Abstract
Radiation has been a well-established modality in cancer treatment for several decades. Significant improvements have been achieved in radiotherapy over the years due to technological advances and development of facilities for delivery of charged particles such as protons. Nonetheless, the potential for tumor control with radiotherapy must always be carefully balanced with the risk for normal tissue damage. In addition, tumor cells outside the immediate field of radiation exposure or that have metastasized to distant sites are not destroyed. Gene therapy offers many exciting possibilities by which the overall efficacy of radiotherapy may be improved, while minimizing unwanted side effects. This review highlights several of the most promising gene transfer approaches that are currently being evaluated in combination with radiation in the treatment of cancer. Results from studies utilizing genes encoding molecules that function in apoptosis, radiosensitization, immune up-regulation, angiogenesis, DNA repair, normal tissue protection from radiation damage, and tumor targeting are discussed. The evidence indicates that many of these innovative gene-based strategies have great potential to augment radiotherapy, as well as other established forms of cancer treatment, in the near future.
Keywords: ionizing radiation, protons, radiosensitization, radiation-inducible promoters, targeted gene therapy, suicide genes, immunogenes
Current Gene Therapy
Title: Combining Gene Therapy and Radiation Against Cancer
Volume: 4 Issue: 3
Author(s): Daila S. Gridley and James M. Slater
Affiliation:
Keywords: ionizing radiation, protons, radiosensitization, radiation-inducible promoters, targeted gene therapy, suicide genes, immunogenes
Abstract: Radiation has been a well-established modality in cancer treatment for several decades. Significant improvements have been achieved in radiotherapy over the years due to technological advances and development of facilities for delivery of charged particles such as protons. Nonetheless, the potential for tumor control with radiotherapy must always be carefully balanced with the risk for normal tissue damage. In addition, tumor cells outside the immediate field of radiation exposure or that have metastasized to distant sites are not destroyed. Gene therapy offers many exciting possibilities by which the overall efficacy of radiotherapy may be improved, while minimizing unwanted side effects. This review highlights several of the most promising gene transfer approaches that are currently being evaluated in combination with radiation in the treatment of cancer. Results from studies utilizing genes encoding molecules that function in apoptosis, radiosensitization, immune up-regulation, angiogenesis, DNA repair, normal tissue protection from radiation damage, and tumor targeting are discussed. The evidence indicates that many of these innovative gene-based strategies have great potential to augment radiotherapy, as well as other established forms of cancer treatment, in the near future.
Export Options
About this article
Cite this article as:
Gridley S. Daila and Slater M. James, Combining Gene Therapy and Radiation Against Cancer, Current Gene Therapy 2004; 4 (3) . https://dx.doi.org/10.2174/1566523043346318
DOI https://dx.doi.org/10.2174/1566523043346318 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Development of Specific New ELISA for Bioanalysis of Cetuximab: A Monoclonal Antibody Used for Cancer Immunotherapy
Current Pharmaceutical Analysis An Augmented Passive Immune Therapy to Treat Fulminant Bacterial Infections
Recent Patents on Anti-Infective Drug Discovery Recently Patented Applications of Homologous Cellular and Extracellular Agents as Therapeutics or Targets for the Prevention of Restenosis Post- Angioplasty
Recent Patents on Cardiovascular Drug Discovery Chemopreventive and Anti-leukemic Effects of Ethanol Extracts of Moringa oleifera Leaves on Wistar Rats Bearing Benzene Induced Leukemia
Current Pharmaceutical Biotechnology KRAB-Zinc Finger Proteins: A Repressor Family Displaying Multiple Biological Functions
Current Genomics Past, Present, and Future of Targeting Ras for Cancer Therapies
Mini-Reviews in Medicinal Chemistry Anticancer Drug Design Using Scaffolds of β-Lactams, Sulfonamides, Quinoline, Quinoxaline and Natural Products. Drugs Advances in Clinical Trials
Current Medicinal Chemistry Apoptosis Following Photodynamic Tumor Therapy: Induction, Mechanisms and Detection
Current Pharmaceutical Design Anticancer Actions of Omega-3 Fatty Acids - Current State and Future Perspectives
Anti-Cancer Agents in Medicinal Chemistry Natural Compounds as Anticancer Agents Targeting DNA Topoisomerases
Current Genomics A Survey of Prostate Segmentation Techniques in Different Imaging Modalities
Current Medical Imaging Radiosensitizing Potential of Epigenetic Anticancer Drugs
Anti-Cancer Agents in Medicinal Chemistry Targeting of Low-Molecular Weight Drugs to Mammalian Mitochondria
Drug Design Reviews - Online (Discontinued) HPV Pathway Profiling: HPV Related Cervical Dysplasia and Carcinoma Studies
Current Pharmaceutical Design Patent Selections:
Recent Patents on Inflammation & Allergy Drug Discovery Recent Patents in siRNA Delivery Employing Nanoparticles as Delivery Vectors
Recent Patents on DNA & Gene Sequences Review on Documented Medicinal Plants used for the Treatment of Cancer
Current Traditional Medicine Mitochondria-targeted Resveratrol Derivatives Act as Cytotoxic Pro-oxidants
Current Pharmaceutical Design Cytostatic and Apoptotic Effects of DNMT and HDAC Inhibitors in Endometrial Cancer Cells
Current Pharmaceutical Design Testicular Germ Cell Tumors: A Paradigm for the Successful Treatment of Solid Tumor Stem Cells
Current Cancer Therapy Reviews