Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

In Vitro Exploration of the Anti-HCV Potential of the Synthetic Spacer Peptides Derived from Human, Bovine, and Camel Lactoferrins

Author(s): Abdulgader H. Albar, Esmail M. El-Fakharany, Hussein A. Almehdar, Vladimir N. Uversky* and Elrashdy M. Redwan*

Volume 24, Issue 10, 2017

Page: [909 - 921] Pages: 13

DOI: 10.2174/0929866524666161111111320

Price: $65

Abstract

Background: Chronic liver disease is often associated with the infection by hepatitis C virus (HCV), which is an enveloped RNA virus belonging to the Flaviviridae family. Many studies found that milk proteins, such as lactoferrin, might have profound antiviral activity against HCV. Various secretory fluids ranging from milk, to tears, saliva, and nasal secretion, and to bile and pancreatic juice, as well as neutrophils, mucosal surfaces, and blood contain a widely spread multifunctional glycoprotein, lactoferrin (Lf), structure of which can be depicted as two homologous domains connected by the short spacer peptide.

Objective: This study aimed to understand the effectiveness of the synthetic peptides cLfsp, bLfsp, hLfsp1, and hLfsp2 corresponding to the spacer peptides of camel, bovine, and human Lfs, respectively, against HCV in in vitro settings.

Method: We used RT-nested PCR to evaluate the antiviral activity of the synthesized spacer peptides against HCV infectivity in PBMC and HepG2 cells looking at their neutralization, protection, and intracellular treatment potentials.

Results and Conclusion: We show that direct interaction of hLfsp1, hLfsp2, and bLfsp with viral particles is able to neutralize the HCV entry into HepG2 cells (with hLfsp2 being more potent neutralizer than hLfsp1 and bLfsp), whereas cLfsp does not show any neutralizing potential. Therefore, our analysis revealed that different spacer peptides are characterized by different antiviral potentials and use different mechanisms for antiviral protection.

Keywords: Lactoferrin, spacer peptide, antiviral activity, neutralization potential, protection potential, intracellular treatment potential.

Graphical Abstract


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy