. Biol. Pharm. Bull., 2007, 30(9), 1693-1696.
[http://dx.doi.org/10.1248/bpb.30.1693] [PMID: 17827722]
[109]
Evensen, N.A.; Braun, P.C. The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can. J. Microbiol., 2009, 55(9), 1033-1039.
[http://dx.doi.org/10.1139/W09-058] [PMID: 19898545]
[110]
Ning, Y.; Ling, J.; Wu, C.D. Synergistic effects of tea catechin epigallocatechin gallate and antimycotics against oral Candida species. Arch. Oral Biol., 2015, 60(10), 1565-1570.
[http://dx.doi.org/10.1016/j.archoralbio.2015.07.001] [PMID: 26263544]
[111]
Navarro-Martínez, M.D.; García-Cánovas, F.; Rodríguez-López, J.N. Tea polyphenol epigallocatechin-3-gallate inhibits ergosterol synthesis by disturbing folic acid metabolism in Candida albicans. J. Antimicrob. Chemother., 2006, 57(6), 1083-1092.
[http://dx.doi.org/10.1093/jac/dkl124] [PMID: 16585130]
[112]
Park, B.J.; Park, J.C.; Taguchi, H.; Fukushima, K.; Hyon, S.H.; Takatori, K. Antifungal susceptibility of epigallocatechin 3-O-gallate (EGCg) on clinical isolates of pathogenic yeasts. Biochem. Biophys. Res. Commun., 2006, 347(2), 401-405.
[http://dx.doi.org/10.1016/j.bbrc.2006.06.037] [PMID: 16831406]
[113]
Shahzad, M.; Sherry, L.; Rajendran, R.; Edwards, C.A.; Combet, E.; Ramage, G. Utilising polyphenols for the clinical management of Candida albicans biofilms. Int. J. Antimicrob. Agents, 2014, 44(3), 269-273.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.05.017] [PMID: 25104135]
[114]
Chen, M.; Zhai, L.; Arendrup, M.C. In vitro activity of 23 tea extractions and epigallocatechin gallate against Candida species. Med. Mycol., 2015, 53(2), 194-198.
[http://dx.doi.org/10.1093/mmy/myu073] [PMID: 25605775]
[115]
Bougnoux, M.E.; Diogo, D.; François, N.; Sendid, B.; Veirmeire, S.; Colombel, J.F.; Bouchier, C.; Van Kruiningen, H.; d’Enfert, C.; Poulain, D. Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J. Clin. Microbiol., 2006, 44(5), 1810-1820.
[http://dx.doi.org/10.1128/JCM.44.5.1810-1820.2006] [PMID: 16672411]
[116]
Chen, K.W.; Chen, Y.C.; Lo, H.J.; Odds, F.C.; Wang, T.H.; Lin, C.Y.; Li, S.Y. Multilocus sequence typing for analyses of clonality of Candida albicans strains in Taiwan. J. Clin. Microbiol., 2006, 44(6), 2172-2178.
[http://dx.doi.org/10.1128/JCM.00320-06] [PMID: 16757617]
[117]
Forche, A.; Magee, P.T.; Selmecki, A.; Berman, J.; May, G. Evolution in Candida albicans populations during a single passage through a mouse host. Genetics, 2009, 182(3), 799-811.
[http://dx.doi.org/10.1534/genetics.109.103325] [PMID: 19414562]
[118]
Wartenberg, A.; Linde, J.; Martin, R.; Schreiner, M.; Horn, F.; Jacobsen, I.D.; Jenull, S.; Wolf, T.; Kuchler, K.; Guthke, R.; Kurzai, O.; Forche, A.; d’Enfert, C.; Brunke, S.; Hube, B. Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant. PLoS Genet., 2014, 10(12)e1004824
[http://dx.doi.org/10.1371/journal.pgen.1004824] [PMID: 25474009]
[119]
Sharma, S.; Ali, A.; Ali, J.; Sahni, J.K.; Baboota, S. Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin. Investig. Drugs, 2013, 22(8), 1063-1079.
[http://dx.doi.org/10.1517/13543784.2013.805744] [PMID: 23795677]
[120]
Arima, H.; Ashida, H.; Danno, G. Rutin-enhanced antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Biosci. Biotechnol. Biochem., 2002, 66(5), 1009-1014.
[http://dx.doi.org/10.1271/bbb.66.1009] [PMID: 12092809]
[121]
Johann, S.; Mendes, B.G.; Missau, F.C.; de Resende, M.A.; Pizzolatti, M.G. Antifungal activity of five species of Polygala. Braz. J. Microbiol., 2011, 42(3), 1065-1075.
[http://dx.doi.org/10.1590/S1517-83822011000300027] [PMID: 24031724]
[122]
Oliveira, V.M.; Carraro, E.; Auler, M.E.; Khalil, N.M. Quercetin and rutin as potential agents antifungal against Cryptococcus spp. Braz. J. Biol., 2016, 76(4), 1029-1034.
[http://dx.doi.org/10.1590/1519-6984.07415] [PMID: 27166572]
[123]
Bisignano, G.; Sanogo, R.; Marino, A.; Aquino, R.; D’Angelo, V.; Germanò, M.P.; De Pasquale, R.; Pizza, C. Antimicrobial activity of Mitracarpus scaber extract and isolated constituents. Lett. Appl. Microbiol., 2000, 30(2), 105-108.
[http://dx.doi.org/10.1046/j.1472-765x.2000.00692.x] [PMID: 10736009]
[124]
Nayeem, N.; Karvekar, M. Anti microbial and anti-oxidant properties of the isolated compounds from the methanolic extract from the leaves of Tectona grandis. J. Basic Clin. Pharm., 2011, 2(4), 163-165.
[PMID: 24826018]
[125]
Cheah, H.L.; Lim, V.; Sandai, D. Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS One, 2014, 9(4)e95951
[http://dx.doi.org/10.1371/journal.pone.0095951] [PMID: 24781056]
[126]
Nenaah, G. Antimicrobial activity of Calotropis procera Ait. (Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents. World J. Microbiol. Biotechnol., 2013, 29(7), 1255-1262.
[http://dx.doi.org/10.1007/s11274-013-1288-2] [PMID: 23417281]
[127]
Han, Y. Rutin has therapeutic effect on septic arthritis caused by Candida albicans. Int. Immunopharmacol., 2009, 9(2), 207-211.
[http://dx.doi.org/10.1016/j.intimp.2008.11.002] [PMID: 19041425]
[128]
Tempesti, T.C.; Alvarez, M.G.; Araújo, M.F. Júnior, F.E.A.C.; Carvalho, M.G.; Durantini, E.N. Antifungal activity of a novel quercetin derivative bearing a trifluoromethyl group on Candida albicans. Med. Chem. Res., 2012, 21, 2217-2222.
[http://dx.doi.org/10.1007/s00044-011-9750-x]
[129]
Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and its anti-allergic immune response. Molecules, 2016, 21(5)E623
[http://dx.doi.org/10.3390/molecules21050623] [PMID: 27187333]
[130]
Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[131]
Chen, S.; Jiang, H.; Wu, X.; Fang, J. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm., 2016.20169340637
[http://dx.doi.org/10.1155/2016/9340637] [PMID: 28003714]
[132]
Marunaka, Y.; Marunaka, R.; Sun, H.; Yamamoto, T.; Kanamura, N.; Inui, T.; Taruno, A. Actions of quercetin, a polyphenol, on blood pressure. Molecules, 2017, 22(2), 209.
[http://dx.doi.org/10.3390/molecules22020209] [PMID: 28146071]
[133]
Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[134]
Ramos, F.A.; Takaishi, Y.; Shirotori, M.; Kawaguchi, Y.; Tsuchiya, K.; Shibata, H.; Higuti, T.; Tadokoro, T.; Takeuchi, M. Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa) skin. J. Agric. Food Chem., 2006, 54(10), 3551-3557.
[http://dx.doi.org/10.1021/jf060251c] [PMID: 19127724]
[135]
Johari, J.; Kianmehr, A.; Mustafa, M.R.; Abubakar, S.; Zandi, K. Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. Int. J. Mol. Sci., 2012, 13(12), 16785-16795.
[http://dx.doi.org/10.3390/ijms131216785] [PMID: 23222683]
[136]
Ozçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol., 2011, 49(4), 396-402.
[http://dx.doi.org/10.3109/13880209.2010.519390] [PMID: 21391841]
[137]
Aderogba, M.A.; Ndhlala, A.R.; Rengasamy, K.R.R.; Van Staden, J. Antimicrobial and selected in vitro enzyme inhibitory effects of leaf extracts, flavonols and indole alkaloids isolated from Croton menyharthii. Molecules, 2013, 18(10), 12633-12644.
[http://dx.doi.org/10.3390/molecules181012633] [PMID: 24126380]
[138]
Gehrke, I.T.S.; Neto, A.T.; Pedroso, M. Mostardeiro, C.P.; DaCruz, I.B.M.; Silva, U.F.; Ilha, V.; Dalcol, I.; Morel, A.F. Antimicrobial activity of Schinuslentiscifolius (Anacardiaceae). J. Ethnopharmacol., 2013, 148, 486-491.
[http://dx.doi.org/10.1016/j.jep.2013.04.043] [PMID: 23684720]
[139]
Gao, M.; Wang, H.; Zhu, L. Quercetin assists fluconazole to inhibit biofilm formations of fluconazole-resistant Candida albicans in in vitro and in vivo antifungal managements of vulvovaginal candidiasis. Cell. Physiol. Biochem., 2016, 40(3-4), 727-742.
[http://dx.doi.org/10.1159/000453134] [PMID: 27915337]
[140]
Singh, B.N.; Upreti, D.K.; Singh, B.R.; Pandey, G.; Verma, S.; Roy, S.; Naqvi, A.H.; Rawat, A.K. Quercetin sensitizes fluconazole-resistant candida albicans to induce apoptotic cell death by modulating quorum sensing. Antimicrob. Agents Chemother., 2015, 59(4), 2153-2168.
[http://dx.doi.org/10.1128/AAC.03599-14] [PMID: 25645848]
[141]
Ramage, G.; Saville, S.P.; Wickes, B.L.; López-Ribot, J.L. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl. Environ. Microbiol., 2002, 68(11), 5459-5463.
[http://dx.doi.org/10.1128/AEM.68.11.5459-5463.2002] [PMID: 12406738]
[142]
Langford, M.L.; Hargarten, J.C.; Patefield, K.D.; Marta, E.; Blankenship, J.R.; Fanning, S.; Nickerson, K.W.; Atkin, A.L. Candida albicans Czf1 and Efg1 coordinate the response to farnesol during quorum sensing, white-opaque thermal dimorphism, and cell death. Eukaryot. Cell, 2013, 12(9), 1281-1292.
[http://dx.doi.org/10.1128/EC.00311-12] [PMID: 23873867]
[143]
Chowdhary, A.; Hagen, F.; Sharma, C.; Al-Hatmi, A.M.S.; Giuffrè, L.; Giosa, D.; Fan, S.; Badali, H.; Felice, M.R.; de Hoog, S.; Meis, J.F.; Romeo, O. Whole genome-based amplified fragment length polymorphism analysis reveals genetic diversity in Candida africana. Front. Microbiol., 2017, 8, 556.
[http://dx.doi.org/10.3389/fmicb.2017.00556] [PMID: 28421052]
[144]
Hirakawa, M.P.; Martinez, D.A.; Sakthikumar, S.; Anderson, M.Z.; Berlin, A.; Gujja, S.; Zeng, Q.; Zisson, E.; Wang, J.M.; Greenberg, J.M.; Berman, J.; Bennett, R.J.; Cuomo, C.A. Genetic and phenotypic intra-species variation in Candida albicans. Genome Res., 2015, 25(3), 413-425.
[http://dx.doi.org/10.1101/gr.174623.114] [PMID: 25504520]
[145]
Pujol, C.; Joly, S.; Lockhart, S.R.; Noel, S.; Tibayrenc, M.; Soll, D.R. Parity among the randomly amplified polymorphic DNA method, multilocus enzyme electrophoresis, and Southern blot hybridization with the moderately repetitive DNA probe Ca3 for fingerprinting Candida albicans. J. Clin. Microbiol., 1997, 35(9), 2348-2358.
[PMID: 9276415]
[146]
Pujol, C.; Pfaller, M.; Soll, D.R. Ca3 fingerprinting of Candida albicans bloodstream isolates from the United States, Canada, South America, and Europe reveals a European clade. J. Clin. Microbiol., 2002, 40(8), 2729-2740.
[http://dx.doi.org/10.1128/JCM.40.8.2729-2740.2002] [PMID: 12149321]
[147]
Blignaut, E.; Pujol, C.; Lockhart, S.; Joly, S.; Soll, D.R. Ca3 fingerprinting of Candida albicans isolates from human immunodeficiency virus-positive and healthy individuals reveals a new clade in South Africa. J. Clin. Microbiol., 2002, 40(3), 826-836.
[http://dx.doi.org/10.1128/JCM.40.3.826-836.2002] [PMID: 11880401]
[148]
Tavanti, A.; Davidson, A.D.; Fordyce, M.J.; Gow, N.A.; Maiden, M.C.; Odds, F.C. Population structure and properties of Candida albicans, as determined by multilocus sequence typing. J. Clin. Microbiol., 2005, 43(11), 5601-5613.
[http://dx.doi.org/10.1128/JCM.43.11.5601-5613.2005] [PMID: 16272493]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy