Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

2型糖尿病患者的默认模式网络连接和相关白细胞中断与遗忘轻度认知障碍并发

卷 14, 期 11, 2017

页: [1238 - 1246] 页: 9

弟呕挨: 10.2174/1567205014666170417113441

价格: $65

摘要

背景:作为阿尔茨海默病(AD)的危险因素,2型糖尿病(T2DM)本身引起认知障碍,并具有较高的轻度认知障碍(MCI)患病率。目的:本研究的目的是探讨T2DM和遗忘性MCI(T2DM-MCI)患者的情景记忆差异,DMN功能连通性和DMN相关白质完整性与T2DM患者相比的认知。 方法:特别关注T2DM人群,我们通过休息状态功能磁共振成像对22名老年T2DM-MCI患者和24名老年T2DM患者进行了默认模式网络(DMN)的研究。这些DMN白质纤维主要包括双侧钩针,海马和钩状纤维,也与情景记忆密切相关,并对19例老年T2DM-MCI患者和23例老年T2DM患者进行扩散张量成像,对其完整性进行了研究。 结果:与T2DM患者相比,T2DM-MCI患者在情绪记忆以外的几个认知领域表现较差,左侧胰腺炎DMN功能连通性较强,左侧钙调素功能连通性较弱,且完整性降低左扣带和双侧钩状筋膜。此外,相关性分析表明,较高的左侧钙通道连通性与整体组之间更好的情景记忆性能相关。 结论:我们的研究结果表明,T2DM合并症MCI患者的功能连锁模式异常,白质完整性降低,可能作为早期发现T2DM患者的AD或AD风险生物标志物。

关键词: 2型糖尿病,轻度认知障碍,情景记忆,默认模式网络,功能连通性,白质完整性。

« Previous
[1]
Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J 42(5): 484-91. (2012).
[2]
Toro P, Schonknecht P, Schroder J. Type II diabetes in mild cognitive impairment and Alzheimer’s disease: results from a prospective population-based study in Germany. J Alzheimers Dis 16(4): 687-91. (2009).
[3]
Morris JK, Vidoni ED, Honea RA, Burns JM. Alzheimer’s Disease Neuroimaging I. Impaired glycemia increases disease progression in mild cognitive impairment. Neurobiol Aging 35(3): 585-9. (2014).
[4]
Li J, Wang YJ, Zhang M, Xu ZQ, Gao CY, Fang CQ, et al. Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology 76(17): 1485-91. (2011).
[5]
Ma F, Wu T, Miao R, Xiao YY, Zhang W, Huang G. Conversion of mild cognitive impairment to dementia among subjects with diabetes: a population-based study of incidence and risk factors with five years of follow-up. J Alzheimers Dis 43(4): 1441-9. (2015).
[6]
Dubois B, Albert ML. Amnestic MCI or prodromal Alzheimer’s disease? Lancet Neurol 3(4): 246-8. (2004).
[7]
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56(3): 303-8. (1999).
[8]
Strachan MW, Deary IJ, Ewing FM, Frier BM. Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care 20(3): 438-45. (1997).
[9]
Grober E, Hall CB, Hahn SR, Lipton RB. Memory impairment and executive dysfunction are associated with inadequately controlled diabetes in older adults. J Prim Care Community Health 2(4): 229-33. (2011).
[10]
Mehrabian S, Raycheva M, Gateva A, Todorova G, Angelova P, Traykova M, et al. Cognitive dysfunction profile and arterial stiffness in type 2 diabetes. J Neurol Sci 322(1-2): 152-6. (2012).
[11]
Sestieri C, Corbetta M, Romani GL, Shulman GL. Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses. J Neurosci 31(12): 4407-20. (2011).
[12]
Jeong W, Chung CK, Kim JS. Episodic memory in aspects of large-scale brain networks. Front Hum Neurosci 9: 454. (2015).
[13]
Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124: 1-38. (2008).
[14]
Dickerson BC. Advances in functional magnetic resonance imaging: technology and clinical applications. Neurotherapeutics 4(3): 360-70. (2007).
[15]
Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101(13): 4637-42. (2004).
[16]
Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp 26(4): 231-9. (2005).
[17]
Musen G, Jacobson AM, Bolo NR, Simonson DC, Shenton ME, McCartney RL, et al. Resting-state brain functional connectivity is altered in type 2 diabetes. Diabetes 61(9): 2375-9. (2012).
[18]
Marder TJ, Flores VL, Bolo NR, Hoogenboom WS, Simonson DC, Jacobson AM, et al. Task-induced brain activity patterns in type 2 diabetes: a potential biomarker for cognitive decline. Diabetes 63(9): 3112-9. (2014).
[19]
Hagmann P, Thiran JP, Jonasson L, Vandergheynst P, Clarke S, Maeder P, et al. DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection. Neuroimage 19(3): 545-54. (2003).
[20]
Simons JS, Spiers HJ. Prefrontal and medial temporal lobe interactions in long-term memory. Nat Rev Neurosci 4(8): 637-48. (2003).
[21]
Teipel SJ, Bokde AL, Meindl T, Amaro E Jr, Soldner J, Reiser MF, et al. White matter microstructure underlying default mode network connectivity in the human brain. NeuroImage 49(3): 2021-32. (2010).
[22]
Kiuchi K, Morikawa M, Taoka T, Nagashima T, Yamauchi T, Makinodan M, et al. Abnormalities of the uncinate fasciculus and posterior cingulate fasciculus in mild cognitive impairment and early Alzheimer’s disease: a diffusion tensor tractography study. Brain Res 1287: 184-91. (2009).
[23]
Hsu JL, Chen YL, Leu JG, Jaw FS, Lee CH, Tsai YF, et al. Microstructural white matter abnormalities in type 2 diabetes mellitus: a diffusion tensor imaging study. NeuroImage 59(2): 1098-105. (2012).
[24]
Ma F, Wu T, Miao R, Xiao YY, Zhang W, Huang G. Conversion of mild cognitive impairment to dementia among subjects with diabetes: a population-based study of incidence and risk factors with five years of follow-up. J Alzheimers Dis 43(4): 1441-9. (2015).
[25]
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 256(3): 183-94. (2004).
[26]
Zhang M, Elena Y, He Y. Activities of daily living scale. Shanghai Arch Psychiatry 7: 3. (1995).
[27]
Chen Y, Liu Z, Zhang J, Xu K, Zhang S, Wei D, et al. Altered brain activation patterns under different working memory loads in patients with type 2 diabetes. Diabetes Care 37(12): 3157-63. (2014).
[28]
Chen Y, Wang J, Zhang J, Zhang T, Chen K, Fleisher A, et al. Aberrant functional networks connectivity and structural atrophy in silent lacunar infarcts: relationship with cognitive impairments. J Alzheimers Dis 42(3): 841-50. (2014).
[29]
Fellgiebel A, Wille P, Muller MJ, Winterer G, Scheurich A, Vucurevic G, et al. Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: a diffusion tensor imaging study. Dement Geriatr Cogn Disord 18(1): 101-8. (2004).
[30]
Fellgiebel A, Muller MJ, Wille P, Dellani PR, Scheurich A, Schmidt LG, et al. Color-coded diffusion-tensor-imaging of posterior cingulate fiber tracts in mild cognitive impairment. Neurobiol Aging 26(8): 1193-8. (2005).
[31]
Diehl B, Busch RM, Duncan JS, Piao Z, Tkach J, Luders HO. Abnormalities in diffusion tensor imaging of the uncinate fasciculus relate to reduced memory in temporal lobe epilepsy. Epilepsia 49(8): 1409-18. (2008).
[32]
Chen Y, Wang A, Tang J, Wei D, Li P, Chen K, et al. Association of white matter integrity and cognitive functions in patients with subcortical silent lacunar infarcts. Stroke 46(4): 1123-6. (2015).
[33]
Brands AM, Van den Berg E, Manschot SM, Biessels GJ, Kappelle LJ, De Haan EH, et al. A detailed profile of cognitive dysfunction and its relation to psychological distress in patients with type 2 diabetes mellitus. J Int Neuropsychol Soc 13(2): 288-97. (2007).
[34]
Zhang J, Wang Y, Wang J, Zhou X, Shu N, Wang Y, et al. White matter integrity disruptions associated with cognitive impairments in type 2 diabetic patients. Diabetes 63(11): 3596-605. (2014).
[35]
Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101(13): 4637-42. (2004).
[36]
Zhang HY, Wang SJ, Liu B, Ma ZL, Yang M, Zhang ZJ, et al. Resting brain connectivity: changes during the progress of Alzheimer disease. Radiology 256(2): 598-606. (2010).
[37]
Yi D, Choe YM, Byun MS, Sohn BK, Seo EH, Han J, et al. Differences in functional brain connectivity alterations associated with cerebral amyloid deposition in amnestic mild cognitive impairment. Front Aging Neurosci 7: 15. (2015).
[38]
Agosta F, Pievani M, Geroldi C, Copetti M, Frisoni GB, Filippi M. Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol Aging 33(8): 1564-78. (2012).
[39]
Yi L, Wang J, Jia L, Zhao Z, Lu J, Li K, et al. Structural and functional changes in subcortical vascular mild cognitive impairment: a combined voxel-based morphometry and resting-state fMRI study. PloS One 7(9): e44758 (2012).
[40]
Lundstrom BN, Petersson KM, Andersson J, Johansson M, Fransson P, Ingvar M. Isolating the retrieval of imagined pictures during episodic memory: activation of the left precuneus and left prefrontal cortex. NeuroImage 20(4): 1934-43. (2003).
[41]
Sadigh-Eteghad S, Majdi A, Farhoudi M, Talebi M, Mahmoudi J. Different patterns of brain activation in normal aging and Alzheimer’s disease from cognitional sight: meta analysis using activation likelihood estimation. J Neurol Sci 343(1-2): 159-66. (2014).
[42]
Bai F, Zhang Z, Yu H, Shi Y, Yuan Y, Zhu W, et al. Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: a combined structural and resting-state functional MRI study. Neurosci Lett 438(1): 111-5. (2008).
[43]
Stavrou EP, Wood JM. Central visual field changes using flicker perimetry in type 2 diabetes mellitus. Acta Ophthalmol Scand 83(5): 574-80. (2005).
[44]
Olafsdottir E, Andersson DK, Stefansson E. Visual acuity in a population with regular screening for type 2 diabetes mellitus and eye disease. Acta Ophthalmol Scand 85(1): 40-5. (2007).
[45]
Hove MN, Kristensen JK, Lauritzen T, Bek T. Quantitative analysis of retinopathy in type 2 diabetes: identification of prognostic parameters for developing visual loss secondary to diabetic maculopathy. Acta Ophthalmol Scand 82(6): 679-85. (2004).
[46]
Liang Y, Chen Y, Li H, Zhao T, Sun X, Shu N, et al. Disrupted functional connectivity related to differential degeneration of the cingulum bundle in mild cognitive impairment patients. Curr Alzheimer Res 12(3): 255-65. (2015).
[47]
Lockhart SN, Mayda AB, Roach AE, Fletcher E, Carmichael O, Maillard P, et al. Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging. Front Hum Neurosci 6: 56. (2012).
[48]
Medina D, DeToledo-Morrell L, Urresta F, Gabrieli JD, Moseley M, Fleischman D, et al. White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study. Neurobiol Aging 27(5): 663-72. (2006).
[49]
Remy F, Vayssiere N, Saint-Aubert L, Barbeau E, Pariente J. White matter disruption at the prodromal stage of Alzheimer’s disease: relationships with hippocampal atrophy and episodic memory performance. Neuroimage Clin 7: 482-92. (2015).
[50]
Hoogenboom WS, Marder TJ, Flores VL, Huisman S, Eaton HP, Schneiderman JS, et al. Cerebral white matter integrity and resting-state functional connectivity in middle-aged patients with type 2 diabetes. Diabetes 63(2): 728-38. (2014).
[51]
Chen Y, Liu Z, Zhang J, Tian G, Li L, Zhang S, et al. Selectively disrupted functional connectivity networks in type 2 diabetes mellitus. Front Aging Neurosci 7: 233. (2015).
[52]
Zhuang L, Sachdev PS, Trollor JN, Kochan NA, Reppermund S, Brodaty H, et al. Microstructural white matter changes in cognitively normal individuals at risk of amnestic MCI. Neurology 79(8): 748-54. (2012).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy