Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

在阿尔茨海默氏症患者的大脑中,改变胰岛素受体和apba2、IDE基因的表达

卷 14, 期 7, 2017

页: [760 - 765] 页: 6

弟呕挨: 10.2174/1567205014666170203100734

价格: $65

摘要

背景:阿尔茨海默病(AD)被定义为一种渐进的、不可逆转的神经退行性疾病,其发病以认知减退、记忆力减退和精神混乱为主要特征。 目的:本研究试图从AD患者和对照组的脑样品中量化apba2、INSR和IDE基因 mRNA的表达。 方法:我们从内嗅皮质中研究了apba2 、INSR、IDE基因mRNA的表达,150 RNA样品INSR和的听觉皮层和海马个人与AD和老年健康对照组采用PCR-RFLP法检测ApoE基因型实时荧光定量PCR。。 结果:当对所有脑样本进行集体分析时,AD患者与健康老年人相比,IDE基因表达减少。然而,当样品根据大脑的区域分析,有海马胰岛素受体的表达显著上调,在AD患者组内嗅皮质。在AD患者不同部位的基因表达比较时,我们没有观察到任何统计学差异。当载脂蛋白E E4等位基因是AD患者的考虑,这种等位基因的存在会降低apba2相关基因表达。同样的分析使用InsR与IDE基因均无显著的统计学差异。 结论:这些结果支持这一假设:apba2、IDE和特殊的INSR基因 并在阿尔茨海默氏症患者的大脑的不同区域的表达,在不久的将来可作为在临床诊断中使用的标记。

关键词: 阿尔兹海默病、大脑、APBA2

[1]
Demarin V, Zavoreo I, Kes VB, Simundic AM. Biomarkers in Alzheimer’s disease. Clin Chem Lab Med 49(5): 773-8. (2011).
[2]
Prvulovic D, Hampel H. Amyloid beta (Abeta) and phospho-tau (p-tau) as diagnostic biomarkers in Alzheimer’s disease. Clin Chem Lab Med 49(3): 367-74. (2011).
[3]
Bloom GS. Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71(4): 505-8. (2014).
[4]
Sutcliffe JS, Han MK, Amin T, Kesterson RA, Nurmi EL. Partial duplication of the APBA2 gene in chromosome 15q13 corresponds to duplicon structures. BMC Genomics 4(1): 15. (2003).
[5]
Taru H, Suzuki T. Facilitation of stress-induced phosphorylation of beta-amyloid precursor protein family members by X11-like/Mint2 protein. J Biol Chem 279(20): 21628-36. (2004).
[6]
Hao Y, Chai KH, McLoughlin DM, Chan HY, Lau KF. Promoter characterization and genomic organization of the human X11beta gene APBA2. Neuroreport 23(3): 146-51. (2012).
[7]
Lau KF, McLoughlin DM, Standen C, Miller CC. X11 alpha and x11 beta interact with presenilin-1 via their PDZ domains. Mol Cell Neurosci 16(5): 557-65. (2000).
[8]
Babatz TD, Kumar RA, Sudi J, Dobyns WB, Christian SL. Copy number and sequence variants implicate APBA2 as an autism candidate gene. Autism Res 2(6): 359-64. (2009).
[9]
Kirov G, Gumus D, Chen W. Norton N, Georgieva L, Sari M, et al. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet 17(3): 458-65. (2008).
[10]
De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 1(10): 769-83. (2002).
[11]
Steen E, Terry BM, Rivera EJ. Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J Alzheimers Dis 7(1): 63-80. (2005).
[12]
Zhao WQ, Alkon DL. Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177(1-2): 125-34. (2001).
[13]
Das P, Parsons AD, Scarborough J. Hoffman J, Wilson J, Thompson RN, et al. Electrophysiological and behavioral phenotype of insulin receptor defective mice. Physiol Behav 86(3): 287-96. (2005).
[14]
Cook DG, Leverenz JB, McMillan PJ, Kulstad JJ, Ericksen S, Roth RA, et al. Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol 162(1): 313-9. (2003).
[15]
Farris W, Mansourian S, Chang Y. Lindsley L, Eckman EA, Frosch MP, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 100(7): 4162-7. (2003).
[16]
Banks WA. The source of cerebral insulin. Eur J Pharmacol 490(1-3): 5-12. (2004).
[17]
Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer’s disease: Review and hypothesis. Neurobiol Aging 27(2): 190-8. (2006).
[18]
Trejo JL, Carro E, Garcia-Galloway E, Torres-Aleman I. Role of insulin-like growth factor I signaling in neurodegenerative diseases. J Mol Med 82(3): 156-62. (2004).
[19]
Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 31(3): 545-8. (1990).
[20]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 25(4): 402-8. (2001).
[21]
Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol 5(1): 64-74. (2006).
[22]
Fehm HL, Perras B, Smolnik R, Kern W, Born J. Manipulating neuropeptidergic pathways in humans: A novel approach to neuropharmacology? Eur J Pharmacol 405(1-3): 43-54. (2000).
[23]
Bai Z, Stamova B, Xu H, Ander BP, Wang J, Jickling GC, et al. Distinctive RNA expression profiles in blood associated with Alzheimer disease after accounting for white matter hyperintensities. Alzheimer Dis Assoc Disord 28(3): 226-33. (2014).
[24]
de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2(6): 1101-13. (2008).
[25]
De Felice FG. Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J Clin Invest 123(2): 531-9. (2013).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy