Review Article

γ-AApeptide作为治疗发展的新策略

卷 26, 期 13, 2019

页: [2313 - 2329] 页: 17

弟呕挨: 10.2174/0929867324666171107095913

价格: $65

摘要

我们小组最近开发了一类新的肽模拟物,称为“γ-AApeptides”。与其他肽模拟物类似,γ-AA肽对蛋白水解降解具有抗性,并且具有引入化学上不同的官能团的无限潜力。 γ-AA肽在生物医学应用中显示出巨大的希望。在本文中,我们将回顾几个具有生物学潜力的γ-AA肽的例子。某些γ-AA肽可以渗透细胞膜,因此它们可以用作潜在的药物载体。 γ-AA肽也可以高特异性和亲和力结合HIV RNA,表明它们可能作为抗HIV药物应用。此外,它们可以模拟宿主防御肽并显示出对一系列耐药细菌病原体的有效和广谱活性。它们也是潜在的抗癌剂。例如,它们在小鼠模型中对肿瘤的靶向成像显示出巨大的希望,并且它们还能够破坏p53 / DNA相互作用,从而拮抗STAT3信号传导途径。最近,通过组合筛选,鉴定出γ-AA肽抑制Aβ肽聚集,因此它们可以发展成潜在的抗阿尔茨海默病病原体。

关键词: γ-AA肽,肽模拟物,结构,抗癌活性,抗微生物活性,抗HIV活性,抗Aβ聚集。

[1]
Wu, Y-D.; Gellman, S. Peptidomimetics. Acc. Chem. Res., 2008, 41(10), 1231-1232. [http://dx.doi.org/10.1021/ar800216e]. [PMID: 18937394].
[2]
Goodman, C.M.; Choi, S.; Shandler, S.; DeGrado, W.F. Foldamers as versatile frameworks for the design and evolution of function. Nat. Chem. Biol., 2007, 3(5), 252-262. [http://dx.doi.org/10.1038/nchembio876]. [PMID: 17438550].
[3]
Patch, J.A.; Barron, A.E. Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Curr. Opin. Chem. Biol., 2002, 6(6), 872-877. [http://dx.doi.org/10.1016/S1367-5931(02)00385-X]. [PMID: 12470744].
[4]
Cheng, R.P.; Gellman, S.H.; DeGrado, W.F. β-Peptides: From structure to function. Chem. Rev., 2001, 101(10), 3219-3232. [http://dx.doi.org/10.1021/cr000045i]. [PMID: 11710070].
[5]
Horne, W.S.; Johnson, L.M.; Ketas, T.J.; Klasse, P.J.; Lu, M.; Moore, J.P.; Gellman, S.H. Structural and biological mimicry of protein surface recognition by α/β-peptide foldamers. Proc. Natl. Acad. Sci. USA, 2009, 106(35), 14751-14756. [http://dx.doi.org/10.1073/pnas.0902663106]. [PMID: 19706443].
[6]
Laursen, J.S.; Engel-Andreasen, J.; Olsen, C.A. β-peptoid foldamers at Last. Acc. Chem. Res., 2015, 48(10), 2696-2704. [http://dx.doi.org/10.1021/acs.accounts.5b00257]. [PMID: 26176689].
[7]
Simon, R.J.; Kania, R.S.; Zuckermann, R.N.; Huebner, V.D.; Jewell, D.A.; Banville, S.; Ng, S.; Wang, L.; Rosenberg, S.; Marlowe, C.K. Peptoids: a modular approach to drug discovery. Proc. Natl. Acad. Sci. USA, 1992, 89(20), 9367-9371. [http://dx.doi.org/10.1073/pnas.89.20.9367]. [PMID: 1409642].
[8]
Fremaux, J.; Kauffmann, B.; Guichard, G. Synthesis and folding propensity of aliphatic oligoureas containing repeats of proline-type units. J. Org. Chem., 2014, 79(12), 5494-5502. [http://dx.doi.org/10.1021/jo5006075]. [PMID: 24810879].
[9]
Teng, P.; Shi, Y.; Sang, P.; Cai, J. γ-AApeptides as a New Class of Peptidomimetics. Chemistry, 2016, 22(16), 5458-5466. [http://dx.doi.org/10.1002/chem.201504936]. [PMID: 26945679].
[10]
Shi, Y.; Teng, P.; Sang, P.; She, F.; Wei, L.; Cai, J. γ-AApeptides: Design, structure, and applications. Acc. Chem. Res., 2016, 49(3), 428-441. [http://dx.doi.org/10.1021/acs.accounts.5b00492]. [PMID: 26900964].
[11]
Dragulescu-Andrasi, A.; Rapireddy, S.; Frezza, B.M.; Gayathri, C.; Gil, R.R.; Ly, D.H. A simple γ-backbone modification preorganizes peptide nucleic acid into a helical structure. J. Am. Chem. Soc., 2006, 128(31), 10258-10267. [http://dx.doi.org/10.1021/ja0625576]. [PMID: 16881656].
[12]
Winssinger, N.; Damoiseaux, R.; Tully, D.C.; Geierstanger, B.H.; Burdick, K.; Harris, J.L. PNA-encoded protease substrate microarrays. Chem. Biol., 2004, 11(10), 1351-1360. [http://dx.doi.org/10.1016/j.chembiol.2004.07.015]. [PMID: 15489162].
[13]
Debaene, F.; Da Silva, J.A.; Pianowski, Z.; Duran, F.J.; Winssinger, N. Expanding the scope of PNA-encoded libraries: divergent synthesis of libraries targeting cysteine, serine and metallo-proteases as well as tyrosine phosphatases. Tetrahedron, 2007, 63(28), 6577-6586. [http://dx.doi.org/10.1016/j.tet.2007.03.033].
[14]
Niu, Y.; Hu, Y.; Li, X.; Chen, J.; Cai, J. [gamma]-AApeptides: Design, synthesis and evaluation. New J. Chem., 2011, 35(3), 542-545. [http://dx.doi.org/10.1039/c0nj00943a].
[15]
Wu, H.; Amin, M.N.; Niu, Y.; Qiao, Q.; Harfouch, N.; Nimer, A.; Cai, J. Solid-phase synthesis of γ-AApeptides using a submonomeric approach. Org. Lett., 2012, 14(13), 3446-3449. [http://dx.doi.org/10.1021/ol301406a]. [PMID: 22731678].
[16]
Wu, H.; Teng, P.; Cai, J. Rapid access to multiple classes of peptidomimetics from common γ-aapeptide building blocks. Eur. J. Org. Chem., 2014, 2014(8), 1760-1765. [http://dx.doi.org/10.1002/ejoc.201301841].
[17]
Wu, H.; She, F.; Gao, W.; Prince, A.; Li, Y.; Wei, L.; Mercer, A.; Wojtas, L.; Ma, S.; Cai, J. The synthesis of head-to-tail cyclic sulfono-γ-AApeptides. Org. Biomol. Chem., 2015, 13(3), 672-676. [http://dx.doi.org/10.1039/C4OB02232G]. [PMID: 25420701].
[18]
Schwergold, C.; Depecker, G.; Giorgio, C.D.; Patino, N.; Jossinet, F.; Ehresmann, B.; Terreux, R.; Cabrol-Bass, D.; Condom, R. Cyclic PNA hexamer-based compound: Modelling, synthesis and inhibition of the HIV-1 RNA dimerization process. Tetrahedron, 2002, 58(28), 5675-5687. [http://dx.doi.org/10.1016/S0040-4020(02)00527-6].
[19]
Wu, H.; Niu, Y.; Padhee, S.; Wang, R.E.; Li, Y.; Qiao, Q.; Bai, G.; Cao, C.; Cai, J. Design and synthesis of unprecedented cyclic[gamma]-AApeptides for antimicrobial development. Chem. Sci. (Camb.), 2012, 3(8), 2570-2575. [http://dx.doi.org/10.1039/c2sc20428b].
[20]
Gellman, S.H. Foldamers: A Manifesto. Acc. Chem. Res., 1998, 31, 173-180. [http://dx.doi.org/10.1021/ar960298r].
[21]
Gennari, C.; Gude, M.; Potenza, D.; Piarulli, U. Hydrogen-bonding donor/acceptor scales in β-sulfonamidopeptides. Chemistry, 1998, 4, 1924-1931. [http://dx.doi.org/10.1002/(SICI)1521-3765(19981002)4:10<1924:AID-CHEM1924>3.0.CO;2-P].
[22]
Karlsson, A.J.; Pomerantz, W.C.; Weisblum, B.; Gellman, S.H.; Palecek, S.P. Antifungal activity from 14-helical β-peptides. J. Am. Chem. Soc., 2006, 128(39), 12630-12631. [http://dx.doi.org/10.1021/ja064630y]. [PMID: 17002340].
[23]
Wu, H.; Qiao, Q.; Hu, Y.; Teng, P.; Gao, W.; Zuo, X.; Wojtas, L.; Larsen, R.W.; Ma, S.; Cai, J. Sulfono-γ-AApeptides as a new class of nonnatural helical foldamer. Chemistry, 2015, 21(6), 2501-2507. [http://dx.doi.org/10.1002/chem.201406112]. [PMID: 25504756].
[24]
Wu, H.; Qiao, Q.; Teng, P.; Hu, Y.; Antoniadis, D.; Zuo, X.; Cai, J. New class of heterogeneous helical peptidomimetics. Org. Lett., 2015, 17(14), 3524-3527. [http://dx.doi.org/10.1021/acs.orglett.5b01608]. [PMID: 26153619].
[25]
Cai, W.; Chen, X. Anti-angiogenic cancer therapy based on integrin alphavbeta3 antagonism. Anticancer. Agents Med. Chem., 2006, 6(5), 407-428. [http://dx.doi.org/10.2174/187152006778226530]. [PMID: 17017851].
[26]
Yang, Y.; Niu, Y.; Hong, H.; Wu, H.; Zhang, Y.; Engle, J.W.; Barnhart, T.E.; Cai, J.; Cai, W. Radiolabeled γ-AApeptides: A new class of tracers for positron emission tomography. Chem. Commun. (Camb.), 2012, 48(63), 7850-7852. [http://dx.doi.org/10.1039/c2cc33620k]. [PMID: 22785080].
[27]
He, R.; Tan, L.; Browning, D.D.; Wang, J.M.; Ye, R.D. The synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met is a potent chemotactic agonist for mouse formyl peptide receptor. J. Immunol., 2000, 165(8), 4598-4605. [http://dx.doi.org/10.4049/jimmunol.165.8.4598]. [PMID: 11035102].
[28]
Giordano, C.; Lucente, G.; Masi, A.; Paradisi, M.P.; Sansone, A.; Spisani, S. α-peptide/β-sulfonamidopeptide hybrids: Analogs of the chemotactic agent for-Met-Leu-Phe-OMe. Bioorg. Med. Chem., 2006, 14(8), 2642-2652. [http://dx.doi.org/10.1016/j.bmc.2005.11.043]. [PMID: 16356729].
[29]
Torino, D.; Mollica, A.; Pinnen, F.; Feliciani, F.; Spisani, S.; Lucente, G. Novel chemotactic For-Met-Leu-Phe-OMe (fMLF-OMe) analogues based on met residue replacement by 4-amino-proline scaffold: Synthesis and bioactivity. Bioorg. Med. Chem., 2009, 17(1), 251-259. [http://dx.doi.org/10.1016/j.bmc.2008.11.010]. [PMID: 19081258].
[30]
Hu, Y.; Cheng, N.; Wu, H.; Kang, S.; Ye, R.D.; Cai, J. Design, synthesis and characterization of fMLF-mimicking AApeptides. ChemBioChem, 2014, 15(16), 2420-2426. [http://dx.doi.org/10.1002/cbic.201402396]. [PMID: 25224835].
[31]
Murray, J.K.; Gellman, S.H. Targeting protein-protein interactions: Lessons from p53/MDM2. Biopolymers, 2007, 88(5), 657-686. [http://dx.doi.org/10.1002/bip.20741]. [PMID: 17427181].
[32]
Debnath, B.; Xu, S.; Neamati, N. Small molecule inhibitors of signal transducer and activator of transcription 3 (Stat3) protein. J. Med. Chem., 2012, 55(15), 6645-6668. [http://dx.doi.org/10.1021/jm300207s]. [PMID: 22650325].
[33]
Siddiquee, K.A.; Gunning, P.T.; Glenn, M.; Katt, W.P.; Zhang, S.; Schrock, C.; Sebti, S.M.; Jove, R.; Hamilton, A.D.; Turkson, J. An oxazole-based small-molecule stat3 inhibitor modulates stat3 stability and processing and induces antitumor cell effects. ACS Chem. Biol., 2009, 4, 309-309. [http://dx.doi.org/10.1021/cb9000684]. [PMID: 18154266].
[34]
Fletcher, S.; Page, B.D.; Zhang, X.; Yue, P.; Li, Z.H.; Sharmeen, S.; Singh, J.; Zhao, W.; Schimmer, A.D.; Trudel, S.; Turkson, J.; Gunning, P.T. Antagonism of the Stat3-Stat3 protein dimer with salicylic acid based small molecules. ChemMedChem, 2011, 6(8), 1459-1470. [http://dx.doi.org/10.1002/cmdc.201100194]. [PMID: 21618433].
[35]
Teng, P.; Zhang, X.; Wu, H.; Qiao, Q.; Sebti, S.M.; Cai, J. Identification of novel inhibitors that disrupt STAT3-DNA interaction from a γ-AApeptide OBOC combinatorial library. Chem. Commun. (Camb.), 2014, 50(63), 8739-8742. [http://dx.doi.org/10.1039/C4CC03909B]. [PMID: 24964402].
[36]
Niu, Y.; Wang, R.E.; Wu, H.; Cai, J. Recent development of small antimicrobial peptidomimetics. Future Med. Chem., 2012, 4(14), 1853-1862. [http://dx.doi.org/10.4155/fmc.12.111]. [PMID: 23043481].
[37]
Marr, A.K.; Gooderham, W.J.; Hancock, R.E. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr. Opin. Pharmacol., 2006, 6(5), 468-472. [http://dx.doi.org/10.1016/j.coph.2006.04.006]. [PMID: 16890021].
[38]
Karlsson, A.J.; Pomerantz, W.C.; Weisblum, B.; Gellman, S.H.; Palecek, S.P. Antifungal activity from 14-helical beta-peptides. J. Am. Chem. Soc., 2006, 128(39), 12630-12631. [http://dx.doi.org/10.1021/ja064630y]. [PMID: 17002340].
[39]
Patch, J.A.; Barron, A.E. Helical peptoid mimics of magainin-2 amide. J. Am. Chem. Soc., 2003, 125(40), 12092-12093. [http://dx.doi.org/10.1021/ja037320d]. [PMID: 14518985].
[40]
Niu, Y.; Padhee, S.; Wu, H.; Bai, G.; Harrington, L.; Burda, W.N.; Shaw, L.N.; Cao, C.; Cai, J. Identification of γ-AApeptides with potent and broad-spectrum antimicrobial activity. Chem. Commun. (Camb.), 2011, 47(44), 12197-12199. [http://dx.doi.org/10.1039/c1cc14476f]. [PMID: 21963627].
[41]
Chen, C.; Pan, F.; Zhang, S.; Hu, J.; Cao, M.; Wang, J.; Xu, H.; Zhao, X.; Lu, J.R. Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromolecules, 2010, 11(2), 402-411. [http://dx.doi.org/10.1021/bm901130u]. [PMID: 20078032].
[42]
Matsuzaki, K. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim. Biophys. Acta, 1998, 1376(3), 391-400. [http://dx.doi.org/10.1016/S0304-4157(98)00014-8]. [PMID: 9804997].
[43]
Li, Y.; Wu, H.; Teng, P.; Bai, G.; Lin, X.; Zuo, X.; Cao, C.; Cai, J. Helical antimicrobial sulfono-γ-aapeptides. J. Med. Chem., 2015, 58(11), 4802-4811. [http://dx.doi.org/10.1021/acs.jmedchem.5b00537]. [PMID: 26020456].
[44]
Li, Y.; Smith, C.; Wu, H.; Teng, P.; Shi, Y.; Padhee, S.; Jones, T.; Nguyen, A-M.; Cao, C.; Yin, H.; Cai, J. Short antimicrobial lipo-α/γ-AA hybrid peptides. ChemBioChem, 2014, 15(15), 2275-2280. [http://dx.doi.org/10.1002/cbic.201402264]. [PMID: 25169879].
[45]
Obrecht, D.; Robinson, J.A.; Bernardini, F.; Bisang, C.; DeMarco, S.J.; Moehle, K.; Gombert, F.O. Recent progress in the discovery of macrocyclic compounds as potential anti-infective therapeutics. Curr. Med. Chem., 2009, 16(1), 42-65. [http://dx.doi.org/10.2174/092986709787002844]. [PMID: 19149562].
[46]
Makovitzki, A.; Avrahami, D.; Shai, Y. Ultrashort antibacterial and antifungal lipopeptides. Proc. Natl. Acad. Sci. USA, 2006, 103(43), 15997-16002. [http://dx.doi.org/10.1073/pnas.0606129103]. [PMID: 17038500].
[47]
Makovitzki, A.; Baram, J.; Shai, Y. Antimicrobial lipopolypeptides composed of palmitoyl Di- and tricationic peptides: In vitro and in vivo activities, self-assembly to nanostructures, and a plausible mode of action. Biochemistry, 2008, 47(40), 10630-10636. [http://dx.doi.org/10.1021/bi8011675]. [PMID: 18783248].
[48]
Niu, Y.; Padhee, S.; Wu, H.; Bai, G.; Qiao, Q.; Hu, Y.; Harrington, L.; Burda, W.N.; Shaw, L.N.; Cao, C.; Cai, J. Lipo-γ-AApeptides as a new class of potent and broad-spectrum antimicrobial agents. J. Med. Chem., 2012, 55(8), 4003-4009. [http://dx.doi.org/10.1021/jm300274p]. [PMID: 22475244].
[49]
Li, Y.; Smith, C.; Wu, H.; Teng, P.; Shi, Y.; Padhee, S.; Jones, T.; Nguyen, A-M.; Cao, C.; Yin, H.; Cai, J. Short antimicrobial lipo-α/γ-AA hybrid peptides. ChemBioChem, 2014, 15(15), 2275-2280. [http://dx.doi.org/10.1002/cbic.201402264]. [PMID: 25169879].
[50]
Li, Y.; Smith, C.; Wu, H.; Padhee, S.; Manoj, N.; Cardiello, J.; Qiao, Q.; Cao, C.; Yin, H.; Cai, J. Lipidated cyclic γ-AApeptides display both antimicrobial and anti-inflammatory activity. ACS Chem. Biol., 2014, 9(1), 211-217. [http://dx.doi.org/10.1021/cb4006613]. [PMID: 24144063].
[51]
Padhee, S.; Li, Y.; Cai, J. Activity of lipo-cyclic γ-AApeptides against biofilms of Staphylococcus epidermidis and Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett., 2015, 25(12), 2565-2569. [http://dx.doi.org/10.1016/j.bmcl.2015.04.039]. [PMID: 25977094].
[52]
Wu, H.; Li, Y.; Bai, G.; Niu, Y.; Qiao, Q.; Tipton, J.D.; Cao, C.; Cai, J. γ-AApeptide-based small-molecule ligands that inhibit Aβ aggregation. Chem. Commun. (Camb.), 2014, 50(40), 5206-5208. [http://dx.doi.org/10.1039/C3CC46685J]. [PMID: 24158240].
[53]
Leulliot, N.; Varani, G. Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry, 2001, 40(27), 7947-7956. [http://dx.doi.org/10.1021/bi010680y]. [PMID: 11434763].
[54]
Draper, D.E. Themes in RNA-protein recognition. J. Mol. Biol., 1999, 293(2), 255-270. [http://dx.doi.org/10.1006/jmbi.1999.2991]. [PMID: 10550207].
[55]
Niu, Y.; Jones, A.J.; Wu, H.; Varani, G.; Cai, J. γ-AApeptides bind to RNA by mimicking RNA-binding proteins. Org. Biomol. Chem., 2011, 9(19), 6604-6609. [http://dx.doi.org/10.1039/c1ob05738c]. [PMID: 21826330].
[56]
Potocky, T.B.; Menon, A.K.; Gellman, S.H. Cytoplasmic and nuclear delivery of a TAT-derived peptide and a β-peptide after endocytic uptake into HeLa cells. J. Biol. Chem., 2003, 278(50), 50188-50194. [http://dx.doi.org/10.1074/jbc.M308719200]. [PMID: 14517218].
[57]
Pepinsky, R.B.; Androphy, E.J.; Corina, K.; Brown, R.; Barsoum, J. Specific inhibition of a human papillomavirus E2 trans-activator by intracellular delivery of its repressor. DNA Cell Biol., 1994, 13(10), 1011-1019. [http://dx.doi.org/10.1089/dna.1994.13.1011]. [PMID: 7945933].
[58]
Niu, Y.; Bai, G.; Wu, H.; Wang, R.E.; Qiao, Q.; Padhee, S.; Buzzeo, R.; Cao, C.; Cai, J. Cellular translocation of a γ-AApeptide mimetic of tat peptide. Mol. Pharm., 2012, 9(5), 1529-1534. [http://dx.doi.org/10.1021/mp300070w]. [PMID: 22413929].
[59]
Umezawa, N.; Gelman, M.A.; Haigis, M.C.; Raines, R.T.; Gellman, S.H. Translocation of a β-peptide across cell membranes. J. Am. Chem. Soc., 2002, 124(3), 368-369. [http://dx.doi.org/10.1021/ja017283v]. [PMID: 11792194].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy