[1]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[2]
Jain, K.; Verma, A.K.; Mishra, P.R.; Jain, N.K. Surface-engineered dendrimeric nanoconjugates for macrophage-targeted delivery of amphotericin B: Formulation development and in vitro and in vivo evaluation. Antimicrob. Agents Chemother., 2015, 59(5), 2479-2487.
[3]
Bajwa, N.; Mehra, N.K.; Jain, K.; Jain, N.K. Targeted anticancer drug delivery through anthracycline antibiotic bearing functionalized quantum dots. Artif. Cells Nanomed. Biotechnol., 2016b, 44(7), 1774-1782.
[4]
Franiak-Pietryga, I.; Maciejewski, H.; Ostrowska, K.; Appelhans, D.; Voit, B.; Misiewicz, M.; Kowalczyk, P.; Bryszewska, M.; Borowiec, M. Dendrimer-based nanoparticles for potential personalized therapy in chronic lymphocytic leukemia: Targeting the BCR-signaling pathway. Int. J. Biol. Macromol., 2016, 88, 156-161.
[5]
Singh, J.; Jain, K.; Mehra, N.K.; Jain, N.K. Effect of anticancer drug on delivery potential of poly(propylene imine) dendrimers. J. Colloid Sci. Biotechnol, 2015, 4(2), 133-140.
[6]
Soni, N.; Jain, K.; Gupta, U.; Jain, N.K. Controlled delivery of Gemcitabine Hydrochloride using mannosylated poly(propyleneimine) dendrimers. J. Nanopart. Res., 2015, 17(458), 1-17.
[7]
Torres, C.C.; Campos, C.H.; Diáz, C.; Jiménez, V.A.; Vidal, F.; Guzmán, L.; Alderete, J.B. PAMAM-grafted TiO2 nanotubes as novel versatile materials for drug delivery applications. Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 65, 164-171.
[8]
Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1866-1879.
[9]
(a) Kaur, A.; Jain, K.; Mehra, N.K.; Jain, N.K. Development and characterization of surface engineered PPI dendrimers for targeted drug delivery. Artif. Cells Nanomed. Biotechnol., 2016a, 1-12.
(b) Kaur, D.; Jain, K.; Mehra, N.K.; Kesharwani, P.; Jain, N.K. A review on comparative study of PPI and PAMAM dendrimers. J. Nanopart. Res., 2016b, 18(146), 1-14.
(c) Kaur, S.; Mehra, N.K.; Jain, K.; Jain, N.K. Development and evaluation of targeting ligand-anchored CNTs as prospective targeted drug delivery system. Artif. Cells Nanomed. Biotechnol., 2017, 45(2), 242-250.
[10]
(a) Sharma, P.; Mehra, N.K.; Jain, K.; Jain, N.K. Biomedical Applications of Carbon Nanotubes: A Critical Review. Curr. Drug Deliv., 2016a, 13(6), 796-817.
(b) Sharma, S.; Mehra, N.K.; Jain, K.; Jain, N.K. Effect of functionalization on drug delivery potential of carbon nanotubes. Artif. Cells Nanomed. Biotechnol., 2016b, 44(8), 1851-1860.
[11]
Yu, B.; Tan, L.; Zheng, R.; Tan, H.; Zheng, L. Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes. Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 68, 579-584.
[12]
Hu, S.; Wang, T.; Pei, X.; Cai, H.; Chen, J.; Zhang, X.; Wan, Q.; Wang, J. Synergistic enhancement of antitumor efficacy by pegylated multi-walled carbon nanotubes modified with cell-penetrating peptide TAT. Nanoscale Res. Lett., 2016, 11(452), 1-14.
[13]
(a) Jain, K.; Gupta, U.; Jain, N.K. Dendronized nanoconjugates of lysine and folate for treatment of cancer. Eur. J. Pharm. Biopharm., 2014a, 87(3), 500-509.
(b) Jain, K.; Mehra, N.K.; Jain, N.K. Potentials and emerging trends in nanopharmacology. Curr. Opin. Pharmacol., 2014b, 15, 97-106.
[14]
Gardikis, K.; Micha-Screttas, M.; Demetzos, C.; Steele, B.R. Dendrimers and the development of new complex nanomaterials for biomedical applications. Curr. Med. Chem., 2012, 19(29), 4913-4928.
[15]
Jain, A.; Jain, K.; Mehra, N.K.; Jain, N.K. Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells. J. Nanopart. Res., 2013, 15(10), 1-18.
[16]
Adeli, M.; Beyranvand, S.; Kabiri, R. Preparation of hybrid nanomaterials by supramolecular interactions between dendritic polymers and carbon nanotubes. Polym. Chem., 2013, 4, 669-674.
[17]
Bodewein, L.; Schmelter, F.; Di Fiore, S.; Hollert, H.; Fischer, R.; Fenske, M. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines. Toxicol. Appl. Pharmacol., 2016, 305, 83-92.
[18]
(a) Cancino, J.; Nobre, T.M.; Oliveira, O.N., Jr; Machado, S.A.; Zucolotto, V. A new strategy to investigate the toxicity of nanomaterials using Langmuir monolayers as membrane models. Nanotoxicology, 2013a, 7(1), 61-70.
(b) Cancino, J.; Paino, I.M.M.; Micoccib, K.C.; Selistre-de-Araujo, H.S.; Zucolotto, V. In vitro nanotoxicity of single-walled carbon nanotube-dendrimer nanocomplexes against murine myoblast cells. Toxicol. Lett., 2013b, 219, 18-25.
[19]
Singh, J.; Jain, K.; Mehra, N.K.; Jain, N.K. Dendrimers in anticancer drug delivery: Mechanism of interaction of drug and dendrimers. Artif. Cells Nanomed. Biotechnol., 2016, 44(7), 1626-1634.
[20]
Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 2014, 9(2), 223-243.
[21]
Kaur, A.; Jain, K.; Mehra, N.K.; Jain, N.K. Dendrimer internalization: A systematic review. J. Colloid Sci. Biotechnol, 2015, 4, 99-109.
[22]
Mansuri, S.; Kesharwani, P.; Jain, K.; Tekade, R.K.; Jain, N.K. Mucoadhesion: A promising approach in drug delivery system. React. Funct. Pol., 2016, 100, 151-172.
[23]
Mehra, N.K.; Jain, K.; Jain, N.K. Triazine dendrimers: Biomedical
application. In: Encyclopedia of Biomedical Polymers and Polymeric
Biomaterials., , Taylor and Francis, 2014; DOI: 10.1081/EEBPP-
120049279.
[24]
Jain, K. Drug Delivery and Biomedical Applications In: Dendrimers:
Smart nanoengineered polymers for bioinspired applications
in drug delivery., 2017, pp. 169-220
[25]
Mehra, N.K.; Jain, K.; Jain, N.K. Nanobiomaterials in Medical
Imaging. In: Multifunctional carbon nanotubes in cancer therapy
and imaging., 2016, vol, 8, pp. 421-453.
[26]
Heiden, T.C.; Dengler, E.; Kao, W.J.; Heideman, W.; Peterson, R.E. Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol. Appl. Pharmacol., 2007, 225(1), 70-79.
[27]
Oliveira, E.; Casado, M.; Faria, M.; Soares, A.M.; Navas, J.M.; Barata, C.; Piña, B. Transcriptomic response of zebrafish embryos to polyaminoamine (PAMAM) dendrimers. Nanotoxicology, 2014, 8(Suppl. 1), 92-99.
[28]
Rastogi, V.; Yadav, P.; Bhattacharya, S.S.; Mishra, A.K.; Verma, N.; Verma, A.; Pandit, J.K. Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells. J. Drug Del., 2014, 2014(670815), 1-23.
[29]
Laroui, H.; Rakhya, P.; Xiao, B.; Viennois, E.; Merlin, D. Nanotechnology in diagnostics and therapeutics for gastrointestinal disorders. Dig. Liver Dis., 2013, 45(12), 995-1002.
[30]
Mehra, N.K.; Jain, K.; Jain, N.K. Design of multifunctional nanocarriers for delivery of anti-cancer therapy. Curr. Pharm. Des., 2015, 21(42), 6157-6164.
[31]
Iannazzo, D.; Pistone, A.; Ziccarelli, I.; Espro, C.; Galvagno, S.; Giofré, S.V.; Romeo, R.; Cicero, N.; Bua, G.D.; Lanza, G.; Legnani, L.; Chiacchio, M.A. Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes. Environ. Sci. Pollut. Res. Int., 2017, 24(17), 14735-14747.
[32]
Qin, W.; Yang, K.; Tang, H.; Tan, L.; Xie, Q.; Ma, M.; Zhang, Y.; Yao, S. Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surf. B Biointerfaces, 2011, 84(1), 206-213.
[33]
Pérez-Martínez, F.C.; Carrión, B.; Lucío, M.I.; Rubio, N.; Herrero, M.A.; Vázquez, E.; Ceña, V. Enhanced docetaxel-mediated cytotoxicity in human prostate cancer cells through knockdown of cofilin-1 by carbon nanohorn delivered siRNA. Biomaterials, 2012, 33(32), 8152-8159.
[34]
Wang, C.; Li, Z.; Liu, B.; Liao, Q.; Bao, C.; Fu, H.; Pan, B.; Jin, W.; Cui, D. Dendrimer modified SWCNTs for High Efficient Delivery and Intracellular Imaging of survivin siRNA. Nano Biomed. Eng., 2013, 5(3), 125-130.
[35]
Wen, S.; Liu, H.; Cai, H.; Shen, M.; Shi, X. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Adv. Health. Mater., 2013, 2(9), 1267-1276.
[36]
Yang, H.; Pan, S.; Ma, D.; He, D.; Wang, Y.; Xie, S.; Peng, Y. Light-harvesting dendrimer zinc-phthalocyanines chromophores labeled single-wall carbon nanotube nanoensembles: Synthesis and photoinduced electron transfer. J. Lumines., 2016, 179, 588-594.
[37]
Alam, A.K.M.M.; Beg, M.D.H.; Yunus, R.M.; Mina, M.F.; Maria, K.H.; Mieno, T. Evolution of functionalized multi-walled carbon nanotubes by dendritic polymer coating and their anti-scavenging behavior during curing process. Mater. Lett., 2016, 167(15), 58-60.
[38]
He, D.; Peng, Y.; Yang, H.; Ma, D.; Wang, Y.; Chen, K.; Chen, P.; Shi, J. Single-wall carbon nanotubes covalently linked with zinc (II) phthalocyanine bearing poly (aryl benzyl ether) dendritic substituents: Synthesis, characterization and photoinduced electron transfer. Dyes Pigments, 2013, 99(2), 395-401.
[39]
Fan, Y.; Wu, G.; Su, F.; Li, K.; Xu, L.; Han, X.; Yan, Y. Lipase oriented-immobilized on dendrimer-coated magnetic multi-walled carbon nanotubes toward catalyzing biodiesel production from waste vegetable oil. Fuel, 2016, 178, 172-178.
[40]
Fenga, P.G.; Cardoso, F.P.; Neto, S.A.; De Andrade, A.R. Multiwalled carbon nanotubes to improve ethanol/air biofuel cells. Electrochim. Acta, 2013, 106, 109-113.
[41]
Zhao, X.; Ma, J.; Wang, Z.; Wen, G.; Jiang, J.; Shi, F.; Sheng, L. Hyperbranched-polymer functionalized multi-walled carbon nanotubes for poly (vinylidene fluoride) membranes: From dispersion to blended fouling-control membrane. Desalination, 2012, 301, 29-38.
[42]
Masotti, A.; Miller, M.R.; Celluzzi, A.; Rose, L.; Micciulla, F.; Hadoke, P.W.; Bellucci, S.; Caporali, A. Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes. Nanomedicine, 2016, 12(6), 1511-1522.
[43]
Gao, M.J.; Guo, B.; Ma, L.W.; Zhang, B.; He, X.C.; Bian, L.; Ma, X.F.; Li, G. NIR (Near-Infrared) driven carbon nanotube modified with dendrimers. Mat. Sci. Forum, 2016, 848, 551-556.
[44]
Mukherjee, B.; Maji, R.; Roychowdhury, S.; Ghosh, S. Toxicological concerns of engineered nanosize drug delivery systems. Am. J. Ther., 2016, 23(1), e139-e150.
[45]
Srivastava, V.; Gusain, D.; Sharma, Y.C. Critical review on the toxicity of some widely used engineered nanoparticles. Ind. Eng. Chem. Res., 2015, 54(24), 6209-6233.
[46]
Noriega-Luna, B.; Godínez, L.A.; Rodríguez, F.J.; Rodríguez, A.; Zaldívar-Lelo de Larrea, G.; Sosa-Ferreyra, C.F.; Mercado-Curiel, R.F.; Manríquez, J.; Bustos, E. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J. Nanomaterials., 2014, 2014(507273), 1-19.
[47]
Jain, K.; Kesharwani, P.; Gupta, U.; Jain, N.K. Dendrimer toxicity: Let’s meet the challenge. Int. J. Pharm., 2010, 394(1-2), 122-142.