Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Review on Documented Medicinal Plants used for the Treatment of Cancer

Author(s): Bhuwan C. Joshi*, Vijay Juyal, Archana N. Sah, Piyush Verma and Minky Mukhija

Volume 8, Issue 2, 2022

Published on: 11 March, 2022

Article ID: e111021197159 Pages: 157

DOI: 10.2174/2215083807666211011125110

Price: $65

Abstract

Background: Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments, such as chemotherapy. Plants are the pool of chemical compounds, which provide a promising future for research on cancer.

Objective: This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.

Methods: An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In the next few decades, herbal medicine may become a new epoch of medical system.

Results: Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.

Conclusion: The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.

Keywords: Cancer, epigenetics, bioactive compounds, antioxidants, medicinal plants, Clinical trials.

Graphical Abstract

[1]
Raimi IO, Kopaopa BG, Mugivhisa LL, Lewu FB, Amoo SO, Olowoyo JO. An appraisal of documented medicinal plants used for the treatment of cancer in Africa over a twenty-year period (1998–2018). J Herb Med 2020; 1: 100371.
[http://dx.doi.org/10.1016/j.hermed.2020.100371]
[2]
Kaur S, Pandit K, Chandel M, Kaur S. Antiproliferative and apoptogenic effects of Cassia fistula L. n-hexane fraction against human cervical cancer (HeLa) cells. Environ Sci Pollut Res Int 2020; 27(25): 32017-33.
[http://dx.doi.org/10.1007/s11356-020-08916-9] [PMID: 32504442]
[3]
Vibala BV, Praseetha PK, Vijayakumar S. Evaluating new strategies for anticancer molecules from ethnic medicinal plants through in silico and biological approach-A review. Gene Rep 2020; 18: 100553.
[http://dx.doi.org/10.1016/j.genrep.2019.100553]
[4]
Khan T, Date A, Chawda H, Patel K. Polysaccharides as potential anticancer agents-A review of their progress. Carbohydr Polym 2019; 210: 412-28.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.064] [PMID: 30732778]
[5]
Bouyahya A, Belmehdi O, Benjouad A, et al. Pharmacological properties and mechanism insights of Moroccan anticancer medicinal plants: What are the next steps? Ind Crops Prod 2020; 147: 112198.
[http://dx.doi.org/10.1016/j.indcrop.2020.112198]
[6]
Twilley D, Rademan S, Lall N. A review on traditionally used South African medicinal plants, their secondary metabolites and their potential development into anticancer agents. J Ethnopharmacol 2020; 261: 113101.
[http://dx.doi.org/10.1016/j.jep.2020.113101] [PMID: 32562876]
[7]
Borah P, Banik BK. Medicinal plants and their compounds with anticancer properties. In: Green Approaches in Medicinal Chemistry for Sustainable Drug Design, Elsevier 2020; 1: 759-76.
[http://dx.doi.org/10.1016/B978-0-12-817592-7.00023-X]
[8]
Tariq A, Mussarat S, Adnan M. Review on ethnomedicinal, phytochemical and pharmacological evidence of Himalayan anticancer plants. J Ethnopharmacol 2015; 164: 96-119.
[http://dx.doi.org/10.1016/j.jep.2015.02.003] [PMID: 25680842]
[9]
Majolo F, Delwing LK, Marmitt DJ, Bustamante-Filho IC, Goettert MI. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochem Lett 2019; 31: 196-207.
[http://dx.doi.org/10.1016/j.phytol.2019.04.003]
[10]
Khan T, Ali M, Khan A, et al. Anticancer plants: a review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules 2019; 10(1): 47.
[http://dx.doi.org/10.3390/biom10010047] [PMID: 31892257]
[11]
Kanwal R, Gupta K, Gupta S. Cancer epigenetics: an introduction.Cancer epigenetics. New York, NY: Humana Press 2015; pp. 3-25.
[http://dx.doi.org/10.1007/978-1-4939-1804-1_1]
[12]
Cao J, Yan Q. Cancer epigenetics, tumor immunity, and immunotherapy. Trends Cancer 2020; 6(7): 580-92.
[http://dx.doi.org/10.1016/j.trecan.2020.02.003] [PMID: 32610068]
[13]
Werner RJ, Kelly AD, Issa JJ. Epigenetics and precision oncology. Cancer J 2017; 23(5): 262-9.
[http://dx.doi.org/10.1097/PPO.0000000000000281] [PMID: 28926426]
[14]
Sanchez VE, Nichols C, Kim HN, Gang EJ, Kim YM. Targeting PI3K signaling in acute lymphoblastic leukemia. Int J Mol Sci 2019; 20(2): 412.
[http://dx.doi.org/10.3390/ijms20020412] [PMID: 30669372]
[15]
Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic leukemia. J Clin Oncol 2017; 35(9): 975-83.
[http://dx.doi.org/10.1200/JCO.2016.70.7836] [PMID: 28297628]
[16]
Tsaouli G, Ferretti E, Bellavia D, Vacca A, Felli MP. Notch/CXCR4 partnership in acute lymphoblastic leukemia progression. Journal of immunology research 2019; 2019.
[17]
Papayannidis C, Sartor C, Marconi G, et al. Acute myeloid leukemia mutations: Therapeutic implications. Int J Mol Sci 2019; 20(11): 2721.
[http://dx.doi.org/10.3390/ijms20112721] [PMID: 31163594]
[18]
Lim SH, Dubielecka PM, Raghunathan VM. Molecular targeting in acute myeloid leukemia. J Transl Med 2017; 15(1): 183.
[http://dx.doi.org/10.1186/s12967-017-1281-x] [PMID: 28851395]
[19]
Amaya ML, Pollyea DA. Targeting the IDH2 pathway in acute myeloid leukemia. Clin Cancer Res 2018; 24(20): 4931-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0536] [PMID: 29769206]
[20]
Terao T, Minami Y. Targeting hedgehog (Hh) pathway for the acute myeloid leukemia treatment. Cells 2019; 8(4): 312.
[http://dx.doi.org/10.3390/cells8040312] [PMID: 30987263]
[21]
Hemsing AL, Hovland R, Tsykunova G, Reikvam H. Trisomy 8 in acute myeloid leukemia. Expert Rev Hematol 2019; 12(11): 947-58.
[http://dx.doi.org/10.1080/17474086.2019.1657400] [PMID: 31422708]
[22]
Wang W, Nag SA, Zhang R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr Med Chem 2015; 22(2): 264-89.
[http://dx.doi.org/10.2174/0929867321666141106124315] [PMID: 25386819]
[23]
Ribnikar D, Volovat SR, Cardoso F. Targeting CDK4/6 pathways and beyond in breast cancer. Breast 2019; 43: 8-17.
[http://dx.doi.org/10.1016/j.breast.2018.10.001] [PMID: 30359883]
[24]
Soltani A, Torki S, Ghahfarokhi MS, Jami MS, Ghatrehsamani M. Targeting the phosphoinositide 3-kinase/AKT pathways by small molecules and natural compounds as a therapeutic approach for breast cancer cells. Mol Biol Rep 2019; 46(5): 4809-16.
[http://dx.doi.org/10.1007/s11033-019-04929-x] [PMID: 31313132]
[25]
Wendt C, Margolin S. Identifying breast cancer susceptibility genes - a review of the genetic background in familial breast cancer. Acta Oncol 2019; 58(2): 135-46.
[http://dx.doi.org/10.1080/0284186X.2018.1529428] [PMID: 30606073]
[26]
Peng W, Li J, Chen R, et al. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res 2019; 38(1): 393.
[http://dx.doi.org/10.1186/s13046-019-1408-4] [PMID: 31492150]
[27]
Fodde R. The APC gene in colorectal cancer. Eur J Cancer 2002; 38(7): 867-71.
[http://dx.doi.org/10.1016/S0959-8049(02)00040-0] [PMID: 11978510]
[28]
Cheng X, Xu X, Chen D, Zhao F, Wang W. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother 2019; 110: 473-81.
[http://dx.doi.org/10.1016/j.biopha.2018.11.082] [PMID: 30530050]
[29]
Khan K, Valeri N, Dearman C, et al. Targeting EGFR pathway in metastatic colorectal cancer- tumour heterogeniety and convergent evolution. Crit Rev Oncol Hematol 2019; 143: 153-63.
[http://dx.doi.org/10.1016/j.critrevonc.2019.09.001] [PMID: 31678702]
[30]
Meng S, Jian Z, Yan X, Li J, Zhang R. LncRNA SNHG6 inhibits cell proliferation and metastasis by targeting ETS1 via the PI3K/AKT/mTOR pathway in colorectal cancer. Mol Med Rep 2019; 20(3): 2541-8.
[http://dx.doi.org/10.3892/mmr.2019.10510] [PMID: 31322251]
[31]
Wang S, Zhang Y, Cai Q, et al. Circular RNA FOXP1 promotes tumor progression and Warburg effect in gallbladder cancer by regulating PKLR expression. Mol Cancer 2019; 18(1): 145.
[http://dx.doi.org/10.1186/s12943-019-1078-z] [PMID: 31623628]
[32]
Montalvo-Jave EE, Rahnemai-Azar AA, Papaconstantinou D, et al. Molecular pathways and potential biomarkers in gallbladder cancer: A comprehensive review. Surg Oncol 2019; 31: 83-9.
[http://dx.doi.org/10.1016/j.suronc.2019.09.006] [PMID: 31541911]
[33]
Román M, Baraibar I, López I, et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer 2018; 17(1): 33.
[http://dx.doi.org/10.1186/s12943-018-0789-x] [PMID: 29455666]
[34]
Larsen TV, Hussmann D, Nielsen AL. PD-L1 and PD-L2 expression correlated genes in non-small-cell lung cancer. Cancer Commun (Lond) 2019; 39(1): 30.
[http://dx.doi.org/10.1186/s40880-019-0376-6] [PMID: 31159869]
[35]
Jiang LP, Fan SQ, Xiong QX, et al. GRK5 functions as an oncogenic factor in non-small-cell lung cancer. Cell Death Dis 2018; 9(3): 295.
[http://dx.doi.org/10.1038/s41419-018-0299-1] [PMID: 29463786]
[36]
Bezzecchi E, Ronzio M, Dolfini D, Mantovani R. NF-YA overexpression in lung cancer: LUSC. Genes (Basel) 2019; 10(11): 937.
[http://dx.doi.org/10.3390/genes10110937] [PMID: 31744190]
[37]
Li Y, Yao M, Wu T, et al. Loss of hypermethylated in cancer 1 (HIC1) promotes lung cancer progression. Cell Signal 2019; 53: 162-9.
[http://dx.doi.org/10.1016/j.cellsig.2018.10.006] [PMID: 30312658]
[38]
Kleczko EK, Kwak JW, Schenk EL, Nemenoff RA. Targeting the complement pathway as a therapeutic strategy in lung cancer. Front Immunol 2019; 10: 954.
[http://dx.doi.org/10.3389/fimmu.2019.00954] [PMID: 31134065]
[39]
Giroux-Leprieur E, Costantini A, Ding VW, He B. Hedgehog signaling in lung cancer: from oncogenesis to cancer treatment resistance. Int J Mol Sci 2018; 19(9): 2835.
[http://dx.doi.org/10.3390/ijms19092835] [PMID: 30235830]
[40]
Drilon A, Cappuzzo F, Ou SI, Camidge DR. Targeting MET in lung cancer: will expectations finally be MET? J Thorac Oncol 2017; 12(1): 15-26.
[http://dx.doi.org/10.1016/j.jtho.2016.10.014] [PMID: 27794501]
[41]
Kroeger PT Jr, Drapkin R. Pathogenesis and heterogeneity of ovarian cancer. Curr Opin Obstet Gynecol 2017; 29(1): 26-34.
[http://dx.doi.org/10.1097/GCO.0000000000000340] [PMID: 27898521]
[42]
Guan X, Chen S, Liu Y, Wang LL, Zhao Y, Zong ZH. PUM1 promotes ovarian cancer proliferation, migration and invasion. Biochem Biophys Res Commun 2018; 497(1): 313-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.078] [PMID: 29428722]
[43]
Han W, Zhang Y, Niu C, et al. BTB and CNC homology 1 (Bach1) promotes human ovarian cancer cell metastasis by HMGA2-mediated epithelial-mesenchymal transition. Cancer Lett 2019; 445: 45-56.
[http://dx.doi.org/10.1016/j.canlet.2019.01.003] [PMID: 30654010]
[44]
Arend RC, Londoño-Joshi AI, Straughn JM Jr, Buchsbaum DJ. The Wnt/β-catenin pathway in ovarian cancer: a review. Gynecol Oncol 2013; 131(3): 772-9.
[http://dx.doi.org/10.1016/j.ygyno.2013.09.034] [PMID: 24125749]
[45]
Ediriweera MK, Tennekoon KH, Samarakoon SR. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Seminars in cancer biology. 59: 147-60.
[46]
Adamo P, Ladomery MR. The oncogene ERG: a key factor in prostate cancer. Oncogene 2016; 35(4): 403-14.
[http://dx.doi.org/10.1038/onc.2015.109] [PMID: 25915839]
[47]
Hamid AR, Hoogland AM, Smit F, et al. The role of HOXC6 in prostate cancer development. Prostate 2015; 75(16): 1868-76.
[http://dx.doi.org/10.1002/pros.23065] [PMID: 26310814]
[48]
Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419(6907): 624-9.
[http://dx.doi.org/10.1038/nature01075] [PMID: 12374981]
[49]
Zoubeidi A, Gleave ME. Co-targeting driver pathways in prostate cancer: two birds with one stone. EMBO Mol Med 2018; 10(4): e8928.
[http://dx.doi.org/10.15252/emmm.201808928] [PMID: 29572264]
[50]
Galbraith L, Leung HY, Ahmad I. Lipid pathway deregulation in advanced prostate cancer. Pharmacol Res 2018; 131: 177-84.
[http://dx.doi.org/10.1016/j.phrs.2018.02.022] [PMID: 29466694]
[51]
Zhang W, Liu B, Wu W, et al. Targeting the MYCN–PARP–DNA damage response pathway in neuroendocrine prostate cancer. Clin Cancer Res 2018; 24(3): 696-707.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1872] [PMID: 29138344]
[52]
Blowman K, Magalhães M, Lemos MF, Cabral C, Pires IM. Anticancer properties of essential oils and other natural products. Evidence-based complementary and alternative medicine 2018; 2018.
[http://dx.doi.org/10.1155/2018/3149362]
[53]
Mondal A, Gandhi A, Fimognari C, Atanasov AG, Bishayee A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur J Pharmacol 2019; 858: 172472.
[http://dx.doi.org/10.1016/j.ejphar.2019.172472] [PMID: 31228447]
[54]
Zhou Y, Zheng J, Li Y, et al. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016; 8(8): 515.
[http://dx.doi.org/10.3390/nu8080515] [PMID: 27556486]
[55]
Schneider NFZ, Cerella C, Simões CMO, Diederich M. Anticancer and immunogenic properties of cardiac glycosides. Molecules 2017; 22(11): 1932.
[http://dx.doi.org/10.3390/molecules22111932] [PMID: 29117117]
[56]
Asadi-Samani M, Farkhad NK, Mahmoudian-Sani MR, Shirzad H. Antioxidants as a double-edged sword in the treatment of cancer.Antioxidants. IntechOpen 2019.
[http://dx.doi.org/10.5772/intechopen.85468]
[57]
Al-Taweel AM, Perveen S, Fawzy GA, Ibrahim TA, Khan A, Mehmood R. Cytotoxicity assessment of six different extracts of Abelia triflora leaves on A-549 human lung adenocarcinoma cells. Asian Pac J Cancer Prev 2015; 16(11): 4641-5.
[http://dx.doi.org/10.7314/APJCP.2015.16.11.4641] [PMID: 26107217]
[58]
Yoo TK, Kim JS, Hyun TK. Polyphenolic composition and anti-melanoma activity of white forsythia (Abeliophyllum distichum nakai) organ extracts. Plants (Basel) 2020; 9(6): 757.
[http://dx.doi.org/10.3390/plants9060757] [PMID: 32560393]
[59]
Chaemsawang W, Prasongchean W, Papadopoulos KI, Ritthidej G, Sukrong S, Wattanaarsakit P. The effect of okra (Abelmoschus esculentus (L.) moench) seed extract on human cancer cell lines delivered in its native form and loaded in polymeric micelles. Int J Biomater 2019; 2019.
[60]
Wu T, Duan X, Hu C, et al. Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artif Cells Nanomed Biotechnol 2019; 47(1): 512-23.
[http://dx.doi.org/10.1080/21691401.2018.1560305] [PMID: 30810403]
[61]
Miah M, Shimu AS, Mahmud S, et al. Methanolic bark extract of Abroma augusta (L.) induces apoptosis in EAC cells through altered expression of apoptosis regulatory genes. Evidence-Based Complementary and Alternative Medicine 2020; 2020.
[62]
Ghate NB, Hazra B, Sarkar R, Mandal N. Heartwood extract of Acacia catechu induces apoptosis in human breast carcinoma by altering bax/bcl-2 ratio. Pharmacogn Mag 2014; 10(37): 27-33.
[http://dx.doi.org/10.4103/0973-1296.126654] [PMID: 24695415]
[63]
Sakthivel KM, Guruvayoorappan C. Acacia ferruginea inhibits tumor progression by regulating inflammatory mediators-(TNF-a, iNOS, COX-2, IL-1β, IL-6, IFN-γ, IL-2, GM-CSF) and pro-angiogenic growth factor- VEGF. Asian Pac J Cancer Prev 2013; 14(6): 3909-19.
[http://dx.doi.org/10.7314/APJCP.2013.14.6.3909] [PMID: 23886206]
[64]
Madlener S, Svacinová J, Kitner M, et al. In vitro anti-inflammatory and anticancer activities of extracts of Acalypha alopecuroidea (Euphorbiaceae). Int J Oncol 2009; 35(4): 881-91.
[PMID: 19724926]
[65]
Thamizhiniyan V, Young-Woong C, Young-Kyoon K. The cytotoxic nature of Acanthopanax sessiliflorus stem bark extracts in human breast cancer cells. Saudi J Biol Sci 2015; 22(6): 752-9.
[http://dx.doi.org/10.1016/j.sjbs.2015.04.004] [PMID: 26587004]
[66]
Dell’Olmo E, Gaglione R, Pane K, et al. Fighting multidrug resistance with a fruit extract: anti-cancer and anti-biofilm activities of Acca sellowiana. Nat Prod Res 2019; 1: 1-4.
[http://dx.doi.org/10.1080/14786419.2019.1624961] [PMID: 31172798]
[67]
Tian Q, Zang YH. Antiproliferative and apoptotic effects of the ethanolic herbal extract of Achillea falcata in human cervical cancer cells are mediated via cell cycle arrest and mitochondrial membrane potential loss. J BUON 2015; 20(6): 1487-96.
[PMID: 26854445]
[68]
Galavi HR, Saravani R, Shahraki A, Ashtiani M. Anti-proliferative and apoptosis inducing potential of hydroalcoholic Achillea wilhelmsii C. Koch extract on human breast adenocarcinoma cell lines MCF-7 and MDA-Mb-468. Pak J Pharm Sci 2016; 29(6)(Suppl.): 2397-403.
[PMID: 28167484]
[69]
Arora S, Tandon S. Achyranthes aspera root extracts induce human colon cancer cell (COLO-205) death by triggering the mitochondrial apoptosis pathway and S phase cell cycle arrest. The Scientific World Journal 2014; 2014.
[70]
Rahamooz Haghighi S, Asadi MH, Akrami H, Baghizadeh A. Anti-carcinogenic and anti-angiogenic properties of the extracts of Acorus calamus on gastric cancer cells. Avicenna J Phytomed 2017; 7(2): 145-56.
[PMID: 28348970]
[71]
Balhamar SOMS, Panicker NG, Akhlaq S, et al. Differential cytotoxic potential of Acridocarpus orientalis leaf and stem extracts with the ability to induce multiple cell death pathways. Molecules 2019; 24(21): 3976.
[http://dx.doi.org/10.3390/molecules24213976] [PMID: 31684146]
[72]
Fang T, Fang Y, Xu X, et al. Actinidia chinensis Planch root extract attenuates proliferation and metastasis of hepatocellular carcinoma by inhibiting epithelial-mesenchymal transition. J Ethnopharmacol 2019; 231: 474-85.
[http://dx.doi.org/10.1016/j.jep.2018.11.014] [PMID: 30415058]
[73]
Lindamulage IK, Soysa P. Evaluation of anticancer properties of a decoction containing Adenanthera pavonina L. and Thespesia populnea L. BMC Complement Altern Med 2016; 16(1): 70.
[http://dx.doi.org/10.1186/s12906-016-1053-9] [PMID: 26896952]
[74]
Nguyen NH, Ta QTH, Pham QT, et al. Anticancer Activity of Novel Plant Extracts and Compounds from Adenosma bracteosum (Bonati) in Human Lung and Liver Cancer Cells. Molecules 2020; 25(12): 2912.
[http://dx.doi.org/10.3390/molecules25122912] [PMID: 32599892]
[75]
Rautray S, Panikar S, Amutha T, Rajananthini AU. Anticancer activity of Adiantum capillus veneris and Pteris quadriureta L. in human breast cancer cell lines. Mol Biol Rep 2018; 45(6): 1897-911.
[http://dx.doi.org/10.1007/s11033-018-4337-y] [PMID: 30194562]
[76]
Li Y, Dong C, Xu MJ, Lin WH. New alkylated benzoquinones from mangrove plant Aegiceras corniculatum with anticancer activity. J Asian Nat Prod Res 2019.
[PMID: 30614270]
[77]
Luo H, Hao E, Tan D, et al. Apoptosis effect of Aegiceras corniculatum on human colorectal cancer via activation of FoxO signaling pathway. Food Chem Toxicol 2019; 134: 110861.
[http://dx.doi.org/10.1016/j.fct.2019.110861] [PMID: 31585132]
[78]
R PC, S NK, S M, S AK, B S DK. In vitro α-glucosidase inhibition, antioxidant, anticancer, and antimycobacterial properties of ethyl acetate extract of Aegle tamilnadensis Abdul Kader (Rutaceae) leaf. Appl Biochem Biotechnol 2015; 175(2): 1247-61.
[http://dx.doi.org/10.1007/s12010-014-1335-y] [PMID: 25380641]
[79]
Kamalanathan D, Natarajan D. Anticancer potential of leaf and leaf-derived callus extracts of Aerva javanica against MCF-7 breast cancer cell line. J Cancer Res Ther 2018; 14(2): 321-7.
[PMID: 29516913]
[80]
Bhanot A, Sharma R, Singh S, Noolvi MN, Singh S. In vitro anti cancer activity of ethanol extract fractions of Aerva lanata L. Pak J Biol Sci 2013; 16(22): 1612-7.
[http://dx.doi.org/10.3923/pjbs.2013.1612.1617] [PMID: 24511712]
[81]
Adebayo AH, Tan NH, Akindahunsi AA, Zeng GZ, Zhang YM. Anticancer and antiradical scavenging activity of Ageratum conyzoides L. (Asteraceae). Pharmacogn Mag 2010; 6(21): 62-6.
[http://dx.doi.org/10.4103/0973-1296.59968] [PMID: 20548938]
[82]
Bailly C. Anticancer properties and mechanism of action of the quassinoid ailanthone. Phytother Res 2020; 34(9): 2203-13.
[http://dx.doi.org/10.1002/ptr.6681] [PMID: 32239572]
[83]
Rauca VF, Vlase L, Casian T, et al. Biologically Active Ajuga Species Extracts Modulate Supportive Processes for Cancer Cell Development. Front Pharmacol 2019; 10: 334.
[http://dx.doi.org/10.3389/fphar.2019.00334] [PMID: 31024305]
[84]
Koagne RR, Annang F, Cautain B, et al. Cytotoxycity and antiplasmodial activity of phenolic derivatives from Albizia zygia (DC.) JF Macbr.(Mimosaceae). BMC complementary medicine and therapies 2020; 20(1): 1-8.
[85]
de F Navarro Schmidt D, Yunes RA, Schaab EH, et al. Evaluation of the anti-proliferative effect the extracts of Allamanda blanchetti and A. schottii on the growth of leukemic and endothelial cells. J Pharm Pharm Sci 2006; 9(2): 200-8.
[PMID: 16959189]
[86]
Vafaee K, Dehghani S, Tahmasvand R, Saeed Abadi F, Irian S, Salimi M. Potent antitumor property of Allium bakhtiaricum extracts. BMC Complement Altern Med 2019; 19(1): 116.
[http://dx.doi.org/10.1186/s12906-019-2522-8] [PMID: 31164129]
[87]
Shirzad H, Taji F, Rafieian-Kopaei M. Correlation between antioxidant activity of garlic extracts and WEHI-164 fibrosarcoma tumor growth in BALB/c mice. J Med Food 2011; 14(9): 969-74.
[http://dx.doi.org/10.1089/jmf.2011.1594] [PMID: 21812650]
[88]
Kim WT, Seo SP, Byun YJ, et al. The anticancer effects of garlic extracts on bladder cancer compared to cisplatin: a common mechanism of action via centromere protein M. Am J Chin Med 2018; 46(3): 689-705.
[http://dx.doi.org/10.1142/S0192415X18500362] [PMID: 29595070]
[89]
Bagul M, Kakumanu S, Wilson TA. Crude garlic extract inhibits cell proliferation and induces cell cycle arrest and apoptosis of cancer cells in vitro. J Med Food 2015; 18(7): 731-7.
[http://dx.doi.org/10.1089/jmf.2014.0064] [PMID: 25608085]
[90]
Vijayakumar S, Malaikozhundan B, Saravanakumar K, Durán-Lara EF, Wang MH, Vaseeharan B. Garlic clove extract assisted silver nanoparticle - Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. J Photochem Photobiol B 2019; 198: 111558.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111558] [PMID: 31357173]
[91]
Zamri N, Hamid HA. Comparative Study of Onion (Allium cepa) and Leek (Allium ampeloprasum): Identification of Organosulphur Compounds by UPLC-QTOF/MS and Anticancer Effect on MCF-7 Cells. Plant Foods Hum Nutr 2019; 74(4): 525-30.
[http://dx.doi.org/10.1007/s11130-019-00770-6] [PMID: 31696379]
[92]
Mohammadi-Motlagh HR, Mostafaie A, Mansouri K. Anticancer and anti-inflammatory activities of shallot (Allium ascalonicum) extract. Arch Med Sci 2011; 7(1): 38-44.
[http://dx.doi.org/10.5114/aoms.2011.20602] [PMID: 22291731]
[93]
Khazaei S, Abdul Hamid R, Mohd Esa N, et al. Promotion of HepG2 cell apoptosis by flower of Allium atroviolaceum and the mechanism of action. BMC Complement Altern Med 2017; 17(1): 104.
[http://dx.doi.org/10.1186/s12906-017-1594-6] [PMID: 28187719]
[94]
Khazaei S, Abdul Hamid R, Ramachandran V, et al. Cytotoxicity and proapoptotic effects of Allium atroviolaceum flower extract by modulating cell cycle arrest and caspase-dependent and p53-independent pathway in breast cancer cell lines. Evid-based Complement Altern Med 2017; 2017.
[http://dx.doi.org/10.1155/2017/1468957]
[95]
Isbilen O, Rizaner N, Volkan E. Anti-proliferative and cytotoxic activities of Allium autumnale P. H. Davis (Amaryllidaceae) on human breast cancer cell lines MCF-7 and MDA-MB-231. BMC Complement Altern Med 2018; 18(1): 30.
[http://dx.doi.org/10.1186/s12906-018-2105-0] [PMID: 29370794]
[96]
Bhandari J, Muhammad B, Thapa P, Shrestha BG. Study of phytochemical, anti-microbial, anti-oxidant, and anti-cancer properties of Allium wallichii. BMC Complement Altern Med 2017; 17(1): 102.
[http://dx.doi.org/10.1186/s12906-017-1622-6] [PMID: 28178952]
[97]
Ryu M, Sung CK, Im YJ, Chun C. Activation of JNK and p38 in MCF-7 cells and the In vitro anticancer activity of Alnus hirsuta extract. Molecules 2020; 25(5): 1073.
[http://dx.doi.org/10.3390/molecules25051073] [PMID: 32121012]
[98]
Sajid M, Yan C, Li D, Merugu SB, Negi H, Khan MR. Potent anti-cancer activity of Alnus nitida against lung cancer cells; In vitro and in vivo studies. Biomed Pharmacother 2019; 110: 254-64.
[http://dx.doi.org/10.1016/j.biopha.2018.11.138] [PMID: 30508737]
[99]
Fang M, Zhu D, Luo C, et al. In vitro and in vivo anti-malignant melanoma activity of Alocasia cucullata via modulation of the phosphatase and tensin homolog/phosphoinositide 3-kinase/AKT pathway. J Ethnopharmacol 2018; 213: 359-65.
[http://dx.doi.org/10.1016/j.jep.2017.11.025] [PMID: 29180042]
[100]
Ahamed A, Panneerselvam A, Alaklabi A, Arif IA, Ambikapathy V, Thajuddin N. Molecular perspective and anticancer activity of medicinal plants. Saudi J Biol Sci 2020; 27(2): 666-75.
[http://dx.doi.org/10.1016/j.sjbs.2019.11.043] [PMID: 32210686]
[101]
Lakshmi S, Suresh S, Rahul BS, et al. In vitro and in vivo studies of 5, 7-dihydroxy flavones isolated from Alpinia galanga (L.) against human lung cancer and ascetic lymphoma. Med Chem Res 2019; 28(1): 39-51.
[http://dx.doi.org/10.1007/s00044-018-2260-3]
[102]
Kuo CY, Weng TS, Kumar KJS, et al. Ethanol extracts of dietary herb, Alpinia nantoensis, exhibit anticancer potential in human breast cancer cells. Integr Cancer Ther 2019; 18: 1534735419866924.
[http://dx.doi.org/10.1177/1534735419866924] [PMID: 31409145]
[103]
Li N, Zhang Q, Jia Z, Yang X, Zhang H, Luo H. Volatile oil from alpinia officinarum promotes lung cancer regression In vitro and in vivo. Food Funct 2018; 9(9): 4998-5006.
[http://dx.doi.org/10.1039/C8FO01151F] [PMID: 30187896]
[104]
Hui F, Qin X, Zhang Q, et al. Alpinia oxyphylla oil induces apoptosis of hepatocellular carcinoma cells via PI3K/Akt pathway In vitro and in vivo. Biomed Pharmacother 2019; 109: 2365-74.
[http://dx.doi.org/10.1016/j.biopha.2018.11.124] [PMID: 30551496]
[105]
Hsu CL, Yu YS, Yen GC. Anticancer effects of Alpinia pricei Hayata roots. J Agric Food Chem 2010; 58(4): 2201-8.
[http://dx.doi.org/10.1021/jf9038056] [PMID: 20025279]
[106]
Arul RC, Sophia D, Ragavendran P, Starlin T, Rathi MA, Gopalakrishnan VK. Leaf extract of Alpinia purpurata (Vieill.) K. Schum screened for its phytochemical constituents and antibacterial and anticancer activities. Zhong xi yi jie he xue bao=. J Chin Integr Med 2012; 10(12): 1460.
[http://dx.doi.org/10.3736/jcim20121219]
[107]
Zahra MH, Salem TAR, El-Aarag B, et al. Alpinia zerumbet (Pers.): food and medicinal plant with potential In vitro and in vivo anti-cancer activities. Molecules 2019; 24(13): 2495.
[http://dx.doi.org/10.3390/molecules24132495] [PMID: 31288458]
[108]
Jagetia GC, Baliga MS. Evaluation of anticancer activity of the alkaloid fraction of Alstonia scholaris (Sapthaparna) in vitro and in vivo. Phytother Res 2006; 20(2): 103-9.
[http://dx.doi.org/10.1002/ptr.1810] [PMID: 16444661]
[109]
Qian L, Su W, Wang Y, Dang M, Zhang W, Wang C. Synthesis and characterization of gold nanoparticles from aqueous leaf extract of Alternanthera sessilis and its anticancer activity on cervical cancer cells (HeLa). Artif Cells Nanomed Biotechnol 2019; 47(1): 1173-80.
[http://dx.doi.org/10.1080/21691401.2018.1549064] [PMID: 30942109]
[110]
Sathishkumar P, Vennila K, Jayakumar R, Yusoff AR, Hadibarata T, Palvannan T. Phyto-synthesis of silver nanoparticles using Alternanthera tenella leaf extract: an effective inhibitor for the migration of human breast adenocarcinoma (MCF-7) cells. Bioprocess Biosyst Eng 2016; 39(4): 651-9.
[http://dx.doi.org/10.1007/s00449-016-1546-4] [PMID: 26801668]
[111]
Abdelhakim HK, El-Sayed ER, Rashidi FB. Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer, antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima. J Appl Microbiol 2020; 128(6): 1634-46.
[http://dx.doi.org/10.1111/jam.14581] [PMID: 31954094]
[112]
Sani HA, Rahmat A, Ismail M, Rosli R, Endrini S. Potential anticancer effect of red spinach (Amaranthus gangeticus) extract. Asia Pac J Clin Nutr 2004; 13(4): 396-400.
[PMID: 15563447]
[113]
Loganayaki N, Manian S. Antitumor activity of the methanolic extract of Ammannia baccifera L. against Dalton’s ascites lymphoma induced ascitic and solid tumors in mice. J Ethnopharmacol 2012; 142(1): 305-9.
[http://dx.doi.org/10.1016/j.jep.2012.05.008] [PMID: 22613234]
[114]
Yang Y, Yue Y, Runwei Y, Guolin Z. Cytotoxic, apoptotic and antioxidant activity of the essential oil of Amomum tsao-ko. Bioresour Technol 2010; 101(11): 4205-11.
[http://dx.doi.org/10.1016/j.biortech.2009.12.131] [PMID: 20133123]
[115]
Chen C, You F, Wu F, Luo Y, Xu H, Liu Y. Antiangiogenesis efficacy of ethanol extract from amomum tsaoko in ovarian cancer through inducing ER stress to suppress p-STAT3/NF-kB/IL-6 and VEGF Loop. Evidn-based Complement Altern Med 2020; 2020
[116]
Ansil PN, Wills PJ, Varun R, Latha MS. Cytotoxic and apoptotic activities of Amorphophallus campanulatus (Roxb.) Bl. tuber extracts against human colon carcinoma cell line HCT-15. Saudi J Biol Sci 2014; 21(6): 524-31.
[http://dx.doi.org/10.1016/j.sjbs.2014.01.004] [PMID: 25473360]
[117]
Mohammadi A, Mansoori B, Baradaran PC, Baradaran SC, Baradaran B. Anacyclus pyrethrum extract exerts anticancer activities on the human colorectal cancer cell line (hct) by targeting apoptosis, metastasis and cell cycle arrest. J Gastrointest Cancer 2017; 48(4): 333-40.
[http://dx.doi.org/10.1007/s12029-016-9884-7] [PMID: 27796737]
[118]
Rameshbabu S, Messaoudi SA, Alehaideb ZI, et al. Anastatica hierochuntica (L.) methanolic and aqueous extracts exert antiproliferative effects through the induction of apoptosis in MCF-7 breast cancer cells. Saudi Pharm J 2020; 28(8): 985-93.
[http://dx.doi.org/10.1016/j.jsps.2020.06.020] [PMID: 32792843]
[119]
Hussain S, Ullah F, Sadiq A, et al. Cytotoxicity of Anchusa arvensis against HepG-2 cell lines: Mechanistic and computational approaches. Curr Top Med Chem 2019; 19(30): 2805-13.
[http://dx.doi.org/10.2174/1568026619666191105103801] [PMID: 31702502]
[120]
Kumar RA, Sridevi K, Kumar NV, Nanduri S, Rajagopal S. Anticancer and immunostimulatory compounds from Andrographis paniculata. J Ethnopharmacol 2004; 92(2-3): 291-5.
[http://dx.doi.org/10.1016/j.jep.2004.03.004] [PMID: 15138014]
[121]
Chang IC, Chiang TI, Lo C, et al. Anemone altaica induces apoptosis in human osteosarcoma cells. Am J Chin Med 2015; 43(5): 1031-42.
[http://dx.doi.org/10.1142/S0192415X15500597] [PMID: 26224029]
[122]
Kaminski CN, Ferrey SL, Lowrey T, Guerra L, VAN Slambrouck S, Steelant WF. In vitro anticancer activity of Anemopsis californica. Oncol Lett 2010; 1(4): 711-5.
[http://dx.doi.org/10.3892/ol_00000124] [PMID: 21941602]
[123]
Al-Sheddi ES, Al-Zaid NA, Al-Oqail MM, Al-Massarani SM, El-Gamal AA, Farshori NN. Evaluation of cytotoxicity, cell cycle arrest and apoptosis induced by Anethum graveolens L. essential oil in human hepatocellular carcinoma cell line. Saudi Pharm J 2019; 27(7): 1053-60.
[http://dx.doi.org/10.1016/j.jsps.2019.09.001] [PMID: 31997913]
[124]
Mohammed FA, Elkady AI, Syed FQ, Mirza MB, Hakeem KR, Alkarim S. Anethum graveolens (dill) - A medicinal herb induces apoptosis and cell cycle arrest in HepG2 cell line. J Ethnopharmacol 2018; 219: 15-22.
[http://dx.doi.org/10.1016/j.jep.2018.03.008] [PMID: 29530611]
[125]
Oliveira CR, Spindola DG, Garcia DM, et al. Medicinal properties of Angelica archangelica root extract: Cytotoxicity in breast cancer cells and its protective effects against in vivo tumor development. J Integr Med 2019; 17(2): 132-40.
[http://dx.doi.org/10.1016/j.joim.2019.02.001] [PMID: 30799248]
[126]
Zheng YM, Shen JZ, Wang Y, Lu AX, Ho WS. Anti-oxidant and anti-cancer activities of Angelica dahurica extract via induction of apoptosis in colon cancer cells. Phytomedicine 2016; 23(11): 1267-74.
[http://dx.doi.org/10.1016/j.phymed.2015.11.008] [PMID: 26776960]
[127]
Tsai NM, Lin SZ, Lee CC, et al. The antitumor effects of Angelica sinensis on malignant brain tumors In vitro and in vivo. Clin Cancer Res 2005; 11(9): 3475-84.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1827] [PMID: 15867250]
[128]
Sœur J, Marrot L, Perez P, et al. Selective cytotoxicity of Aniba rosaeodora essential oil towards epidermoid cancer cells through induction of apoptosis. Mutat Res 2011; 718(1-2): 24-32.
[http://dx.doi.org/10.1016/j.mrgentox.2010.10.009] [PMID: 21070863]
[129]
Preethy CP, Padmapriya R, Periasamy VS, et al. Antiproliferative property of n-hexane and chloroform extracts of Anisomeles malabarica (L). R. Br. in HPV16-positive human cervical cancer cells. J Pharmacol Pharmacother 2012; 3(1): 26-34.
[http://dx.doi.org/10.4103/0976-500X.92500] [PMID: 22368413]
[130]
Prado LG, Arruda HS, Peixoto Araujo NM, et al. Antioxidant, antiproliferative and healing properties of araticum (Annona crassiflora Mart.) peel and seed. Food Res Int 2020; 133: 109168.
[http://dx.doi.org/10.1016/j.foodres.2020.109168] [PMID: 32466931]
[131]
Macuer-Guzmán J, Bernal G, Jamett-Díaz F, Ramírez-Rivera S, Ibáñez C. Selective and apoptotic action of ethanol extract of Annona cherimola seeds against human stomach gastric adenocarcinoma cell line AGS. Plant Foods Hum Nutr 2019; 74(3): 322-7.
[http://dx.doi.org/10.1007/s11130-019-00742-w] [PMID: 31154569]
[132]
Cochrane CB, Nair PK, Melnick SJ, Resek AP, Ramachandran C. Anticancer effects of Annona glabra plant extracts in human leukemia cell lines. Anticancer Res 2008; 28(2A): 965-71.
[PMID: 18507043]
[133]
Pieme CA, Kumar SG, Dongmo MS, et al. Antiproliferative activity and induction of apoptosis by Annona muricata (Annonaceae) extract on human cancer cells. BMC Complement Altern Med 2014; 14(1): 516.
[http://dx.doi.org/10.1186/1472-6882-14-516] [PMID: 25539720]
[134]
Rosdi MN, Daud N, Zulkifli R, Yaakob H. Annona muricata Linn leaves extract cytotoxicity effect on Capan-1cells. J Appl Pharm Sci 2015; 5: 45-8.
[http://dx.doi.org/10.7324/JAPS.2015.50508]
[135]
Gavamukulya Y, Abou-Elella F, Wamunyokoli F, AEl-Shemy H. Phytochemical screening, anti-oxidant activity and In vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). Asian Pac J Trop Med 2014; 7S1: S355-63.
[http://dx.doi.org/10.1016/S1995-7645(14)60258-3] [PMID: 25312150]
[136]
Md Roduan MR, Hamid RA, Sulaiman H, Mohtarrudin N. Annona muricata leaves extracts prevent DMBA/TPA-induced skin tumorigenesis via modulating antioxidants enzymes system in ICR mice. Biomed Pharmacother 2017; 94: 481-8.
[http://dx.doi.org/10.1016/j.biopha.2017.07.133] [PMID: 28779710]
[137]
Hamizah S, Roslida AH, Fezah O, Tan KL, Tor YS, Tan CI. Chemopreventive potential of Annona muricata L leaves on chemically-induced skin papillomagenesis in mice. Asian Pac J Cancer Prev 2012; 13(6): 2533-9.
[http://dx.doi.org/10.7314/APJCP.2012.13.6.2533] [PMID: 22938417]
[138]
Syed Najmuddin SU, Romli MF, Hamid M, Alitheen NB, Nik Abd Rahman NM. Anti-cancer effect of annona muricata linn leaves crude extract (AMCE) on breast cancer cell line. BMC Complement Altern Med 2016; 16(1): 311.
[http://dx.doi.org/10.1186/s12906-016-1290-y] [PMID: 27558166]
[139]
Sulistyoningrum E, Rachmani EPN, Baroroh HN, Rujito L. Annona muricata leaves extract reduce proliferative indexes and improve histological changes in rat’s breast cancer. J Appl Pharm Sci 2017; 7: 149-55.
[http://dx.doi.org/10.7324/JAPS.2017.70120]
[140]
Zorofchian Moghadamtousi S, Rouhollahi E, Karimian H, et al. The chemopotential effect of Annona muricata leaves against azoxymethane-induced colonic aberrant crypt foci in rats and the apoptotic effect of Acetogenin Annomuricin E in HT-29 cells: a bioassay-guided approach. PLoS One 2015; 10(4): e0122288.
[http://dx.doi.org/10.1371/journal.pone.0122288] [PMID: 25860620]
[141]
Okolie NP, Agu K, Eze GI. Protective effect of ethanolic leaf extract of Annona muricata Linn on some early events in cycasinduced colorectal carcinogenesis in rats. J Pharma Sci Innov 2013; 2(4): 14-21.
[http://dx.doi.org/10.7897/2277-4572.02444]
[142]
Abdullah M, Syam AF, Meilany S, et al. The value of caspase-3 after the application of Annona muricata leaf extract in COLO-205 colorectal cancer cell line. Gastroenterology Research and Practice 2017; 2017
[143]
Oviedo V, García M, Díaz C, et al. Anxiolytic-like effect of the extract and alkaloid fraction from Annona muricata in mice. Rev Colomb Cienc Quim Farm 2009; 38(1)
[144]
Osorio E, Arango GJ, Jiménez N, et al. Antiprotozoal and cytotoxic activities In vitro of Colombian Annonaceae. J Ethnopharmacol 2007; 111(3): 630-5.
[http://dx.doi.org/10.1016/j.jep.2007.01.015] [PMID: 17296281]
[145]
Quispe A, Zavala D, Rojas J, Posso M, Vaisberg A. In vitro selective cytotoxic effect of muricin H (Annona muricata acetogenin) in lung cancer cell cultures. Peru J Exp Med Public Health 2006; 23(4): 265-9.
[146]
George VC, Kumar DR, Rajkumar V, Suresh PK, Kumar RA. Quantitative assessment of the relative antineoplastic potential of the n-butanolic leaf extract of Annona muricata Linn. in normal and immortalized human cell lines. Asian Pac J Cancer Prev 2012; 13(2): 699-704.
[http://dx.doi.org/10.7314/APJCP.2012.13.2.699] [PMID: 22524847]
[147]
Liu N, Yang HL, Wang P, et al. Functional proteomic analysis revels that the ethanol extract of Annona muricata L. induces liver cancer cell apoptosis through endoplasmic reticulum stress pathway. J Ethnopharmacol 2016; 189: 210-7.
[http://dx.doi.org/10.1016/j.jep.2016.05.045] [PMID: 27224241]
[148]
Chamcheu JC, Rady I, Chamcheu RN, et al. Graviola (Annona muricata) exerts anti-proliferative, anti-clonogenic and pro-apoptotic effects in human non-melanoma skin cancer UW-BCC1 and A431 cells in vitro: Involvement of hedgehog signaling. Int J Mol Sci 2018; 19(6): 1791.
[http://dx.doi.org/10.3390/ijms19061791] [PMID: 29914183]
[149]
Pardhasaradhi BV, Reddy M, Ali AM, Kumari AL, Khar A. Antitumour activity of Annona squamosa seed extracts is through the generation of free radicals and induction of apoptosis. Indian J Biochem Biophys 2004; 167-72.
[150]
Vikas B, Anil S, Remani P. Cytotoxicity Profiling of Annona Squamosa in Cancer Cell Lines. Asian Pac J Cancer Prev 2019; 20(9): 2831-40.
[http://dx.doi.org/10.31557/APJCP.2019.20.9.2831] [PMID: 31554384]
[151]
Stark N, Gridling M, Madlener S, et al. A polar extract of the Maya healing plant Anthurium schlechtendalii (Aracea) exhibits strong In vitro anticancer activity. Int J Mol Med 2009; 24(4): 513-21.
[PMID: 19724892]
[152]
Wu WD, Chen PS, Omar HA, et al. Antrodia cinnamomea boosts the anti-tumor activity of sorafenib in xenograft models of human hepatocellular carcinoma. Sci Rep 2018; 8(1): 12914.
[http://dx.doi.org/10.1038/s41598-018-31209-8] [PMID: 30150684]
[153]
Li F, Wang W, Xiao H. The evaluation of anti-breast cancer activity and safety pharmacology of the ethanol extract of Aralia elata Seem. leaves. Drug Chem Toxicol 2019; 1-0.
[http://dx.doi.org/10.1080/01480545.2019.1701001] [PMID: 31025581]
[154]
Kim JE, Lee NH, Kim YH, Kim YE, Lim TG, Song KM. Enhancement of the apoptotic effects of Arctii Fructus extracts on cancer cells by the enzymatic bioconversion of lignans. Food Sci Nutr 2020; 8(5): 2205-13.
[http://dx.doi.org/10.1002/fsn3.1336] [PMID: 32405377]
[155]
Gurunanselage Don RAS, Yap MKK. Arctium lappa L. root extract induces cell death via mitochondrial-mediated caspase-dependent apoptosis in Jurkat human leukemic T cells. Biomed Pharmacother 2019; 110: 918-29.
[http://dx.doi.org/10.1016/j.biopha.2018.12.023] [PMID: 30572196]
[156]
Nordin ML, Abdul Kadir A, Zakaria ZA, Abdullah R, Abdullah MNH. In vitro investigation of cytotoxic and antioxidative activities of Ardisia crispa against breast cancer cell lines, MCF-7 and MDA-MB-231. BMC Complement Altern Med 2018; 18(1): 87.
[http://dx.doi.org/10.1186/s12906-018-2153-5] [PMID: 29530022]
[157]
More NV, Kharat AS. Antifungal and anticancer potential of argemone mexicana L. Medicines (Basel) 2016; 3(4): 28.
[http://dx.doi.org/10.3390/medicines3040028] [PMID: 28930138]
[158]
Li C, Wang MH. Aristolochia debilis Sieb. et Zucc. induces apoptosis and reactive oxygen species in the HT-29 human colon cancer cell line. Cancer Biother Radiopharm 2013; 28(10): 717-24.
[http://dx.doi.org/10.1089/cbr.2013.1486] [PMID: 23848946]
[159]
Sugier P, Jakubowicz-Gil J, Sugier D, et al. Chemical characteristics and anticancer activity of essential oil from Arnica montana L. rhizomes and roots. Molecules 2020; 25(6): 1284.
[http://dx.doi.org/10.3390/molecules25061284] [PMID: 32178275]
[160]
Sugier D, Sugier P, Jakubowicz-Gil J, Winiarczyk K, Kowalski R. Essential oil from Arnica montana L. achenes: Chemical characteristics and anticancer activity. Molecules 2019; 24(22): 4158.
[http://dx.doi.org/10.3390/molecules24224158] [PMID: 31744121]
[161]
Lai H, Singh NP. Oral artemisinin prevents and delays the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in the rat. Cancer Lett 2006; 231(1): 43-8.
[http://dx.doi.org/10.1016/j.canlet.2005.01.019] [PMID: 16356830]
[162]
Lang SJ, Schmiech M, Hafner S, et al. Antitumor activity of an Artemisia annua herbal preparation and identification of active ingredients. Phytomedicine 2019; 62: 152962.
[http://dx.doi.org/10.1016/j.phymed.2019.152962] [PMID: 31132755]
[163]
Isani G, Bertocchi M, Andreani G, et al. Cytotoxic effects of Artemisia annua L. and pure artemisinin on the D-17 canine osteosarcoma cell line. Oxidative Medicine and Cellular Longevity 2019; 2019.
[164]
Baghbani-Arani F, Movagharnia R, Sharifian A, Salehi S, Shandiz SAS. Photo-catalytic, anti-bacterial, and anti-cancer properties of phyto-mediated synthesis of silver nanoparticles from Artemisia tournefortiana Rchb extract. J Photochem Photobiol B 2017; 173: 640-9.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.07.003] [PMID: 28711019]
[165]
Mughees M, Wajid S, Samim M. Cytotoxic potential of Artemisia absinthium extract loaded polymeric nanoparticles against breast cancer cells: Insight into the protein targets. Int J Pharm 2020; 586: 119583.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119583] [PMID: 32603837]
[166]
Koyuncu I. Evaluation of anticancer, antioxidant activity and phenolic compounds of Artemisia absinthium L. Extract. Cell Mol Biol 2018; 64(3): 25-34.
[http://dx.doi.org/10.14715/cmb/2018.64.3.5] [PMID: 29506627]
[167]
Jang E, Kim SY, Lee NR, et al. Evaluation of antitumor activity of Artemisia capillaris extract against hepatocellular carcinoma through the inhibition of IL-6/STAT3 signaling axis. Oncol Rep 2017; 37(1): 526-32.
[http://dx.doi.org/10.3892/or.2016.5283] [PMID: 28004112]
[168]
Kim J, Jung KH, Yan HH, et al. Artemisia Capillaris leaves inhibit cell proliferation and induce apoptosis in hepatocellular carcinoma. BMC Complement Altern Med 2018; 18(1): 147.
[http://dx.doi.org/10.1186/s12906-018-2217-6] [PMID: 29739391]
[169]
Salehi S, Mirzaie A, Sadat Shandiz SA, et al. Chemical composition, antioxidant, antibacterial and cytotoxic effects of Artemisia marschalliana Sprengel extract. Nat Prod Res 2017; 31(4): 469-72.
[http://dx.doi.org/10.1080/14786419.2016.1174234] [PMID: 27117695]
[170]
Choi EJ, Kim GH. Antioxidant and anticancer activity of Artemisia princeps var. orientalis extract in HepG2 and Hep3B hepatocellular carcinoma cells. Chin J Cancer Res 2013; 25(5): 536-43.
[PMID: 24255577]
[171]
Ghanbar F, Mirzaie A, Ashrafi F, et al. Antioxidant, antibacterial and anticancer properties of phyto-synthesised Artemisia quttensis Podlech extract mediated AgNPs. IET nanobiotechnology 2016; 11(4): 485-92.
[172]
Tayarani-Najaran Z, Sareban M, Gholami A, Emami SA, Mojarrab M. Cytotoxic and apoptotic effects of different extracts of Artemisia turanica Krasch. on K562 and HL-60 cell lines. The Scientific World Journal 2013; 2013
[173]
Sharawi ZW. Therapeutic effect of Arthrocnemum machrostachyum methanolic extract on Ehrlich solid tumor in mice. BMC Complement Med Ther 2020; 20(1): 153.
[http://dx.doi.org/10.1186/s12906-020-02947-y] [PMID: 32448237]
[174]
Tzeng CW, Tzeng WS, Lin LT, et al. Artocarpus communis induces autophagic instead of apoptotic cell death in human hepatocellular carcinoma cells. Am J Chin Med 2015; 43(3): 559-79.
[http://dx.doi.org/10.1142/S0192415X15500354] [PMID: 25967668]
[175]
Baskar AA, Ignacimuthu S, Paulraj GM, Al Numair KS. Chemopreventive potential of β-Sitosterol in experimental colon cancer model-an In vitro and in vivo study. BMC Complement Altern Med 2010; 10(1): 24.
[http://dx.doi.org/10.1186/1472-6882-10-24] [PMID: 20525330]
[176]
Sánchez-Gutiérrez JA, Moreno-Lorenzana D, Álvarez-Bernal D, Rodríguez-Campos J, Medina-Medrano JR. Phenolic profile, antioxidant and anti-proliferative activities of methanolic extracts from asclepias linaria cav. leaves. Molecules 2019; 25(1): 54.
[http://dx.doi.org/10.3390/molecules25010054] [PMID: 31877920]
[177]
Rascón Valenzuela LA, Jiménez Estrada M, Velázquez Contreras CA, et al. Antiproliferative and apoptotic activities of extracts of Asclepias subulata. Pharm Biol 2015; 53(12): 1741-51.
[http://dx.doi.org/10.3109/13880209.2015.1005752] [PMID: 25853961]
[178]
Bousserouel S, Le Grandois J, Gossé F, et al. Methanolic extract of white asparagus shoots activates TRAIL apoptotic death pathway in human cancer cells and inhibits colon carcinogenesis in a preclinical model. Int J Oncol 2013; 43(2): 394-404.
[http://dx.doi.org/10.3892/ijo.2013.1976] [PMID: 23754197]
[179]
Wang R, Xiao S, Niu Z. Anti-cancer activity of Aster tataricus on SCC-9 human oral squamous carcinoma. Afr J Tradit Complement Altern Med 2017; 14(2): 142-7.
[http://dx.doi.org/10.21010/ajtcam.v14i2.15] [PMID: 28573230]
[180]
Tayeh Z, Dudai N, Schechter A, Chalifa-Caspi V, Barak S, Ofir R. Molecular mode of action of asteriscus graveolens as an anticancer agent. Int J Mol Sci 2018; 19(8): 2162.
[http://dx.doi.org/10.3390/ijms19082162] [PMID: 30042356]
[181]
Rai V, Kumar A, Das V, Ghosh S. Evaluation of chemical constituents and In vitro antimicrobial, antioxidant and cytotoxicity potential of rhizome of Astilbe rivularis (Bodho-okhati), an indigenous medicinal plant from Eastern Himalayan region of India. BMC Complement Altern Med 2019; 19(1): 200.
[http://dx.doi.org/10.1186/s12906-019-2621-6] [PMID: 31382946]
[182]
Yang B, Xiao B, Sun T. Antitumor and immunomodulatory activity of Astragalus membranaceus polysaccharides in H22 tumor-bearing mice. Int J Biol Macromol 2013; 62: 287-90.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.09.016] [PMID: 24060282]
[183]
Zhou R, Chen H, Chen J, Chen X, Wen Y, Xu L. Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway. BMC Complement Altern Med 2018; 18(1): 83.
[http://dx.doi.org/10.1186/s12906-018-2148-2] [PMID: 29523109]
[184]
Goodarzi S, Nateghpour M, Asgharian P, et al. Antimalarial and cytotoxic activities of roots and fruits fractions of Astrodaucus persicus extract. Iran J Basic Med Sci 2017; 20(12): 1318-23.
[PMID: 29238466]
[185]
Gu S, Li L, Huang H, Wang B, Zhang T. Antitumor, Antiviral, and Anti-Inflammatory Efficacy of Essential Oils from Atractylodes macrocephala Koidz. Produced with Different Processing Methods. Molecules 2019; 24(16): 2956.
[http://dx.doi.org/10.3390/molecules24162956] [PMID: 31443182]
[186]
Rajput S, Kumar D, Agrawal V. Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Rep 2020; 39(7): 921-39.
[http://dx.doi.org/10.1007/s00299-020-02539-7] [PMID: 32300886]
[187]
Hasson SS, H Al-Shubi AS, Al-Busaidi JZ, et al. Potential of aucklandia lappa decne ethanolic extract to trigger apoptosis of human T47D and hela cells. Asian Pac J Cancer Prev 2018; 19(7): 1917-25.
[PMID: 30051673]
[188]
Agrawal S, Bablani Popli D, Sircar K, Chowdhry A. A review of the anticancer activity of Azadirachta indica (Neem) in oral cancer. J Oral Biol Craniofac Res 2020; 10(2): 206-9.
[http://dx.doi.org/10.1016/j.jobcr.2020.04.007] [PMID: 32489822]
[189]
Qiu Z, Andrijauskaite K, Morris J, Wargovich MJ. Disruption of epigenetic silencing in human colon cancer cells lines utilizing a novel supercritical CO2 extract of neem leaf (Azadirachta indica). Anticancer Res 2019; 39(10): 5473-81.
[http://dx.doi.org/10.21873/anticanres.13740] [PMID: 31570441]
[190]
Arumugam A, Agullo P, Boopalan T, et al. Neem leaf extract inhibits mammary carcinogenesis by altering cell proliferation, apoptosis, and angiogenesis. Cancer Biol Ther 2014; 15(1): 26-34.
[http://dx.doi.org/10.4161/cbt.26604] [PMID: 24146019]
[191]
Jeba Malar TRJ, Antonyswamy J, Vijayaraghavan P, et al. In-vitro phytochemical and pharmacological bio-efficacy studies on Azadirachta indica A. Juss and Melia azedarach Linn for anticancer activity. Saudi J Biol Sci 2020; 27(2): 682-8.
[http://dx.doi.org/10.1016/j.sjbs.2019.11.024] [PMID: 32210688]
[192]
Mallick MN, Khan W, Parveen R, et al. Exploring the cytotoxic potential of triterpenoids-enriched fraction of bacopa monnieri by implementing in vitro, in vivo, and in silico approaches. Pharmacogn Mag 2017; 13(Suppl. 3): S595-606.
[http://dx.doi.org/10.4103/pm.pm_397_16] [PMID: 29142420]
[193]
Hassan LE, Dahham SS, Saghir SA, et al. Chemotherapeutic potentials of the stem bark of Balanite aegyptiaca (L.) Delile: an antiangiogenic, antitumor and antioxidant agent. BMC Complement Altern Med 2016; 16(1): 396.
[http://dx.doi.org/10.1186/s12906-016-1369-5] [PMID: 27760539]
[194]
Qu J, He Y, Shi Y, et al. Polysaccharides derived from Balanophora polyandra significantly suppressed the proliferation of ovarian cancer cells through P53-mediated pathway. J Cell Mol Med 2020; 24(14): 8115-25.
[http://dx.doi.org/10.1111/jcmm.15468] [PMID: 32519803]
[195]
Pipatrattanaseree W, Itharat A, Mukkasombut N, Saesiw U. Potential In vitro anti-allergic, anti-inflammatory and cytotoxic activities of ethanolic extract of Baliospermum montanum root, its major components and a validated HPLC method. BMC Complement Altern Med 2019; 19(1): 45.
[http://dx.doi.org/10.1186/s12906-019-2449-0] [PMID: 30755219]
[196]
Vijayan R, Joseph S, Mathew B. Anticancer, antimicrobial, antioxidant, and catalytic activities of green-synthesized silver and gold nanoparticles using Bauhinia purpurea leaf extract. Bioprocess Biosyst Eng 2019; 42(2): 305-19.
[http://dx.doi.org/10.1007/s00449-018-2035-8] [PMID: 30421171]
[197]
Chen YF, Lee AS, Chen WY, Lin CH, Kuo CL, Chung JG. Partitioned Extracts of Bauhinia championii Induce G0/G1 Phase Arrest and Apoptosis in Human Colon Cancer Cells. Am J Chin Med 2020; 48(3): 719-36.
[http://dx.doi.org/10.1142/S0192415X20500366] [PMID: 32349516]
[198]
Agrawal SB, Gupta N, Bhagyawant SS, Gaikwad SM. Anticancer activity of lectins from Bauhinia purpurea and Wisteria floribunda on Breast cancer MCF-7 cell lines. Protein Pept Lett 2020; 27(9): 870-7.
[http://dx.doi.org/10.2174/0929866527666200408143614] [PMID: 32268858]
[199]
Mishra A, Sharma AK, Kumar S, Saxena AK, Pandey AK. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. BioMed Research International 2013; 2013.
[200]
Su YC, Ho CL. Composition and in-vitro cytotoxicactivities of the leaf essential oil of beilschmiedia erythrophloia from Taiwan. Natural product communications 2013; 8(1): 1934578X1300800135.
[http://dx.doi.org/10.1177/1934578X1300800135]
[201]
Pai KS, Srilatha P, Suryakant K, et al. Anticancer activity of Berberis aristata in Ehrlich ascites carcinoma-bearing mice: a preliminary study. Pharm Biol 2012; 50(3): 270-7.
[http://dx.doi.org/10.3109/13880209.2011.599035] [PMID: 22085276]
[202]
El-Merahbi R, Liu YN, Eid A, et al. Berberis libanotica Ehrenb extract shows anti-neoplastic effects on prostate cancer stem/progenitor cells. PLoS One 2014; 9(11): e112453.
[http://dx.doi.org/10.1371/journal.pone.0112453] [PMID: 25380390]
[203]
Engel N, Ali I, Adamus A, et al. Antitumor evaluation of two selected Pakistani plant extracts on human bone and breast cancer cell lines. BMC Complement Altern Med 2016; 16(1): 244.
[http://dx.doi.org/10.1186/s12906-016-1215-9] [PMID: 27457235]
[204]
Ghafourian E, Sadeghifard N, Pakzad I, et al. Ethanolic extract of Berberis vulgaris fruits inhibits the proliferation of MCF-7 breast cancer cell line through induction of apoptosis. Infect Disord Drug Targets 2017; 17(3): 192-8.
[205]
Jung HJ, Song KS, Son YK, Seong JK, Kim SY, Oh SH. 1,7-Bis(4-hydroxyphenyl)-4-hepten-3-one from Betula platyphylla induces apoptosis by suppressing autophagy flux and activating the p38 pathway in lung cancer cells. Phytother Res 2020; 34(1): 126-38.
[http://dx.doi.org/10.1002/ptr.6506] [PMID: 31512302]
[206]
Nazari J, Payamnoor V, Sadeghzadeh Z, Asadi J, Kavosi MR. Increased induction of apoptosis in ESCC (Esophageal Squamous-Cell Carcinoma) by betula pendula roth stem cell extract containing triterpenoids compared to doxorubicin. Anti-Cancer Agents Med Chem 2020; 21(1): 100-7.
[207]
Malfa GA, Tomasello B, Acquaviva R, et al. Betula etnensis Raf.(Betulaceae) extract induced HO-1 expression and ferroptosis cell death in human colon cancer cells. Int J Mol Sci 2019; 20(11): 2723.
[http://dx.doi.org/10.3390/ijms20112723] [PMID: 31163602]
[208]
Jayarathna PP, Tennekoon KH, Samarakoon SR, et al. Cytotoxic, antioxidant and apoptotic effects of twenty sri lankan endemic plants in breast cancer cells. European J Med Plants 2016; 1-5.
[http://dx.doi.org/10.9734/EJMP/2016/26591]
[209]
Shen Y, Sun Z, Shi P, et al. Anticancer effect of petroleum ether extract from Bidens pilosa L and its constituent’s analysis by GC-MS. J Ethnopharmacol 2018; 217: 126-33.
[http://dx.doi.org/10.1016/j.jep.2018.02.019] [PMID: 29454912]
[210]
Tatar M, Bagheri Z, Varedi M, Naghibalhossaini F. Blackberry extract inhibits telomerase activity in human colorectal cancer cells. Nutr Cancer 2019; 71(3): 461-71.
[http://dx.doi.org/10.1080/01635581.2018.1506491] [PMID: 30372130]
[211]
Srivastava R, Saluja D, Dwarakanath BS, Chopra M. Inhibition of human cervical cancer cell growth by ethanolic extract of Boerhaavia diffusa Linn.(punarnava) root. Evid-based Complement Altern Med 2011; 2011.
[212]
Listyawati S, Sismindari S, Mubarika S, Murti YB, Ikawati M. Anti-proliferative activity and apoptosis induction of an ethanolic extract of boesenbergia pandurata (Roxb.) schlecht. Against HeLa and vero cell lines. Asian Pac J Cancer Prev 2016; 17(1): 183-7.
[http://dx.doi.org/10.7314/APJCP.2016.17.1.183] [PMID: 26838207]
[213]
Singh H, Du J, Yi TH. Green and rapid synthesis of silver nanoparticles using Borago officinalis leaf extract: anticancer and antibacterial activities. Artif Cells Nanomed Biotechnol 2017; 45(7): 1310-6.
[http://dx.doi.org/10.1080/21691401.2016.1228663] [PMID: 27598388]
[214]
Suhail MM, Wu W, Cao A, et al. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells. BMC Complement Altern Med 2011; 11(1): 129.
[http://dx.doi.org/10.1186/1472-6882-11-129] [PMID: 22171782]
[215]
Ranjbarnejad T, Saidijam M, Moradkhani S, Najafi R. Methanolic extract of Boswellia serrata exhibits anti-cancer activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells. Prostaglandins Other Lipid Mediat 2017; 131: 1-8.
[http://dx.doi.org/10.1016/j.prostaglandins.2017.05.003] [PMID: 28549801]
[216]
Frank MB, Yang Q, Osban J, et al. Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity. BMC Complement Altern Med 2009; 9(1): 6.
[http://dx.doi.org/10.1186/1472-6882-9-6] [PMID: 19296830]
[217]
Gnocchi D, Cesari G, Calabrese GJ, Capone R, Sabbà C, Mazzocca A. Inhibition of Hepatocellular Carcinoma Growth by Ethyl Acetate Extracts of Apulian Brassica oleracea L. and Crithmum maritimum L. Plant Foods Hum Nutr 2020; 75(1): 33-40.
[http://dx.doi.org/10.1007/s11130-019-00781-3] [PMID: 31741122]
[218]
Meiyanto E, Larasati YA. The chemopreventive activity of Indonesia medicinal plants targeting on Hallmarks of Cancer. Adv Pharm Bull 2019; 9(2): 219-30.
[http://dx.doi.org/10.15171/apb.2019.025] [PMID: 31380247]
[219]
Bagheri E, Hajiaghaalipour F, Nyamathulla S, Salehen N. The apoptotic effects of Brucea javanica fruit extract against HT29 cells associated with p53 upregulation and inhibition of NF-κB translocation. Drug Des Devel Ther 2018; 12: 657-71.
[http://dx.doi.org/10.2147/DDDT.S155115] [PMID: 29636600]
[220]
Ben Abdessamad I, Bouhlel I, Chekir-Ghedira L, Krifa M. Antitumor effect of Bryonia dioïca methanol extract: In vitro and in vivo study. Nutr Cancer 2020; 72(5): 747-56.
[http://dx.doi.org/10.1080/01635581.2019.1654528] [PMID: 31460802]
[221]
Mahata S, Maru S, Shukla S, et al. Anticancer property of Bryophyllum pinnata (Lam.) Oken. leaf on human cervical cancer cells. BMC Complement Altern Med 2012; 12(1): 15.
[http://dx.doi.org/10.1186/1472-6882-12-15] [PMID: 22405256]
[222]
Kushwaha PP, Vardhan PS, Kapewangolo P, et al. Bulbine frutescens phytochemical inhibits notch signaling pathway and induces apoptosis in triple negative and luminal breast cancer cells. Life Sci 2019; 234: 116783.
[http://dx.doi.org/10.1016/j.lfs.2019.116783] [PMID: 31442552]
[223]
Mollah ML, Song JC, Park CH, et al. Anticancer activity and apoptotic effects of Bulnesia sarmienti against human lung cancer H460 cells. Oncol Res 2009; 18(5-6): 259-67.
[http://dx.doi.org/10.3727/096504009X12596189659321] [PMID: 20225763]
[224]
Gu LY, Chen Z, Zhao J, Ruan XJ, Zhao SY, Gao H. Antioxidant, anticancer and apoptotic effects of the Bupleurum chinense root extract in HO-8910 ovarian cancer cells. J BUON 2015; 20(5): 1341-9.
[PMID: 26537084]
[225]
Cheng YL, Lee SC, Lin SZ, et al. Anti-proliferative activity of Bupleurum scrozonerifolium in A549 human lung cancer cells In vitro and in vivo. Cancer Lett 2005; 222(2): 183-93.
[http://dx.doi.org/10.1016/j.canlet.2004.10.015] [PMID: 15863267]
[226]
Ait-Mohamed O, Battisti V, Joliot V, et al. Acetonic extract of Buxus sempervirens induces cell cycle arrest, apoptosis and autophagy in breast cancer cells. PLoS One 2011; 6(9): e24537.
[http://dx.doi.org/10.1371/journal.pone.0024537] [PMID: 21935420]
[227]
Deepika S, Selvaraj CI, Roopan SM. Screening bioactivities of Caesalpinia pulcherrima L. swartz and cytotoxicity of extract synthesized silver nanoparticles on HCT116 cell line. Mater Sci Eng C 2020; 106: 110279.
[http://dx.doi.org/10.1016/j.msec.2019.110279] [PMID: 31753355]
[228]
Abutaha N, Nasr FA, Mohammed AZ, Semlali A, Al-Mekhlafi FA, Wadaan MA. Calendula arvensis L. as an anti-cancer agent against breast cancer cell lines. Mol Biol Rep 2019; 46(2): 2187-96.
[http://dx.doi.org/10.1007/s11033-019-04672-3] [PMID: 30756331]
[229]
Ahmad K, Hafeez ZB, Bhat AR, et al. Antioxidant and apoptotic effects of Callistemon lanceolatus leaves and their compounds against human cancer cells. Biomed Pharmacother 2018; 106: 1195-209.
[http://dx.doi.org/10.1016/j.biopha.2018.07.016] [PMID: 30119188]
[230]
Shanmugapriya CY, Chen Y, Kanwar JR, Sasidharan S. Anticancer activity and molecular mechanism of polyphenol rich Calophyllum inophyllum fruit extract in MCF-7 breast cancer cells. Nutr Cancer 2017; 69(8): 1308-24.
[http://dx.doi.org/10.1080/01635581.2017.1367944] [PMID: 29068745]
[231]
Lee J, Jang HJ, Chun H, et al. Calotropis gigantea extract induces apoptosis through extrinsic/intrinsic pathways and reactive oxygen species generation in A549 and NCI-H1299 non-small cell lung cancer cells. BMC Complement Altern Med 2019; 19(1): 134.
[http://dx.doi.org/10.1186/s12906-019-2561-1] [PMID: 31215445]
[232]
Majolo F, Bitencourt S, Wissmann Monteiro B, et al. Antimicrobial and antileukemic effects: In vitro activity of Calyptranthes grandifolia aqueous leaf extract. J Toxicol Environ Health A 2020; 83(8): 289-301.
[http://dx.doi.org/10.1080/15287394.2020.1753606] [PMID: 32366184]
[233]
Lee JI, Kim IH, Nam TJ. Crude extract and solvent fractions of Calystegia soldanella induce G1 and S phase arrest of the cell cycle in HepG2 cells. Int J Oncol 2017; 50(2): 414-20.
[http://dx.doi.org/10.3892/ijo.2017.3836] [PMID: 28101580]
[234]
Yadav A, Mendhulkar VD. Antiproliferative activity of Camellia sinensis mediated silver nanoparticles on three different human cancer cell lines. J Cancer Res Ther 2018; 14(6): 1316-24.
[PMID: 30488850]
[235]
Esghaei M, Ghaffari H, Rahimi Esboei B, Ebrahimi Tapeh Z, Bokharaei Salim F, Motevalian M. Evaluation of anticancer activity of Camellia sinensis in the Caco-2 colorectal cancer cell line. Asian Pacific journal of cancer prevention. Asian Pac J Cancer Prev 2018; 19(6): 1697-701.
[PMID: 29938468]
[236]
Fan L, He Y, Xu Y, Li P, Zhang J, Zhao J. Triterpenoid saponins in tea (Camellia sinensis) plants: biosynthetic gene expression, content variations, chemical identification and cytotoxicity. Int J Food Sci Nutr 2020; 1-6.
[PMID: 32746657]
[237]
Li T, Meng X, Wu C, Fan G, Yang J, Pan W. Anticancer activity of a novel glycoprotein from Camellia oleifera Abel seeds against hepatic carcinoma in vitro and in vivo. Int J Biol Macromol 2019; 136: 284-95.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.054] [PMID: 31195042]
[238]
Lima E Silva MCB, Bogo D, Alexandrino CAF, et al. Antiproliferative activity of extracts of Campomanesia adamantium (Cambess.) O. Berg and isolated compound dimethylchalcone against B16-F10 murine melanoma. J Med Food 2018; 21(10): 1024-34.
[http://dx.doi.org/10.1089/jmf.2018.0001] [PMID: 29715052]
[239]
Basri DF, Alamin ZA, Chan KM. Assessment of cytotoxicity and genotoxicity of stem bark extracts from Canarium odontophyllum Miq. (dabai) against HCT 116 human colorectal cancer cell line. BMC Complement Altern Med 2016; 16(1): 36.
[http://dx.doi.org/10.1186/s12906-016-1015-2] [PMID: 26822971]
[240]
Moghadamnia Y, Mousavi Kani SN, Ghasemi-Kasman M, Kazemi Kani MT, Kazemi S. The anti-cancer effects of capparis spinosa hydroalcoholic extract. Avicenna J Med Biotechnol 2019; 11(1): 43-7.
[PMID: 30800242]
[241]
Chilczuk B, Marciniak B, Stochmal A, et al. Anticancer Potential and Capsianosides Identification in Lipophilic Fraction of Sweet Pepper (Capsicum annuum L.). Molecules 2020; 25(13): 3097.
[http://dx.doi.org/10.3390/molecules25133097] [PMID: 32646039]
[242]
Duan X, Liao Y, Liu T, et al. Zinc oxide nanoparticles synthesized from Cardiospermum halicacabum and its anticancer activity in human melanoma cells (A375) through the modulation of apoptosis pathway. J Photochem Photobiol B 2020; 202: 111718.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111718] [PMID: 31790883]
[243]
Zuhrotun Nisa F, Astuti M, Murdiati A, Mubarika Haryana S. Anti-proliferation and Apoptosis Induction of Aqueous Leaf Extract of Carica papaya L. on Human Breast Cancer Cells MCF-7. Pak J Biol Sci 2017; 20(1): 36-41.
[http://dx.doi.org/10.3923/pjbs.2017.36.41] [PMID: 29023013]
[244]
Singh D, Kumar V, Yadav E, et al. One-pot green synthesis and structural characterisation of silver nanoparticles using aqueous leaves extract of Carissa carandas: antioxidant, anticancer and antibacterial activities. IET nanobiotechnology 2018; 12(6): 748-56.
[http://dx.doi.org/10.1049/iet-nbt.2017.0261]
[245]
Nisa S, Bibi Y, Zia M, Waheed A, Chaudhary MF. Anticancer investigations on Carissa opaca and Toona ciliata extracts against human breast carcinoma cell line. Pak J Pharm Sci 2013; 26(5): 1009-12.
[PMID: 24035960]
[246]
Sehar I, Pal HC, Shukla S, et al. Cytotoxic evaluation and induction of mitochondria-mediated apoptosis in human leukaemia HL-60 cells by Carissa spinarum stem isolate. J Pharm Pharmacol 2011; 63(8): 1078-90.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01310.x] [PMID: 21718292]
[247]
Strzemski M, Wojnicki K, Sowa I, et al. In Vitro Antiproliferative Activity of Extracts of Carlina acaulis subsp. caulescens and Carlina acanthifolia subsp. utzka. Front Pharmacol 2017; 8: 371.
[http://dx.doi.org/10.3389/fphar.2017.00371] [PMID: 28659804]
[248]
Chai XX, Le YF, Wang JC, et al. Carpesium abrotanoides (L.) Root as a Potential Source of Natural Anticancer Compounds: Targeting Glucose Metabolism and PKM2/HIF-1α Axis of Breast Cancer Cells. J Food Sci 2019; 84(12): 3825-32.
[http://dx.doi.org/10.1111/1750-3841.14953] [PMID: 31750963]
[249]
Ibrahim FY, El-Khateeb AY, Mohamed AH. EL-Khateeb AY, Mohamed AH. Rhus and safflower extracts as potential novel food antioxidant, anticancer, and antimicrobial agents using nanotechnology. Foods 2019; 8(4): 139.
[http://dx.doi.org/10.3390/foods8040139] [PMID: 31018544]
[250]
Silva SL, Chaar JD, Figueiredo PD, Yano T. Cytotoxic evaluation of essential oil from Casearia sylvestris Sw on human cancer cells and erythrocytes. Acta Amazon 2008; 38(1): 107-12.
[http://dx.doi.org/10.1590/S0044-59672008000100012]
[251]
Prasanna R, Harish CC, Pichai R, Sakthisekaran D, Gunasekaran P. Anti-cancer effect of Cassia auriculata leaf extract In vitro through cell cycle arrest and induction of apoptosis in human breast and larynx cancer cell lines. Cell Biol Int 2009; 33(2): 127-34.
[http://dx.doi.org/10.1016/j.cellbi.2008.10.006] [PMID: 18996213]
[252]
Cacciola NA, Squillaci G, D’Apolito M, et al. Castanea sativa Mill. shells aqueous extract exhibits anticancer properties inducing cytotoxic and pro-apoptotic effects. Molecules 2019; 24(18): 3401.
[http://dx.doi.org/10.3390/molecules24183401] [PMID: 31546790]
[253]
Azhar NA, Ghozali SZ, Abu Bakar SA, Lim V, Ahmad NH. Suppressing growth, migration, and invasion of human hepatocellular carcinoma HepG2 cells by Catharanthus roseus-silver nanoparticles. Toxicol In Vitro 2020; 67: 104910.
[http://dx.doi.org/10.1016/j.tiv.2020.104910] [PMID: 32526345]
[254]
Ke Y, Al Aboody MS, Alturaiki W, et al. Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artif Cells Nanomed Biotechnol 2019; 47(1): 1938-46.
[http://dx.doi.org/10.1080/21691401.2019.1614017] [PMID: 31099261]
[255]
Pham HNT, Sakoff JA, Vuong QV, Bowyer MC, Scarlett CJ. Phytochemical, antioxidant, anti-proliferative and antimicrobial properties of Catharanthus roseus root extract, saponin-enriched and aqueous fractions. Mol Biol Rep 2019; 46(3): 3265-73.
[http://dx.doi.org/10.1007/s11033-019-04786-8] [PMID: 30945069]
[256]
Li Z, Sturm S, Svejda B, et al. Anticancer activity of novel extracts from Cautleya gracilis (Smith) Dandy: apoptosis in human medullary thyroid carcinoma cells. Anticancer Res 2008; 28(5A): 2705-13.
[PMID: 19035299]
[257]
Afoulous S, Ferhout H, Raoelison EG, et al. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei. Food Chem Toxicol 2013; 56: 352-62.
[http://dx.doi.org/10.1016/j.fct.2013.02.008] [PMID: 23459148]
[258]
Bhagat M, Kumar A, Suravajhala R. Cedrus deodara (Bark) Essential Oil Induces Apoptosis in Human Colon Cancer Cells by Inhibiting Nuclear Factor kappa B. Curr Top Med Chem 2020; 20(22): 1981-92.
[http://dx.doi.org/10.2174/1568026620666200722120826] [PMID: 32703136]
[259]
Kumar R, Kumar N, Ramalingayya GV, Setty MM, Pai KS. Evaluation of Ceiba pentandra (L.) Gaertner bark extracts for In vitro cytotoxicity on cancer cells and in vivo antitumor activity in solid and liquid tumor models. Cytotechnology 2016; 68(5): 1909-23.
[http://dx.doi.org/10.1007/s10616-016-0002-2] [PMID: 27456242]
[260]
Qian Y, Yan Y, Lu H, et al. Celastrus orbiculatus extracts inhibit the metastasis through attenuating PI3K/Akt/mTOR signaling pathway in human gastric cancer. Anti-Cancer Agents Med Chem 2019; 19(14): 1754-61.
[261]
Wang H, Tao L, Ni T, et al. Anticancer efficacy of the ethyl acetate extract from the traditional Chinese medicine herb Celastrus orbiculatus against human gastric cancer. J Ethnopharmacol 2017; 205: 147-57.
[http://dx.doi.org/10.1016/j.jep.2017.04.030] [PMID: 28476678]
[262]
Perveen S, Al-Taweel AM, Fawzy GA, El-Shafae AM, Khan A, Proksch P. Cytotoxic glucosphingolipid from Celtis Africana. Pharmacogn Mag 2015; 11(Suppl. 1): S1-5.
[http://dx.doi.org/10.4103/0973-1296.157662] [PMID: 26109753]
[263]
Nasr FA, Shahat AA, Alqahtani AS, et al. Centaurea bruguierana inhibits cell proliferation, causes cell cycle arrest, and induces apoptosis in human MCF-7 breast carcinoma cells. Mol Biol Rep 2020; 47(8): 6043-51.
[http://dx.doi.org/10.1007/s11033-020-05679-x] [PMID: 32700127]
[264]
Fard SE, Tafvizi F, Torbati MB. Silver nanoparticles biosynthesised using Centella asiatica leaf extract: apoptosis induction in MCF-7 breast cancer cell line. IET nanobiotechnology 2018; 12(7): 994-1002.
[265]
Babykutty S, Padikkala J, Sathiadevan PP, et al. Apoptosis induction of Centella asiatica on human breast cancer cells. Afr J Tradit Complement Altern Med 2008; 6(1): 9-16.
[PMID: 20162036]
[266]
Lee MM, Chan BD, Wong WY, et al. Anti-cancer Activity of Centipeda minima Extract in Triple Negative Breast Cancer via Inhibition of AKT, NF-κB, and STAT3 Signaling Pathways. Front Oncol 2020; 10.
[267]
Looi CY, Moharram B, Paydar M, et al. Induction of apoptosis in melanoma A375 cells by a chloroform fraction of Centratherum anthelminticum (L.) seeds involves NF-kappaB, p53 and Bcl-2- controlled mitochondrial signaling pathways. BMC Complement Altern Med 2013; 13(1): 166.
[http://dx.doi.org/10.1186/1472-6882-13-166] [PMID: 23837445]
[268]
Moirangthem DS, Laishram S, Borah JC, Kalita MC, Talukdar NC. Cephalotaxus griffithii Hook.f. needle extract induces cell cycle arrest, apoptosis and suppression of hTERT and hTR expression on human breast cancer cells. BMC Complement Altern Med 2014; 14(1): 305.
[http://dx.doi.org/10.1186/1472-6882-14-305] [PMID: 25135691]
[269]
Mostafapour Kandelous H, Salimi M, Khori V, Rastkari N, Amanzadeh A, Salimi M. Mitochondrial apoptosis induced by Chamaemelum nobile extract in breast cancer cells. Iran J Pharm Res 2016; 15: 197-204.
[PMID: 28228817]
[270]
Cvetanović A, Švarc-Gajić J, Zeković Z, et al. Comparative analysis of antioxidant, antimicrobiological and cytotoxic activities of native and fermented chamomile ligulate flower extracts. Planta 2015; 242(3): 721-32.
[http://dx.doi.org/10.1007/s00425-015-2308-2] [PMID: 25976264]
[271]
Charlson AJ. Antineoplastic constituents of some Southern African plants. J Ethnopharmacol 1980; 2(4): 323-35.
[http://dx.doi.org/10.1016/S0378-8741(80)81014-2] [PMID: 7421280]
[272]
Petruczynik A, Tuzimski T, Plech T, Misiurek J, Szalast K, Szymczak G. Comparison of anticancer activity and HPLC-DAD determination of selected isoquinoline alkaloids from Thalictrum foetidum, Berberis sp. and Chelidonium majus extracts. Molecules 2019; 24(19): 3417.
[http://dx.doi.org/10.3390/molecules24193417] [PMID: 31547046]
[273]
Och A, Zalewski D, Komsta Ł, Kołodziej P, Kocki J, Bogucka-Kocka A. Cytotoxic and proapoptotic activity of sanguinarine, berberine, and extracts of Chelidonium majus L. and Berberis thunbergii DC. toward hematopoietic cancer cell lines. Toxins (Basel) 2019; 11(9): 485.
[http://dx.doi.org/10.3390/toxins11090485] [PMID: 31443589]
[274]
Zhao T, Pan H, Feng Y, Li H, Zhao Y. Petroleum ether extract of Chenopodium album L. prevents cell growth and induces apoptosis of human lung cancer cells. Exp Ther Med 2016; 12(5): 3301-7.
[http://dx.doi.org/10.3892/etm.2016.3765] [PMID: 27882153]
[275]
Kedari PP, Malpathak NP. Screening of Chonemorpha fragrans bioactive extracts for cytotoxicity potential and inhibition studies of key enzymes involved in replication. Pharmacogn Mag 2016; 12(Suppl. 3): S297-302.
[http://dx.doi.org/10.4103/0973-1296.185708] [PMID: 27563215]
[276]
Lee JJ, Saiful Yazan L, Kassim NK, et al. Cytotoxic Activity of Christia vespertilionis Root and Leaf Extracts and Fractions against Breast Cancer Cell Lines. Molecules 2020; 25(11): 2610.
[http://dx.doi.org/10.3390/molecules25112610] [PMID: 32512700]
[277]
Kim C, Kim MC, Kim SM, et al. Chrysanthemum indicum L. extract induces apoptosis through suppression of constitutive STAT3 activation in human prostate cancer DU145 cells. Phytother Res 2013; 27(1): 30-8.
[http://dx.doi.org/10.1002/ptr.4689] [PMID: 22438130]
[278]
Gupta N, Gautam AK, Bhagyawant SS. Biochemical characterisation of lectin from wild chickpea (Cicer reticulatum L.) with potential inhibitory action against human cancer cells. J Food Biochem 2019; 43(2): e12712.
[http://dx.doi.org/10.1111/jfbc.12712] [PMID: 31353649]
[279]
Xie GY, Ma J, Guan L, Liu XM, Wang A, Hu CH. Proliferation effects of cinnamon extract on human HeLa and HL-60 tumor cell lines. Eur Rev Med Pharmacol Sci 2018; 22(16): 5347-54.
[PMID: 30178861]
[280]
Park GH, Song HM, Park SB, et al. Cytotoxic activity of the twigs of Cinnamomum cassia through the suppression of cell proliferation and the induction of apoptosis in human colorectal cancer cells. BMC Complement Altern Med 2018; 18(1): 28.
[http://dx.doi.org/10.1186/s12906-018-2096-x] [PMID: 29554905]
[281]
Lee EJ, Chung TW, Lee JH, et al. Water-extracted branch of Cinnamomum cassia promotes lung cancer cell apoptosis by inhibiting pyruvate dehydrogenase kinase activity. J Pharmacol Sci 2018; 138(2): 146-54.
[http://dx.doi.org/10.1016/j.jphs.2018.10.005] [PMID: 30392804]
[282]
Kubatka P, Kello M, Kajo K, et al. Chemopreventive and Therapeutic Efficacy of Cinnamomum zeylanicum L. Bark in Experimental Breast Carcinoma: Mechanistic in vivo and In vitro Analyses. Molecules 2020; 25(6): 1399.
[http://dx.doi.org/10.3390/molecules25061399] [PMID: 32204409]
[283]
Campos A, Barbosa Vendramini-Costa D, Francisco Fiorito G, et al. Antiproliferative effect of extracts and pyranonaphthoquinones obtained from Cipura paludosa bulbs. Pharm Biol 2016; 54(6): 1022-6.
[http://dx.doi.org/10.3109/13880209.2015.1091847] [PMID: 26468762]
[284]
Bala M, Pratap K, Verma PK, Padwad Y, Singh B. Cytotoxic agents for KB and SiHa cells from n-hexane fraction of Cissampelos pareira and its chemical composition. Nat Prod Res 2015; 29(7): 686-91.
[http://dx.doi.org/10.1080/14786419.2014.984183] [PMID: 25430075]
[285]
Dhanasekaran S. Phytochemical characteristics of aerial part of Cissus quadrangularis (L) and its in-vitro inhibitory activity against leukemic cells and antioxidant properties. Saudi J Biol Sci 2020; 27(5): 1302-9.
[http://dx.doi.org/10.1016/j.sjbs.2020.01.005] [PMID: 32346339]
[286]
Chiang SY, Kim SM, Kim C, et al. Antiproliferative effects of Dangyuja (Citrus grandis Osbeck) leaves through suppression of constitutive signal transducer and activator of transcription 3 activation in human prostate carcinoma DU145 cells. J Med Food 2012; 15(2): 152-60.
[http://dx.doi.org/10.1089/jmf.2011.1671] [PMID: 22273151]
[287]
Anuchapreeda S, Chueahongthong F, Viriyaadhammaa N, et al. Antileukemic cell proliferation of active compounds from kaffir lime (Citrus hystrix) leaves. Molecules 2020; 25(6): 1300.
[http://dx.doi.org/10.3390/molecules25061300] [PMID: 32178481]
[288]
Kim C, Lee IH, Hyun HB, et al. Supercritical fluid extraction of Citrus iyo Hort. ex Tanaka pericarp inhibits growth and induces apoptosis through abrogation of STAT3 regulated gene products in human prostate cancer xenograft mouse model. Integr Cancer Ther 2017; 16(2): 227-43.
[http://dx.doi.org/10.1177/1534735416649659] [PMID: 27185319]
[289]
Pagliara V, Nasso R, Di Donato P, et al. Lemon peel polyphenol extract reduces interleukin-6-induced cell migration, invasiveness, and matrix metalloproteinase-9/2 expression in human gastric adenocarcinoma MKN-28 and AGS cell lines. Biomolecules 2019; 9(12): 833.
[http://dx.doi.org/10.3390/biom9120833] [PMID: 31817563]
[290]
Qian SH, Wang YX, Yang NY, Yuan LH. Study on the anticancer activities (in vivo) of the extract from Citrus reticulata Blanco and its influence on sarcoma-180 cells cycle. Zhongguo Zhongyao Zazhi 2003; 28(12): 1167-70.
[PMID: 15617503]
[291]
Kim MY, Bo HH, Choi EO, et al. Im Ahn K, Ji SY, Jeong JW, Park SH, Hong SH, Kim GY. Induction of apoptosis by Citrus unshiu peel in human breast cancer MCF-7 Cells: involvement of ROS-dependent activation of AMPK. Biol Pharm Bull 2018; 41(5): 713-21.
[http://dx.doi.org/10.1248/bpb.b17-00898] [PMID: 29709909]
[292]
Im Ahn K, Choi EO, Kwon DH. HwangBo H, Kim MY, Kim HJ, Ji SY, Hong SH, Jeong JW, Park C, Kim ND. Induction of apoptosis by ethanol extract of Citrus unshiu Markovich peel in human bladder cancer T24 cells through ROS-mediated inactivation of the PI3K/Akt pathway. Biosci Trends 2017.
[293]
Li F, Song L, Yang X, et al. Anticancer and genotoxicity effect of (Clausena lansium (Lour.) Skeels) Peel ZnONPs on neuroblastoma (SH-SY5Y) cells through the modulation of autophagy mechanism. J Photochem Photobiol B 2020; 203: 111748.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111748] [PMID: 31918235]
[294]
Tigrine C, Bulzomi P, Leone S, Bouriche H, Kameli A, Marino M. Cleome arabica leaf extract has anticancer properties in human cancer cells. Pharm Biol 2013; 51(12): 1508-14.
[http://dx.doi.org/10.3109/13880209.2013.796563] [PMID: 23862683]
[295]
Panicker NG, Balhamar SOMS, Akhlaq S, et al. Organic extracts from Cleome droserifolia exhibit effective caspase-dependent anticancer activity. BMC Complement Med Ther 2020; 20(1): 74.
[http://dx.doi.org/10.1186/s12906-020-2858-0] [PMID: 32143618]
[296]
Bala A, Kar B, Haldar PK, Mazumder UK, Bera S. Evaluation of anticancer activity of Cleome gynandra on Ehrlich’s Ascites Carcinoma treated mice. J Ethnopharmacol 2010; 129(1): 131-4.
[http://dx.doi.org/10.1016/j.jep.2010.03.010] [PMID: 20307641]
[297]
Shendge AK, Basu T, Chaudhuri D, Panja S, Mandal N. In vitro antioxidant and antiproliferative activities of various solvent fractions from Clerodendrum viscosum leaves. Pharmacogn Mag 2017; 13(Suppl. 2): S344-53.
[http://dx.doi.org/10.4103/pm.pm_395_16] [PMID: 28808404]
[298]
Mutazah R, Hamid HA, Mazila Ramli AN, Fasihi Mohd Aluwi MF, Yusoff MM. In vitro cytotoxicity of Clinacanthus nutans fractions on breast cancer cells and molecular docking study of sulphur containing compounds against caspase-3. Food Chem Toxicol 2020; 135: 110869.
[http://dx.doi.org/10.1016/j.fct.2019.110869] [PMID: 31626839]
[299]
Lu MC, Li TY, Hsieh YC, Hsieh PC, Chu YL. Chemical evaluation and cytotoxic mechanism investigation of Clinacanthus nutans extract in lymphoma SUP-T1 cells. Environ Toxicol 2018; 33(12): 1229-36.
[http://dx.doi.org/10.1002/tox.22629] [PMID: 30188005]
[300]
Ng PY, Chye SM, Ng ChH, et al. Clinacanthus nutans hexane extracts induce apoptosis through a caspase-dependent pathway in human cancer cell lines. Asian Pacific journal of cancer prevention. Asian Pac J Cancer Prev 2017; 18(4): 917-26.
[PMID: 28545188]
[301]
Thavamani BS, Mathew M, Palaniswamy DS. Anticancer activity of Cocculus hirsutus against Dalton’s lymphoma ascites (DLA) cells in mice. Pharm Biol 2014; 52(7): 867-72.
[http://dx.doi.org/10.3109/13880209.2013.871642] [PMID: 24920232]
[302]
Wang L, Xu ML, Hu JH, Rasmussen SK, Wang MH. Codonopsis lanceolata extract induces G0/G1 arrest and apoptosis in human colon tumor HT-29 cells--involvement of ROS generation and polyamine depletion. Food Chem Toxicol 2011; 49(1): 149-54.
[http://dx.doi.org/10.1016/j.fct.2010.10.010] [PMID: 20940027]
[303]
Son ES, Kim SH, Kim YO, et al. Coix lacryma-jobi var. ma-yuen Stapf sprout extract induces cell cycle arrest and apoptosis in human cervical carcinoma cells. BMC Complement Altern Med 2019; 19(1): 312.
[http://dx.doi.org/10.1186/s12906-019-2725-z] [PMID: 31729992]
[304]
Becer E, Hanoğlu DY, Kabadayı H, et al. The effect of Colchicum pusillum in human colon cancer cells via Wnt/β-catenin pathway. Gene 2019; 686: 213-9.
[http://dx.doi.org/10.1016/j.gene.2018.11.047] [PMID: 30458290]
[305]
Albogami S, Darwish H, Abdelmigid HM, et al. Anticancer potential of calli versus seedling extracts derived from rosmarinus officinalis and coleus hybridus. Curr Pharm Biotechnol 2020; 21(14): 1528-38.
[http://dx.doi.org/10.2174/1389201021666200318114817] [PMID: 32188380]
[306]
Kuppusamy P, Ichwan SJ, Al-Zikri PN, et al. In vitro anticancer activity of Au, Ag nanoparticles synthesized using Commelina nudiflora L. aqueous extract against HCT-116 colon cancer cells. Biol Trace Elem Res 2016; 173(2): 297-305.
[http://dx.doi.org/10.1007/s12011-016-0666-7] [PMID: 26961292]
[307]
Amiel E, Ofir R, Dudai N, Soloway E, Rabinsky T, Rachmilevitch S. β-Caryophyllene, a compound isolated from the biblical balm of gilead (Commiphora gileadensis), is a selective apoptosis inducer for tumor cell lines. Evid-based Complement Altern Med 2012; 2012.
[308]
Hosseini FS, Noroozi Karimabad M, Hajizadeh MR, et al. Evaluating of induction of apoptosis by Cornus mass L. extract in the gastric carcinoma cell line (AGS). Asian Pac J Cancer Prev 2019; 20(1): 123-30.
[http://dx.doi.org/10.31557/APJCP.2019.20.1.123] [PMID: 30678391]
[309]
Peng L, Hu C, Zhang C, Lu Y, Man S, Ma L. Anti-cancer activity of Conyza blinii saponin against cervical carcinoma through MAPK/TGF-β/Nrf2 signaling pathways. J Ethnopharmacol 2020; 251: 112503.
[http://dx.doi.org/10.1016/j.jep.2019.112503] [PMID: 31891798]
[310]
Lima SR, Junior VF, Christo HB, Pinto AC, Fernandes PD. In vivo and In vitro studies on the anticancer activity of Copaifera multijuga hayne and its fractions. Phytother Res 2003; 17(9): 1048-53.
[http://dx.doi.org/10.1002/ptr.1295] [PMID: 14595585]
[311]
Wang N, Feng Y, Zhu M, et al. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism. J Cell Biochem 2010; 111(6): 1426-36.
[http://dx.doi.org/10.1002/jcb.22869] [PMID: 20830746]
[312]
Pei J, Fu B, Jiang L, Sun T. Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using Coptis chinensis. Int J Nanomedicine 2019; 14: 1969-78.
[http://dx.doi.org/10.2147/IJN.S188235] [PMID: 30936697]
[313]
Schröder L, Koch J, Mahner S, et al. The effects of petroselinum crispum on estrogen receptor-positive benign and malignant mammary cells (MCF12A/MCF7). Anticancer Res 2017; 37(1): 95-102.
[http://dx.doi.org/10.21873/anticanres.11294] [PMID: 28011479]
[314]
Xie H, Li X, Chen Y, Lang M, Shen Z, Shi L. Ethanolic extract of Cordyceps cicadae exerts antitumor effect on human gastric cancer SGC-7901 cells by inducing apoptosis, cell cycle arrest and endoplasmic reticulum stress. J Ethnopharmacol 2019; 231: 230-40.
[http://dx.doi.org/10.1016/j.jep.2018.11.028] [PMID: 30468850]
[315]
Ji Y, Cao Y, Song Y. Green synthesis of gold nanoparticles using a Cordyceps militaris extract and their antiproliferative effect in liver cancer cells (HepG2). Artif Cells Nanomed Biotechnol 2019; 47(1): 2737-45.
[http://dx.doi.org/10.1080/21691401.2019.1629952] [PMID: 31304798]
[316]
Elmas L, Secme M, Mammadov R, Fahrioglu U, Dodurga Y. The determination of the potential anticancer effects of Coriandrum sativum in PC-3 and LNCaP prostate cancer cell lines. J Cell Biochem 2019; 120(3): 3506-13.
[http://dx.doi.org/10.1002/jcb.27625] [PMID: 30417420]
[317]
Yousefi B, Abasi M, Abbasi MM, Jahanban-Esfahlan R. Anti-proliferative properties of Cornus mass fruit in different human cancer cells. Asian Pac J Cancer Prev 2015; 16(14): 5727-31.
[http://dx.doi.org/10.7314/APJCP.2015.16.14.5727] [PMID: 26320443]
[318]
Neethu PV, Suthindhiran K, Jayasri MA. Methanolic extract of Costus pictus D. DON induces cytotoxicity in liver hepatocellular carcinoma cells mediated by histone deacetylase inhibition. Pharmacogn Mag 2017; 13(Suppl. 3): S533-8.
[http://dx.doi.org/10.4103/pm.pm_524_16] [PMID: 29142410]
[319]
Nair SV, Hettihewa M, Rupasinghe HP. Apoptotic and inhibitory effects on cell proliferation of hepatocellular carcinoma HepG2 cells by methanol leaf extract of Costus speciosus. BioMed research international 2014; 2014.
[320]
Mustapha N, Pinon A, Limami Y, et al. Crataegus azarolus leaves induce antiproliferative activity, cell cycle arrest, and apoptosis in human HT-29 and HCT-116 colorectal cancer cells. J Cell Biochem 2016; 117(5): 1262-72.
[http://dx.doi.org/10.1002/jcb.25416] [PMID: 26495895]
[321]
Maldonado-Cubas J, Albores-Méndez EM, San Martín-Martínez E, Quiroz-Reyes CN, González-Córdova GE, Casañas-Pimentel RG. Mexican hawthorn (Crataegus gracilior JB Phipps) stems and leaves induce cell death on breast cancer cells. Nutr Cancer 2019; 1-1.
[PMID: 31635496]
[322]
Zingue S, Cisilotto J, Tueche AB, et al. Crateva adansonii DC, an African ethnomedicinal plant, exerts cytotoxicity In vitro and prevents experimental mammary tumorigenesis in vivo. J Ethnopharmacol 2016; 190: 183-99.
[http://dx.doi.org/10.1016/j.jep.2016.06.004] [PMID: 27267829]
[323]
Buranrat B, Mairuae N, Konsue A. Cratoxy formosum leaf extract inhibits proliferation and migration of human breast cancer MCF-7 cells. Biomed Pharmacother 2017; 90: 77-84.
[http://dx.doi.org/10.1016/j.biopha.2017.03.032] [PMID: 28343074]
[324]
Senggunprai L, Thammaniwit W, Kukongviriyapan V, Prawan A, Kaewseejan N, Siriamornpun S. Cratoxylum formosum extracts inhibit growth and metastasis of cholangiocarcinoma cells by modulating the NF-κB and STAT3 pathways. Nutr Cancer 2016; 68(2): 328-41.
[http://dx.doi.org/10.1080/01635581.2016.1142580] [PMID: 26908056]
[325]
Lim CP, Yam MF, Asmawi M, et al. Cytostatic and antiproliferative activities of f5 fraction of crinum amabile leaf chloroform extract showed its potential as cancer chemotherapeutic agent. Evid-based Complement Altern Med 2019; 2019.
[http://dx.doi.org/10.1155/2019/7521504]
[326]
Khorasanchi Z, Shafiee M, Kermanshahi F, et al. Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomedicine 2018; 43: 21-7.
[http://dx.doi.org/10.1016/j.phymed.2018.03.041] [PMID: 29747750]
[327]
Bhavana J, Kalaivani MK, Sumathy A. Cytotoxic and pro-apoptotic activities of leaf extract of Croton bonplandianus Baill. against lung cancer cell line A549. 2016; 379-85.
[328]
Lima EJSP, Alves RG, D Elia GMA, et al. Antitumor effect of the essential oil from the leaves of Croton matourensis Aubl.(Euphorbiaceae). Molecules 2018; 23(11): 2974.
[http://dx.doi.org/10.3390/molecules23112974] [PMID: 30441836]
[329]
Niu QL, Sun H, Liu C, et al. Croton tiglium essential oil compounds have anti-proliferative and pro-apoptotic effects in A549 lung cancer cell lines. PLoS One 2020; 15(5): e0231437.
[http://dx.doi.org/10.1371/journal.pone.0231437] [PMID: 32357169]
[330]
Zhang X, Bai Y, Wang Y, et al. Anticancer properties of different solvent extracts of cucumis melo l. seeds and whole fruit and their metabolite profiling using HPLC and GC-MS. BioMed Research International 2020; 2020.
[331]
Hemlata , Meena PR, Singh AP, Tejavath KK. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega 2020; 5(10): 5520-8.
[http://dx.doi.org/10.1021/acsomega.0c00155] [PMID: 32201844]
[332]
Tuama AA, Mohammed AA. Phytochemical screening and In vitro antibacterial and anticancer activities of the aqueous extract of Cucumis sativus. Saudi J Biol Sci 2019; 26(3): 600-4.
[http://dx.doi.org/10.1016/j.sjbs.2018.07.012] [PMID: 30899178]
[333]
Li X, Yao Z, Jiang X, et al. Bioactive compounds from Cudrania tricuspidata: A natural anticancer source. Crit Rev Food Sci Nutr 2020; 60(3): 494-514.
[http://dx.doi.org/10.1080/10408398.2018.1541866] [PMID: 30582344]
[334]
Sharma M, Monika , Thakur P, Saini RV, Kumar R, Torino E. Unveiling antimicrobial and anticancerous behavior of AuNPs and AgNPs moderated by rhizome extracts of Curcuma longa from diverse altitudes of Himalaya. Sci Rep 2020; 10(1): 10934.
[http://dx.doi.org/10.1038/s41598-020-67673-4] [PMID: 32616751]
[335]
Goel A, Boland CR, Chauhan DP. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett 2001; 172(2): 111-8.
[http://dx.doi.org/10.1016/S0304-3835(01)00655-3] [PMID: 11566484]
[336]
Mishra S, Verma SS, Rai V, et al. Curcuma raktakanda induces apoptosis and suppresses migration in cancer cells: Role of reactive oxygen species. Biomolecules 2019; 9(4): 159.
[http://dx.doi.org/10.3390/biom9040159] [PMID: 31018580]
[337]
Liu R, Pei Q, Shou T, Zhang W, Hu J, Li W. Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells. Int J Nanomedicine 2019; 14: 4091-103.
[http://dx.doi.org/10.2147/IJN.S203222] [PMID: 31239669]
[338]
Jafarian A, Ghannadi A, Mohebi B. Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells. Res Pharm Sci 2014; 9(2): 115-22.
[PMID: 25657780]
[339]
Priya K, Krishnakumari S, Vijayakumar M. Cyathula prostrata: a potent source of anticancer agent against daltons ascites in Swiss albino mice. Asian Pac J Trop Med 2013; 6(10): 776-9.
[http://dx.doi.org/10.1016/S1995-7645(13)60137-6] [PMID: 23870465]
[340]
Cui XL, Li KJ, Ren HX, et al. Extract of Cycas revoluta Thunb. enhances the inhibitory effect of 5-fluorouracil on gastric cancer cells through the AKT-mTOR pathway. World J Gastroenterol 2019; 25(15): 1854-64.
[http://dx.doi.org/10.3748/wjg.v25.i15.1854] [PMID: 31057299]
[341]
Özdemir A, Yildiz M, Senol FS, et al. Promising anticancer activity of Cyclotrichium niveum L. extracts through induction of both apoptosis and necrosis. Food Chem Toxicol 2017; 109(Pt 2): 898-909.
[http://dx.doi.org/10.1016/j.fct.2017.03.062] [PMID: 28366842]
[342]
Chen Z, Ye X, Qingkui G, et al. Anticancer activity of green synthesised AgNPs from Cymbopogon citratus (LG) against lung carcinoma cell line A549. IET nanobiotechnology 2018; 13(2): 178-82.
[343]
Ruvinov I, Nguyen C, Scaria B, et al. Lemongrass extract possesses potent anticancer activity against human colon cancers, inhibits tumorigenesis, enhances efficacy of FOLFOX, and reduces its adverse effects. Integr Cancer Ther 2019; 18: 1534735419889150.
[http://dx.doi.org/10.1177/1534735419889150] [PMID: 31845598]
[344]
Bayala B, Bassole IHN, Maqdasy S, Baron S, Simpore J, Lobaccaro JA. Cymbopogon citratus and Cymbopogon giganteus essential oils have cytotoxic effects on tumor cell cultures. Identification of citral as a new putative anti-proliferative molecule. Biochimie 2018; 153: 162-70.
[http://dx.doi.org/10.1016/j.biochi.2018.02.013] [PMID: 29501481]
[345]
Erdogan O, Abbak M, Demirbolat GM, et al. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One 2019; 14(6): e0216496.
[http://dx.doi.org/10.1371/journal.pone.0216496] [PMID: 31220110]
[346]
Kowsalya R, Kaliaperumal J, Vaishnavi M, Namasivayam E. Anticancer activity of Cynodon dactylon L. root extract against diethyl nitrosamine induced hepatic carcinoma. South Asian J Cancer 2015; 4(2): 83-7.
[http://dx.doi.org/10.4103/2278-330X.155691] [PMID: 25992348]
[347]
Li X, Sdiri M, Peng J, Xie Y, Yang BB. Identification and characterization of chemical components in the bioactive fractions of Cynomorium coccineum that possess anticancer activity. Int J Biol Sci 2020; 16(1): 61-73.
[http://dx.doi.org/10.7150/ijbs.38475] [PMID: 31892846]
[348]
Pham HHT, Seong YA, Ngabire D, Oh CW, Kim GD. Cyperus amuricus induces G1 arrest and apoptosis through endoplasmic reticulum stress and mitochondrial signaling in human hepatocellular carcinoma Hep3B cells. J Ethnopharmacol 2017; 208: 157-64.
[http://dx.doi.org/10.1016/j.jep.2017.07.002] [PMID: 28684299]
[349]
Al-Nuairi AG, Mosa KA, Mohammad MG, El-Keblawy A, Soliman S, Alawadhi H. Biosynthesis, characterization, and evaluation of the cytotoxic effects of biologically synthesized silver nanoparticles from cyperus conglomeratus root extracts on breast cancer cell line MCF-7. Biol Trace Elem Res 2020; 194(2): 560-9.
[http://dx.doi.org/10.1007/s12011-019-01791-7] [PMID: 31267442]
[350]
Mannarreddy P, Denis M, Munireddy D, Pandurangan R, Thangavelu KP, Venkatesan K. Cytotoxic effect of Cyperus rotundus rhizome extract on human cancer cell lines. Biomed Pharmacother 2017; 95: 1375-87.
[http://dx.doi.org/10.1016/j.biopha.2017.09.051] [PMID: 28946185]
[351]
Lin CH, Peng SF, Chueh FS, Cheng ZY, Kuo CL, Chung JG. The ethanol crude extraction of Cyperus Rotundus regulates apoptosis-associated gene expression in heLa human cervical carcinoma cells in vitro. Anticancer Res 2019; 39(7): 3697-709.
[http://dx.doi.org/10.21873/anticanres.13518] [PMID: 31262896]
[352]
Wang F, Song X, Ma S, et al. The treatment role of Cyperus rotundus L. to triple-negative breast cancer cells. Biosci Rep 2019; 39(6): BSR20190502.
[http://dx.doi.org/10.1042/BSR20190502] [PMID: 31123166]
[353]
Simorangkir D, Masfria M, Harahap U, Satria D. Activity Anticancer n-hexane Fraction of Cyperus Rotundus l. Rhizome to Breast Cancer MCF-7 Cell Line. J Med Sci 2019; 7(22): 3904-6.
[http://dx.doi.org/10.3889/oamjms.2019.530] [PMID: 32128002]
[354]
Kizaibek M, Wubuli A, Gu Z, et al. Effects of an ethyl acetate extract of Daphne altaica stem bark on the cell cycle, apoptosis and expression of PPARγ in Eca-109 human esophageal carcinoma cells. Mol Med Rep 2020; 22(2): 1400-8.
[http://dx.doi.org/10.3892/mmr.2020.11187] [PMID: 32468007]
[355]
Calderón-Montaño JM, Martínez-Sánchez SM, Burgos-Morón E, et al. Screening for selective anticancer activity of plants from Grazalema Natural Park, Spain. Nat Prod Res 2019; 33(23): 3454-8.
[http://dx.doi.org/10.1080/14786419.2018.1480620] [PMID: 29842791]
[356]
Chamani E, Ebrahimi R, Khorsandi K, Meshkini A, Zarban A, Sharifzadeh G. In vitro cytotoxicity of polyphenols from Datura innoxia aqueous leaf-extract on human leukemia K562 cells: DNA and nuclear proteins as targets. Drug Chem Toxicol 2020; 43(2): 138-48.
[http://dx.doi.org/10.1080/01480545.2019.1629588] [PMID: 31322013]
[357]
Shebaby WN, Bodman-Smith KB, Mansour A, et al. Daucus carota pentane-based fractions suppress proliferation and induce apoptosis in human colon adenocarcinoma HT-29 cells by inhibiting the MAPK and PI3K pathways. J Med Food 2015; 18(7): 745-52.
[http://dx.doi.org/10.1089/jmf.2014.3225] [PMID: 25599142]
[358]
Shebaby WN, El-Sibai M, Smith KB, Karam MC, Mroueh M, Daher CF. The antioxidant and anticancer effects of wild carrot oil extract. Phytother Res 2013; 27(5): 737-44.
[http://dx.doi.org/10.1002/ptr.4776] [PMID: 22815230]
[359]
Estanislao Gómez CC, Aquino Carreño A, Pérez Ishiwara DG, et al. Decatropis bicolor (Zucc.) Radlk essential oil induces apoptosis of the MDA-MB-231 breast cancer cell line. BMC Complement Altern Med 2016; 16(1): 266.
[http://dx.doi.org/10.1186/s12906-016-1136-7] [PMID: 27491777]
[360]
Prasad R, Koch B. Antitumor activity of ethanolic extract of Dendrobium formosum in T-cell lymphoma: an In vitro and in vivo study. BioMed research international 2014; 2014.
[361]
Rupa EJ, Arunkumar L, Han Y, et al. Dendropanax morbifera extract-mediated ZnO nanoparticles loaded with indole-3-carbinol for enhancement of anticancer efficacy in the A549 human lung carcinoma cell line. Materials (Basel) 2020; 13(14): 3197.
[http://dx.doi.org/10.3390/ma13143197] [PMID: 32709058]
[362]
Kim S, Park SG, Song YJ, et al. Analysis of anticancer activity and chemical sensitization effects of Dendropanax morbifera and Commersonia bartramia extracts. Anticancer Res 2018; 38(7): 3853-61.
[http://dx.doi.org/10.21873/anticanres.12669] [PMID: 29970505]
[363]
Endharti AT, Wulandari A, Listyana A, Norahmawati E, Permana S. Dendrophthoe pentandra (L.) Miq extract effectively inhibits inflammation, proliferation and induces p53 expression on colitis-associated colon cancer. BMC Complement Altern Med 2016; 16(1): 374.
[http://dx.doi.org/10.1186/s12906-016-1345-0] [PMID: 27670445]
[364]
Elsyana V, Bintang M, Priosoeryanto BP. Cytotoxicity and antiproliferative activity assay of clove mistletoe (Dendrophthoe pentandra (L.) Miq.) leaves extracts. Advances in Pharmacological Sciences 2016; 2016.
[365]
Xu QN, Zhu D, Wang GH, et al. Phenolic glycosides and flavonoids with antioxidant and anticancer activities from Desmodium caudatum. Nat Prod Res 2020; 1-8.
[http://dx.doi.org/10.1080/14786419.2020.1739044] [PMID: 32162979]
[366]
Adebayo IA, Gagman HA, Balogun WG, et al. Detarium microcarpum, Guiera senegalensis, and Cassia siamea induce apoptosis and cell cycle arrest and inhibit metastasis on MCF7 breast cancer cells. Evid-based Complement Altern Med 2019; 2019.
[367]
Selim YA, Azb MA, Ragab I, H M Abd El-Azim M. Green synthesis of zinc oxide nanoparticles using aqueous extract of deverra tortuosa and their cytotoxic activities. Sci Rep 2020; 10(1): 3445.
[http://dx.doi.org/10.1038/s41598-020-60541-1] [PMID: 32103090]
[368]
Mbaveng AT, Damen F, Simo Mpetga JD, et al. Cytotoxicity of crude extract and isolated constituents of the dichrostachys cinerea bark towards multifactorial drug-resistant cancer cells. Evid-based Complement Altern Med 2019; 2019.
[http://dx.doi.org/10.1155/2019/8450158]
[369]
Dante RAS, Ferrer RJE, Jacinto SD. Leaf extracts from dillenia philippinensis rolfe exhibit cytotoxic activity to both drug-sensitive and multidrug-resistant cancer cells. Asian Pac J Cancer Prev 2019; 20(11): 3285-90.
[http://dx.doi.org/10.31557/APJCP.2019.20.11.3285] [PMID: 31759350]
[370]
Tor YS, Yazan LS, Foo JB, et al. Induction of apoptosis in MCF-7 cells via oxidative stress generation, mitochondria-dependent and caspase-independent pathway by ethyl acetate extract of Dillenia suffruticosa and its chemical profile. PLoS One 2015; 10(6): e0127441.
[http://dx.doi.org/10.1371/journal.pone.0127441] [PMID: 26047480]
[371]
Park SB, Park GH, Song HM, et al. Anticancer activity of calyx of Diospyros kaki Thunb. through downregulation of cyclin D1 via inducing proteasomal degradation and transcriptional inhibition in human colorectal cancer cells. BMC Complement Altern Med 2017; 17(1): 445.
[http://dx.doi.org/10.1186/s12906-017-1954-2] [PMID: 28870200]
[372]
Chen L, Wei Y, Zhao S, et al. Antitumor and immunomodulatory activities of total flavonoids extract from persimmon leaves in H 22 liver tumor-bearing mice. Sci Rep 2018; 8(1): 1-1.
[PMID: 29311619]
[373]
Yongram C, Sungthong B, Puthongking P, Weerapreeyakul N. Chemical composition, antioxidant and cytotoxicity activities of leaves, bark, twigs and oleo-resin of Dipterocarpus alatus. Molecules 2019; 24(17): 3083.
[http://dx.doi.org/10.3390/molecules24173083] [PMID: 31450678]
[374]
Hamzeloo-Moghadam M, Aghaei M, Abdolmohammadi MH, Khalaj A, Fallahian F. Cytotoxic effect of Drimia maritima bulb extract and induction of mitochondrial apoptotic signaling in human breast cancer cells, MCF-7 and MDA-MB-468. OncoTargets Ther 2018; 11: 7669-77.
[http://dx.doi.org/10.2147/OTT.S182786] [PMID: 30464515]
[375]
Chang SH, Bae JH, Hong DP, et al. Dryopteris crassirhizoma has anti-cancer effects through both extrinsic and intrinsic apoptotic pathways and G0/G1 phase arrest in human prostate cancer cells. J Ethnopharmacol 2010; 130(2): 248-54.
[http://dx.doi.org/10.1016/j.jep.2010.04.038] [PMID: 20438825]
[376]
Karuppaiya P, Satheeshkumar E, Tsay HS. Biogenic synthesis of silver nanoparticles using rhizome extract of Dysosma pleiantha and its antiproliferative effect against breast and human gastric cancer cells. Mol Biol Rep 2019; 46(5): 4725-34.
[http://dx.doi.org/10.1007/s11033-019-04917-1] [PMID: 31222459]
[377]
Tauchen J, Huml L, Bortl L, et al. Screening of medicinal plants traditionally used in Peruvian Amazon for in vitro antioxidant and anticancer potential. Nat Prod Res 2019; 33(18): 2718-21.
[http://dx.doi.org/10.1080/14786419.2018.1462180] [PMID: 29658320]
[378]
Simsek E, Imir N, Aydemir EA, Gokturk RS, Yesilada E, Fiskin K. Caspase-mediated apoptotic effects of Ebenus boissieri barbey extracts on human cervical cancer cell line hela. Pharmacogn Mag 2017; 13(50): 254-9.
[http://dx.doi.org/10.4103/0973-1296.204560] [PMID: 28539717]
[379]
Tsai YL, Chiu CC, Yi-Fu Chen J, Chan KC, Lin SD. Cytotoxic effects of Echinacea purpurea flower extracts and cichoric acid on human colon cancer cells through induction of apoptosis. J Ethnopharmacol 2012; 143(3): 914-9.
[http://dx.doi.org/10.1016/j.jep.2012.08.032] [PMID: 22971663]
[380]
Entezari M, Dabaghian FH, Hashemi M. The comparison of antimutagenicity and anticancer activities of Echinophora platyloba DC on acute promyelocytic leukemia cancer cells. J Cancer Res Ther 2014; 10(4): 1004-7.
[http://dx.doi.org/10.4103/0973-1482.137907] [PMID: 25579544]
[381]
Yadav NK, Arya RK, Dev K, et al. Alcoholic extract of Eclipta alba shows In vitro antioxidant and anticancer activity without exhibiting toxicological effects. Oxidative medicine and cellular longevity 2017; 2017.
[http://dx.doi.org/10.1155/2017/9094641]
[382]
Turner A, Bond DR, Vuong QV, et al. Elaeocarpus reticulatus fruit extracts reduce viability and induce apoptosis in pancreatic cancer cells in vitro. Mol Biol Rep 2020; 47(3): 2073-84.
[http://dx.doi.org/10.1007/s11033-020-05307-8] [PMID: 32065323]
[383]
Kabeer FA, Rajalekshmi DS, Nair MS, Prathapan R. In vitro and in vivo antitumor activity of deoxyelephantopin from a potential medicinal plant Elephantopus scaber against Ehrlich ascites carcinoma. Biocatal Agric Biotechnol 2019; 19: 101106.
[http://dx.doi.org/10.1016/j.bcab.2019.101106]
[384]
Bich Ngoc TT, Hoai Nga NT, My Trinh NT, Thuoc TL, Phuong Thao DT. Elephantopus mollis Kunth extracts induce antiproliferation and apoptosis in human lung cancer and myeloid leukemia cells. J Ethnopharmacol 2020; 263: 113222.
[http://dx.doi.org/10.1016/j.jep.2020.113222] [PMID: 32763415]
[385]
Al-Awaida W, Al-Hourani BJ, Akash M, et al. In vitro anticancer, anti-inflammatory, and antioxidant potentials of Ephedra aphylla. J Cancer Res Ther 2018; 14(6): 1350-4.
[http://dx.doi.org/10.4103/0973-1482.196760] [PMID: 30488855]
[386]
Mpingirika EZ, El Hosseiny A, Bakheit SM, Arafeh R, Amleh A. Potential anticancer activity of crude ethanol, ethyl acetate, and water extracts of ephedra foeminea on human osteosarcoma u2os cell viability and migration. BioMed research international 2020; 2020.
[387]
Al Mohammed HI, Paray BA, Rather IA. Anticancer activity of EA1 extracted from Equisetum arvense. Pak J Pharm Sci 2017; 30(5): 1947-50.
[PMID: 29105626]
[388]
Xiao H, Wang Y, Xiang Q, et al. Novel physiological properties of ethanol extracts from Eremurus chinensis Fedtsch. roots: In vitro antioxidant and anticancer activities. Food Funct 2012; 3(12): 1310-8.
[http://dx.doi.org/10.1039/c2fo30152k] [PMID: 22948313]
[389]
Fan Y, Lu H, An L, et al. Effect of active fraction of Eriocaulon sieboldianum on human leukemia K562 cells via proliferation inhibition, cell cycle arrest and apoptosis induction. Environ Toxicol Pharmacol 2016; 43: 13-20.
[http://dx.doi.org/10.1016/j.etap.2015.11.001] [PMID: 26923230]
[390]
Kummalue T, O-charoenrat P, Jiratchariyakul W, et al. Antiproliferative effect of Erycibe elliptilimba on human breast cancer cell lines. J Ethnopharmacol 2007; 110(3): 439-43.
[http://dx.doi.org/10.1016/j.jep.2006.10.025] [PMID: 17140753]
[391]
Cianfaglione K, Blomme EE, Quassinti L, et al. Cytotoxic essential oils from Eryngium campestre and Eryngium amethystinum (Apiaceae) growing in central Italy. Chem Biodivers 2017; 14(7): e1700096.
[http://dx.doi.org/10.1002/cbdv.201700096] [PMID: 28332760]
[392]
Yurdakök B, Baydan E. Cytotoxic effects of Eryngium kotschyi and Eryngium maritimum on Hep2, HepG2, Vero and U138 MG cell lines. Pharm Biol 2013; 51(12): 1579-85.
[http://dx.doi.org/10.3109/13880209.2013.803208] [PMID: 24028780]
[393]
Mohanta YK, Panda SK, Jayabalan R, Sharma N, Bastia AK, Mohanta TK. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front Mol Biosci 2017; 4: 14.
[http://dx.doi.org/10.3389/fmolb.2017.00014] [PMID: 28367437]
[394]
Bhagat M, Sharma V, Saxena AK. Anti-proliferative effect of leaf extracts of Eucalyptus citriodora against human cancer cells In vitro and in vivo. Indian J Biochem Biophys 2012; 49(6): 451-7.
[PMID: 23350280]
[395]
Hsu SC, Kuo CL, Lin JP, et al. Crude extracts of Euchresta formosana radix inhibit invasion and migration of human hepatocellular carcinoma cells. Anticancer Res 2007; 27(4B): 2377-84.
[PMID: 17695528]
[396]
Hsu SC, Kuo CL, Lin JP, et al. Crude extracts of Euchresta formosana radix induce cytotoxicity and apoptosis in human hepatocellular carcinoma cell line (Hep3B). Anticancer Res 2007; 27(4B): 2415-25.
[PMID: 17695533]
[397]
Bisi-Johnson MA, Obi CL, Hattori T, et al. Evaluation of the antibacterial and anticancer activities of some South African medicinal plants. BMC Complement Altern Med 2011; 11(1): 14.
[http://dx.doi.org/10.1186/1472-6882-11-14] [PMID: 21329526]
[398]
M HR, Ghosh D, Banerjee R, Salimath BP. Suppression of VEGF-induced angiogenesis and tumor growth by Eugenia jambolana, Musa paradisiaca, and Coccinia indica extracts. Pharm Biol 2017; 55(1): 1489-99.
[http://dx.doi.org/10.1080/13880209.2017.1307422] [PMID: 28367666]
[399]
Chen H, Zhou B, Yang J, et al. Essential oil derived from eupatorium adenophorum spreng. Mediates anticancer effect by inhibiting stat3 and akt activation to induce apoptosis in hepatocellular carcinoma. Front Pharmacol 2018; 9: 483.
[http://dx.doi.org/10.3389/fphar.2018.00483] [PMID: 29867489]
[400]
Harun FB, Syed Sahil Jamalullail SM, Yin KB, Othman Z, Tilwari A, Balaram P. Autophagic cell death is induced by acetone and ethyl acetate extracts from Eupatorium odoratum in vitro: effects on MCF-7 and vero cell lines. The Scientific World Journal 2012; 2012
[401]
Bano S, Siddiqui BS, Farooq AD, et al. In vitro growth inhibition and cytotoxicity of Euphorbia caducifolia against four human cancer cell lines and its phytochemical characterisation. Nat Prod Res 2017; 31(24): 2936-40.
[http://dx.doi.org/10.1080/14786419.2017.1305380] [PMID: 28403658]
[402]
Ghout A, Zellagui A, Gherraf N, et al. Antiproliferative and antioxidant activities of two extracts of the plant species Euphorbia dendroides L. Medicines (Basel) 2018; 5(2): 36.
[http://dx.doi.org/10.3390/medicines5020036] [PMID: 29677109]
[403]
Cheng J, Han W, Wang Z, et al. Hepatocellular carcinoma growth is inhibited by Euphorbia helioscopia L. extract in nude mice xenografts. Bio Med research international 2015; 2015.
[404]
Kwan YP, Saito T, Ibrahim D, et al. Evaluation of the cytotoxicity, cell-cycle arrest, and apoptotic induction by Euphorbia hirta in MCF-7 breast cancer cells. Pharm Biol 2016; 54(7): 1223-36.
[PMID: 26154521]
[405]
Al-Faifi ZI, Masrahi YS, Aly MS, Al-Turki TA, Dardeer T. Evaluation of cytotoxic and genotoxic effects of Euphorbia triaculeata Forssk. extract. Asian Pacific journal of cancer prevention. Asian Pac J Cancer Prev 2017; 18(3): 771-7.
[PMID: 28441785]
[406]
Asadi-Samani M, Rafieian-Kopaei M, Lorigooini Z, Shirzad H. The effect of Euphorbia szovitsii Fisch. & C.A.Mey extract on the viability and the proliferation of MDA-MB-231 cell line. Biosci Rep 2019; 39(1): 1-8.
[http://dx.doi.org/10.1042/BSR20181538] [PMID: 30459240]
[407]
Asadi-Samani M, Rafieian-Kopaei M, Lorigooini Z, Shirzad H. A screening of growth inhibitory activity of Iranian medicinal plants on prostate cancer cell lines. Biomedicine (Taipei) 2018; 8(2): 8.
[http://dx.doi.org/10.1051/bmdcn/2018080208] [PMID: 29806586]
[408]
Panyathep A, Chewonarin T, Taneyhill K, Vinitketkumnuen U, Surh YJ. Inhibitory effects of dried longan (Euphoria longana Lam.) seed extract on invasion and matrix metalloproteinases of colon cancer cells. J Agric Food Chem 2013; 61(15): 3631-41.
[http://dx.doi.org/10.1021/jf3052863] [PMID: 23527961]
[409]
Nam GH, Jo KJ, Park YS, Kawk HW, Kim SY, Kim YM. In vitro and in vivo induction of p53-dependent apoptosis by extract of Euryale ferox Salisb in A549 human caucasian lung carcinoma cancer cells is mediated through Akt signaling pathway. Front Oncol 2019; 9: 406.
[http://dx.doi.org/10.3389/fonc.2019.00406] [PMID: 31192119]
[410]
Thu HE, Hussain Z, Mohamed IN, Shuid AN. Eurycoma longifolia, a potential phytomedicine for the treatment of cancer: Evidence of p53-mediated apoptosis in cancerous cells. Curr Drug Targets 2018; 19(10): 1109-26.
[http://dx.doi.org/10.2174/1389450118666170718151913] [PMID: 28721818]
[411]
Silva DF, Vidal FC, Santos D, et al. Cytotoxic effects of Euterpe oleracea Mart. in malignant cell lines. BMC Complement Altern Med 2014; 14(1): 175.
[http://dx.doi.org/10.1186/1472-6882-14-175] [PMID: 24886139]
[412]
Park SY, Park C, Park SH, et al. Induction of apoptosis by ethanol extract of Evodia rutaecarpa in HeLa human cervical cancer cells via activation of AMP-activated protein kinase. Biosci Trends 2017; 10(6): 467-76.
[http://dx.doi.org/10.5582/bst.2016.01170] [PMID: 27890875]
[413]
Pareek A, Godavarthi A, Issarani R, Nagori BP. Antioxidant and hepatoprotective activity of Fagonia schweinfurthii (Hadidi) Hadidi extract in carbon tetrachloride induced hepatotoxicity in HepG2 cell line and rats. J Ethnopharmacol 2013; 150(3): 973-81.
[http://dx.doi.org/10.1016/j.jep.2013.09.048] [PMID: 24140589]
[414]
Lam M, Carmichael AR, Griffiths HR. An aqueous extract of Fagonia cretica induces DNA damage, cell cycle arrest and apoptosis in breast cancer cells via FOXO3a and p53 expression. PLoS One 2012; 7(6): e40152.
[http://dx.doi.org/10.1371/journal.pone.0040152] [PMID: 22761954]
[415]
Olaru OT, Venables L, VAN DE Venter M, et al. Anticancer potential of selected Fallopia Adans species. Oncol Lett 2015; 10(3): 1323-32.
[http://dx.doi.org/10.3892/ol.2015.3453] [PMID: 26622671]
[416]
Bagheri SM, Asl AA, Shams A, Mirghanizadeh-Bafghi SA, Hafizibarjin Z. Evaluation of cytotoxicity effects of Oleo-Gum-Resin and its essential oil of Ferula assa-foetida and ferulic acid on 4T1 breast cancer cells. Indian J Med Paediatr Oncol 2017; 38(2): 116-20.
[PMID: 28900317]
[417]
Hosseini A, Bakhtiari E, Khajavi Rad A, et al. The evaluation and comparing of cytotoxic effects of Ferula gummosa gum, Scutellaria lindbergii, Kelussia odoratissima and Artemisia kopetdaghensis extracts on ACHN cell line. Iran J Pharm Res 2017; 16(3): 1104-12.
[PMID: 29201097]
[418]
Abutaha N, Nasr FA, Al-Zharani M, et al. Effects of hexane root extract of ferula hermonis boiss. On human breast and colon cancer cells: An In vitro and in vivo study. BioMed Research International 2019; 2019.
[419]
Asemani Y, Azadmehr A, Hajiaghaee R, Amirghofran Z. Anticancer potential of Ferula hezarlalehzarica Y. Ajani fraction in Raji lymphoma cell line: induction of apoptosis, cell cycle arrest, and changes in mitochondrial membrane potential. Daru 2018; 26(2): 143-54.
[http://dx.doi.org/10.1007/s40199-018-0219-z] [PMID: 30411191]
[420]
Karimian H, Fadaeinasab M, Zorofchian Moghadamtousi S, et al. Chemopreventive activity of Ferulago angulate against breast tumor in rats and the apoptotic effect of polycerasoidin in MCF7 cells: a bioassay-guided approach. PLoS One 2015; 10(5): e0127434.
[http://dx.doi.org/10.1371/journal.pone.0127434] [PMID: 25996383]
[421]
Karimian H, Moghadamtousi SZ, Fadaeinasab M, et al. Ferulago angulata activates intrinsic pathway of apoptosis in MCF-7 cells associated with G1 cell cycle arrest via involvement of p21/p27. Drug Des Devel Ther 2014; 8: 1481-97.
[http://dx.doi.org/10.2147/DDDT.S68818] [PMID: 25278746]
[422]
Filiz B, Songül K, Bostanlık D, Gül F, Ceyda Sibel K. Anticancer effect of Ferulago mughlea Peşmen (Apiaceae) on cancer cell proliferation. Iranian journal of pharmaceutical research. Iran J Pharm Res 2016; 15(3): 501-4.
[PMID: 27980585]
[423]
Sathiyamoorthy J, Sudhakar N. In vitro cytotoxicity and apoptotic assay in HT-29 cell line using Ficus hispida Linn: Leaves extract. Pharmacogn Mag 2018; 13(Suppl. 4): S756-61.
[PMID: 29491629]
[424]
Purnamasari R, Winarni D, Permanasari AA, Agustina E, Hayaza S, Darmanto W. Anticancer activity of methanol extract of Ficus carica leaves and fruits against proliferation, apoptosis, and necrosis in Huh7it cells. Cancer Inform 2019; 18: 1176935119842576.
[http://dx.doi.org/10.1177/1176935119842576] [PMID: 31037025]
[425]
Bafor EE, McKenna J, Rowan EG, Edrada-Ebel R. Characterisation of the antiproliferative constituents and activity of Ficus exasperata (Vahl) on ovarian cancer cells -a preliminary investigation. Nat Prod Res 2017; 31(18): 2164-8.
[http://dx.doi.org/10.1080/14786419.2016.1277348] [PMID: 28092975]
[426]
Kanjikar AP, Hugar AL, Londonkar RL. Characterization of phyto-nanoparticles from Ficus krishnae for their antibacterial and anticancer activities. Drug Dev Ind Pharm 2018; 44(3): 377-84.
[http://dx.doi.org/10.1080/03639045.2017.1386205] [PMID: 29098876]
[427]
Nugroho AE, Akbar FF, Wiyani A, Sudarsono . Cytotoxic Effect and Constituent Profile of Alkaloid Fractions from Ethanolic Extract of Ficus septica Burm. f. Leaves on T47D Breast Cancer Cells. Asian Pac J Cancer Prev 2015; 16(16): 7337-42.
[http://dx.doi.org/10.7314/APJCP.2015.16.16.7337] [PMID: 26514534]
[428]
Ngoua Meye Misso RL, Nsole Biteghe FA, Obiang CS, et al. Effect of aqueous extracts of Ficus vogeliana Miq and Tieghemella africana Pierre in 7,12-Dimethylbenz(a)anthracene -induced skin cancer in rats. J Ethnopharmacol 2020; 263: 113244.
[http://dx.doi.org/10.1016/j.jep.2020.113244] [PMID: 32800931]
[429]
Park KW, Kundu J, Chae IG, Bachar SC, Bae JW, Chun KS. Methanol extract of Flacourtia indica aerial parts induces apoptosis via generation of ROS and activation of caspases in human colon cancer HCT116 cells. Asian Pac J Cancer Prev 2014; 15(17): 7291-6.
[http://dx.doi.org/10.7314/APJCP.2014.15.17.7291] [PMID: 25227831]
[430]
Soysa P, De Silva IS, Wijayabandara J. Evaluation of antioxidant and antiproliferative activity of Flueggea leucopyrus Willd (katupila). BMC Complement Altern Med 2014; 14(1): 274.
[http://dx.doi.org/10.1186/1472-6882-14-274] [PMID: 25074702]
[431]
Samarakoon SR, Kotigala SB, Gammana-Liyanage I, et al. Cytotoxic and apoptotic effect of the decoction of the aerial parts of Flueggea leucopyrus on human endometrial carcinoma (AN3CA) cells. Trop J Pharm Res 2014; 13(6): 873-80.
[http://dx.doi.org/10.4314/tjpr.v13i6.7]
[432]
Akhbari M, Kord R, Jafari Nodooshan S, Hamedi S. Analysis and evaluation of the antimicrobial and anticancer activities of the essential oil isolated from Foeniculum vulgare from Hamedan, Iran. Nat Prod Res 2019; 33(11): 1629-32.
[http://dx.doi.org/10.1080/14786419.2017.1423310] [PMID: 29308661]
[433]
Syed FQ, Elkady AI, Mohammed FA, Mirza MB, Hakeem KR, Alkarim S. Chloroform fraction of Foeniculum vulgare induced ROS mediated, mitochondria-caspase-dependent apoptotic pathway in MCF-7, human breast cancer cell line. J Ethnopharmacol 2018; 218: 16-26.
[http://dx.doi.org/10.1016/j.jep.2018.02.029] [PMID: 29474902]
[434]
El-Garawani I, El Nabi SH, Nafie E, Almeldin S. Foeniculum vulgare and pelargonium graveolens essential oil mixture triggers the cell cycle arrest and apoptosis in MCF-7 cells. Anti-Cancer Agents Med Chem 2019; 19(9): 1103-13.
[435]
El-Garawani IM, El-Nabi SH, Dawoud GT, Esmail SM, Abdel Moneim AE. Triggering of apoptosis and cell cycle arrest by fennel and clove oils in Caco-2 cells: the role of combination. Toxicol Mech Methods 2019; 29(9): 710-22.
[http://dx.doi.org/10.1080/15376516.2019.1650149] [PMID: 31364915]
[436]
Zarei O, Yaghoobi MM. Cytotoxic effects of Fritillaria imperialis L. extracts on human liver cancer cells, breast cancer cells and fibroblast-like cells. Biomed Pharmacother 2017; 94: 598-604.
[http://dx.doi.org/10.1016/j.biopha.2017.07.127] [PMID: 28783582]
[437]
González ML, Joray MB, Laiolo J, et al. Cytotoxic activity of extracts from plants of central Argentina on sensitive and multidrug-resistant leukemia cells: isolation of an active principle from Gaillardia megapotamica. Evidence-Based Complementary and Alternative Medicine 2018; 2018.
[http://dx.doi.org/10.1155/2018/9185935]
[438]
Li P, AnandhiSenthilkumar H, Wu SB, et al. Comparative UPLC-QTOF-MS-based metabolomics and bioactivities analyses of Garcinia oblongifolia. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1011: 179-95.
[http://dx.doi.org/10.1016/j.jchromb.2015.12.061] [PMID: 26773895]
[439]
Biloa Messi B, Ho R, Meli Lannang A, et al. Isolation and biological activity of compounds from Garcinia preussii. Pharm Biol 2014; 52(6): 706-11.
[http://dx.doi.org/10.3109/13880209.2013.865241] [PMID: 24824323]
[440]
Abu Bakar MF, Ahmad NE, Suleiman M, Rahmat A, Isha A. Garcinia dulcis fruit extract induced cytotoxicity and apoptosis in HepG2 liver cancer cell line. BioMed research international 2015; 2015.
[441]
Hong J, Kwon SJ, Sang S, et al. Effects of garcinol and its derivatives on intestinal cell growth: Inhibitory effects and autoxidation-dependent growth-stimulatory effects. Free Radic Biol Med 2007; 42(8): 1211-21.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.016] [PMID: 17382202]
[442]
Pan-In P, Wanichwecharungruang S, Hanes J, Kim AJ. Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles. Int J Nanomedicine 2014; 9: 3677-86.
[PMID: 25125977]
[443]
Jayarathna PP, Tennekoon KH, Samarakoon SR, et al. Cytotoxic, antioxidant and apoptotic effects of twenty srilankan endemic plants in breast cancer cells. European J Med Plants 2016; 1-5.
[http://dx.doi.org/10.9734/EJMP/2016/26591]
[444]
Lim W, Kim O, Jung J, et al. Dichloromethane fraction from Gardenia jasminoides: DNA topoisomerase 1 inhibition and oral cancer cell death induction. Pharm Biol 2010; 48(12): 1354-60.
[http://dx.doi.org/10.3109/13880209.2010.483246] [PMID: 20738175]
[445]
Bontempo P, Rigano D, Doto A, et al. Genista sessilifolia DC. extracts induce apoptosis across a range of cancer cell lines. Cell Prolif 2013; 46(2): 183-92.
[http://dx.doi.org/10.1111/cpr.12022] [PMID: 23510473]
[446]
Wang R, Shao X, Yang J, Liu Z, Chew L, Shao Y. Ginkgo biloba Extract Mechanism Inhibits Hepatocellular Carcinoma through the Nuclear Factor-κB/p53 Signaling Pathway. J Environ Pathol Toxicol Oncol 2020; 39(2)
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2020034510]
[447]
Cao C, Su Y, Han D, et al. Ginkgo biloba exocarp extracts induces apoptosis in Lewis lung cancer cells involving MAPK signaling pathways. J Ethnopharmacol 2017; 198: 379-88.
[http://dx.doi.org/10.1016/j.jep.2017.01.009] [PMID: 28115284]
[448]
Cai Y, Zhang C, Zhan L, et al. Anticancer effects of Gleditsia sinensis extract in rats transplanted with hepatocellular carcinoma cells. Oncol Res 2019; 27(8): 889-99.
[http://dx.doi.org/10.3727/096504018X15482423944678] [PMID: 30940289]
[449]
Wu J, Gao W, Song Z, et al. Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549. Int J Biol Macromol 2018; 106: 464-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.033] [PMID: 28797819]
[450]
Buranabunwong N, Ruangrungsi N, Chansriniyom C, Limpanasithikul W. Ethyl acetate extract from Glycosmis parva leaf induces apoptosis and cell-cycle arrest by decreasing expression of COX-2 and altering BCL-2 family gene expression in human colorectal cancer HT-29 cells. Pharm Biol 2015; 53(4): 540-7.
[http://dx.doi.org/10.3109/13880209.2014.931442] [PMID: 25356658]
[451]
Shoja MH, Reddy ND, Nayak PG, Srinivasan KK, Rao CM. Glycosmis pentaphylla (Retz.) DC arrests cell cycle and induces apoptosis via caspase-3/7 activation in breast cancer cells. J Ethnopharmacol 2015; 168: 50-60.
[http://dx.doi.org/10.1016/j.jep.2015.03.048] [PMID: 25839119]
[452]
Gioti K, Papachristodoulou A, Benaki D, et al. Glycyrrhiza glabra-Enhanced Extract and Adriamycin Antiproliferative Effect on PC-3 Prostate Cancer Cells. Nutr Cancer 2020; 72(2): 320-32.
[http://dx.doi.org/10.1080/01635581.2019.1632357] [PMID: 31274029]
[453]
Zheng C, Han L, Wu S. A metabolic investigation of anticancer effect of G. glabra root extract on nasopharyngeal carcinoma cell line, C666-1. Mol Biol Rep 2019; 46(4): 3857-64.
[http://dx.doi.org/10.1007/s11033-019-04828-1] [PMID: 31066003]
[454]
Zhang B, Yan M, Zhang W, Ke ZY, Ma LG. Glycyrrhiza glabra suppresses nasopharyngeal carcinoma cell proliferation through inhibiting the expression of lncRNA, AK027294. Biosci Biotechnol Biochem 2020; 84(2): 314-20.
[http://dx.doi.org/10.1080/09168451.2019.1673695] [PMID: 31589096]
[455]
Abu-Lafi S, Rayan B, Kadan S, Abu-Lafi M, Rayan A. Anticancer activity and phytochemical composition of wild Gundelia tournefortii. Oncol Lett 2019; 17(1): 713-7.
[PMID: 30655821]
[456]
Ramkumar KM, Manjula C, Elango B, Krishnamurthi K, Saravana Devi S, Rajaguru P. In vitro cytotoxicity of Gymnema montanum in human leukaemia HL-60 cells; induction of apoptosis by mitochondrial membrane potential collapse. Cell Prolif 2013; 46(3): 263-71.
[http://dx.doi.org/10.1111/cpr.12033] [PMID: 23692085]
[457]
Chakraborty D, Ghosh S, Bishayee K, Mukherjee A, Sikdar S, Khuda-Bukhsh AR. Antihyperglycemic drug Gymnema sylvestre also shows anticancer potentials in human melanoma A375 cells via reactive oxygen species generation and mitochondria-dependent caspase pathway. Integr Cancer Ther 2013; 12(5): 433-41.
[http://dx.doi.org/10.1177/1534735413485419] [PMID: 23615751]
[458]
Li Y, Huang J, Lin W, et al. In vitro anticancer activity of a nonpolar fraction from Gynostemma pentaphyllum (Thunb.) Makino. Evid-based Complement Altern Med 2016; 2016.
[459]
Ma JF, Wei PF, Guo C, et al. The ethyl acetate extract of Gynura formosana Kitam. leaves inhibited cervical cancer cell proliferation via induction of autophagy. BioMed research international 2018; 2018.
[460]
Fan M, Chen G, Zhang Y, et al. Antioxidant and anti-proliferative properties of Hagenia abyssinica roots and their potentially active components. Antioxidants 2020; 9(2): 143.
[http://dx.doi.org/10.3390/antiox9020143] [PMID: 32041310]
[461]
Stefani T, Morales-San Claudio PDC, Rios MY, et al. UPLC-QTOF-MS analysis of cytotoxic and antibacterial extracts of Hechtia glomerata Zucc. Nat Prod Res 2020; 1-5.
[http://dx.doi.org/10.1080/14786419.2020.1793148] [PMID: 32674610]
[462]
Li J, Sun J, Song J. Experimental research on effect of Hedyotis diffusa Willd on blood metastasis in H22 mice. Lishizhen Med Mater Med Res 2012; 23: 2434-5.
[463]
Zhang L, Zhang J, Qi B, et al. The anti-tumor effect and bioactive phytochemicals of Hedyotis diffusa willd on ovarian cancer cells. J Ethnopharmacol 2016; 192: 132-9.
[http://dx.doi.org/10.1016/j.jep.2016.07.027] [PMID: 27426510]
[464]
Ahmad R, Ali AM, Israf DA, Ismail NH, Shaari K, Lajis NH. Antioxidant, radical-scavenging, anti-inflammatory, cytotoxic and antibacterial activities of methanolic extracts of some Hedyotis species. Life Sci 2005; 76(17): 1953-64.
[http://dx.doi.org/10.1016/j.lfs.2004.08.039] [PMID: 15707878]
[465]
Matić IZ, Aljančić I, Vajs V, et al. Cancer-suppressive potential of extracts of endemic plant Helichrysum zivojinii: Effects on cell migration, invasion and angiogenesis. Natural product communications 2013; 8(9): 1934578X1300800927.
[466]
Li K, Yu Y, Sun S, et al. Functional characterisation of anticancer activity in the aqueous extract of Helicteres angustifolia L. roots. PLoS One 2016; 11(3): e0152017.
[http://dx.doi.org/10.1371/journal.pone.0152017] [PMID: 27010955]
[467]
Pham HNT, Sakoff JA, Bond DR, Vuong QV, Bowyer MC, Scarlett CJ. In vitro antibacterial and anticancer properties of Helicteres hirsuta Lour. leaf and stem extracts and their fractions. Mol Biol Rep 2018; 45(6): 2125-33.
[http://dx.doi.org/10.1007/s11033-018-4370-x] [PMID: 30209740]
[468]
Felenda JE, Turek C, Mörbt N, Herrick A, Müller MB, Stintzing FC. Preclinical evaluation of safety and potential of black hellebore extracts for cancer treatment. BMC Complement Altern Med 2019; 19(1): 105.
[http://dx.doi.org/10.1186/s12906-019-2517-5] [PMID: 31113420]
[469]
Wu J, Wu Y, Yang BB. Anticancer activity of Hemsleya amabilis extract. Life Sci 2002; 71(18): 2161-70.
[http://dx.doi.org/10.1016/S0024-3205(02)02013-1] [PMID: 12204774]
[470]
Liu L, Chen G, Wang B, et al. Effect of Fanbaicao (Herba Potentillae Discoloris) oil on the expression of p21 and CDK4 in HepG2 cells. J Tradit Chin Med 2016; 36(4): 496-503.
[http://dx.doi.org/10.1016/S0254-6272(16)30067-X] [PMID: 28459517]
[471]
Nguyen C, Baskaran K, Pupulin A, et al. Hibiscus flower extract selectively induces apoptosis in breast cancer cells and positively interacts with common chemotherapeutics. BMC Complement Altern Med 2019; 19(1): 98.
[http://dx.doi.org/10.1186/s12906-019-2505-9] [PMID: 31060537]
[472]
Laskar YB, Mazumder PB. Insight into the molecular evidence supporting the remarkable chemotherapeutic potential of Hibiscus sabdariffa L. Biomed Pharmacother 2020; 127: 110153.
[http://dx.doi.org/10.1016/j.biopha.2020.110153] [PMID: 32344257]
[473]
Cheng YL, Lee SC, Harn HJ, Huang HC, Chang WL. The extract of Hibiscus syriacus inducing apoptosis by activating p53 and AIF in human lung cancer cells. Am J Chin Med 2008; 36(1): 171-84.
[http://dx.doi.org/10.1142/S0192415X08005680] [PMID: 18306460]
[474]
Sharma V, Hussain S, Bakshi M, Bhat N, Saxena AK. In vitro cytotoxic activity of leaves extracts of Holarrhena antidysenterica against some human cancer cell lines. Indian J Biochem Biophys 2014; 51(1): 46-51.
[PMID: 24791416]
[475]
Phan NL, Pham KD, Le Minh P, et al. Hopea odorata extract can efficiently kill breast cancer cells and cancer stem-like cells in three-dimensional culture more than in monolayer cell culture. Cancer Biology and Advances in Treatment 2020; 145-55.
[476]
Czerwonka A, Kawka K, Cykier K, Lemieszek MK, Rzeski W. Evaluation of anticancer activity of water and juice extracts of young Hordeum vulgare in human cancer cell lines HT-29 and A549. Ann Agric Environ Med 2017; 24(2): 345-9.
[http://dx.doi.org/10.26444/aaem/74714] [PMID: 28664721]
[477]
Yanarojana M, Nararatwanchai T, Thairat S, Tancharoen S. Antiproliferative activity and induction of apoptosis in human melanoma cells by Houttuynia cordata Thunb extract. Anticancer Res 2017; 37(12): 6619-28.
[PMID: 29187437]
[478]
Liu J, Zhu X, Yang D, Li R, Jiang J. Effect of Heat Treatment on the Anticancer Activity of Houttuynia cordata Thunb Aerial Stem Extract in Human Gastric Cancer SGC-7901 Cells. Nutr Cancer 2020; 1-9.
[http://dx.doi.org/10.1080/01635581.2020.1737153] [PMID: 32180441]
[479]
Kim JM, Hwang IH, Jang IS, et al. Houttuynia cordata Thunb promotes activation of HIF-1A–FOXO3 and MEF2A pathways to induce apoptosis in human HepG2 hepatocellular carcinoma cells. Integr Cancer Ther 2017; 16(3): 360-72.
[http://dx.doi.org/10.1177/1534735416670987] [PMID: 27698266]
[480]
Kumnerdkhonkaen P, Saenglee S, Asgar MA, Senawong G, Khongsukwiwat K, Senawong T. Antiproliferative activities and phenolic acid content of water and ethanolic extracts of the powdered formula of Houttuynia cordata Thunb. fermented broth and Phyllanthus emblica Linn. fruit. BMC Complement Altern Med 2018; 18(1): 130.
[http://dx.doi.org/10.1186/s12906-018-2185-x] [PMID: 29642867]
[481]
Dongre SH, Badami S, Godavarthi A. Antitumor activity of Hypericum hookerianum against DLA induced tumor in mice and its possible mechanism of action. Phytother Res 2008; 22(1): 23-9.
[http://dx.doi.org/10.1002/ptr.2248] [PMID: 17674426]
[482]
Bender O, Llorent-Martínez EJ, Zengin G, et al. Integration of In vitro and in silico perspectives to explain chemical characterization, biological potential and anticancer effects of Hypericum salsugineum: A pharmacologically active source for functional drug formulations. PLoS One 2018; 13(6): e0197815.
[http://dx.doi.org/10.1371/journal.pone.0197815] [PMID: 29864137]
[483]
Chen Q, Di L, Zhang Y, Li N. Chemical constituents with cytotoxic and anti-inflammatoty activity in Hypericum sampsonii and the antitumor potential under the view of cancer-related inflammation. J Ethnopharmacol 2020.
[http://dx.doi.org/10.1016/j.jep.2020.112948]
[484]
Rahimi Kalateh Shah Mohammad G, Karimi E, Oskoueian E, Homayouni-Tabrizi M. Anticancer properties of green-synthesised zinc oxide nanoparticles using Hyssopus officinalis extract on prostate carcinoma cells and its effects on testicular damage and spermatogenesis in Balb/C mice. Andrologia 2020; 52(1): e13450.
[http://dx.doi.org/10.1111/and.13450] [PMID: 31692026]
[485]
Singh NK, Singh VP. Anticancer activity of the roots of Ichnocarpus frutescens R. Br. and isolated triterpenes. Pak J Pharm Sci 2014; 27(1): 187-91.
[PMID: 24374448]
[486]
Keshava R, Muniyappa N, Gope R. Bioactivity guided fractionation and elucidation of anti-cancer properties of imperata cylindrica leaf extracts. Asian Pac J Cancer Prev 2020; 21(3): 707-14.
[http://dx.doi.org/10.31557/APJCP.2020.21.3.707] [PMID: 32212797]
[487]
Zhang L, Wu H, Sun G, Xu X, Sun X, Cao L. Trichloromethane fraction of Incarvillea compacta induces lytic cytotoxicity and apoptosis in Epstein-Barr virus-positive gastric cancer AGS cells. BMC Complement Altern Med 2016; 16(1): 344.
[http://dx.doi.org/10.1186/s12906-016-1331-6] [PMID: 27595569]
[488]
Kumar RS, Rajkapoor B, Perumal P. In vitro and in vivo anticancer activity of Indigofera cassioides Rottl. Ex. DC. Asian Pac J Trop Med 2011; 4(5): 379-85.
[http://dx.doi.org/10.1016/S1995-7645(11)60108-9] [PMID: 21771681]
[489]
Vijayan R, Joseph S, Mathew B. Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif Cells Nanomed Biotechnol 2018; 46(4): 861-71.
[http://dx.doi.org/10.1080/21691401.2017.1345930] [PMID: 28681622]
[490]
Zhang B, Zeng J, Yan Y, et al. Ethyl acetate extract from Inula helenium L. inhibits the proliferation of pancreatic cancer cells by regulating the STAT3/AKT pathway. Mol Med Rep 2018; 17(4): 5440-8.
[PMID: 29393456]
[491]
Merghoub N, El Btaouri H, Benbacer L, et al. Inula viscosa extracts induces telomere shortening and apoptosis in cancer cells and overcome drug resistance. Nutr Cancer 2016; 68(1): 131-43.
[http://dx.doi.org/10.1080/01635581.2016.1115105] [PMID: 26771897]
[492]
Virdis P, Migheli R, Galleri G, et al. Antiproliferative and proapoptotic effects of Inula viscosa extract on Burkitt lymphoma cell line. Tumour Biol 2020; 42(2): 1010428319901061.
[http://dx.doi.org/10.1177/1010428319901061] [PMID: 32013807]
[493]
Naz R, Roberts TH, Bano A, et al. GC-MS analysis, antimicrobial, antioxidant, antilipoxygenase and cytotoxic activities of Jacaranda mimosifolia methanol leaf extracts and fractions. PLoS One 2020; 15(7): e0236319.
[http://dx.doi.org/10.1371/journal.pone.0236319] [PMID: 32726328]
[494]
Raasmaja A, Stenius U, Ghalali A. The water extract of Juniperus communis L. induces cell death and sensitizes cancer cells to cytostatic drugs through p53 and PI3K/Akt pathways. Int J Mol Sci 2019; 20(9): 2054.
[http://dx.doi.org/10.3390/ijms20092054] [PMID: 31027321]
[495]
Huang XF, Chang KF, Lee SC, et al. Extract of Juniperus indica Bertol synergizes with cisplatin to inhibit oral cancer cell growth via repression of cell cycle progression and activation of the caspase cascade. Molecules 2020; 25(12): 2746.
[http://dx.doi.org/10.3390/molecules25122746] [PMID: 32545807]
[496]
Joseph L, Aranjani JM, Pai KS, Srinivasan KK. Promising anticancer activities of Justicia simplex D. Don. in cellular and animal models. J Ethnopharmacol 2017; 199: 231-9.
[http://dx.doi.org/10.1016/j.jep.2017.01.046] [PMID: 28163117]
[497]
Paramee S, Sookkhee S, Sakonwasun C, et al. Anti-cancer effects of Kaempferia parviflora on ovarian cancer SKOV3 cells. BMC Complement Altern Med 2018; 18(1): 178.
[http://dx.doi.org/10.1186/s12906-018-2241-6] [PMID: 29891015]
[498]
Islam F, Gopalan V, Lam AKY, Kabir SR. Kaempferia rotunda tuberous rhizome lectin induces apoptosis and growth inhibition of colon cancer cells in vitro. Int J Biol Macromol 2019; 141: 775-82.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.051] [PMID: 31505204]
[499]
Hsieh YJ, Yang MY, Leu YL, et al. Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus. BMC Complement Altern Med 2012; 12(1): 149.
[http://dx.doi.org/10.1186/1472-6882-12-149] [PMID: 22963191]
[500]
Hu W, Lee SK, Jung MJ, Heo SI, Hur JH, Wang MH. Induction of cell cycle arrest and apoptosis by the ethyl acetate fraction of Kalopanax pictus leaves in human colon cancer cells. Bioresour Technol 2010; 101(23): 9366-72.
[http://dx.doi.org/10.1016/j.biortech.2010.06.091] [PMID: 20659794]
[501]
Momtazi AA, Askari-Khorasgani O, Abdollahi E, Sadeghi-Aliabadi H, Mortazaeinezhad F, Sahebkar A. Phytochemical analysis and cytotoxicity evaluation of kelussia odoratissima mozaff. J Acupunct Meridian Stud 2017; 10(3): 180-6.
[http://dx.doi.org/10.1016/j.jams.2017.02.002] [PMID: 28712477]
[502]
Karimian H, Arya A, Fadaeinasab M, et al. Kelussia odoratissima Mozaff. activates intrinsic pathway of apoptosis in breast cancer cells associated with S phase cell cycle arrest via involvement of p21/p27 in vitro and in vivo. Drug Des Devel Ther 2017; 11: 337-50.
[http://dx.doi.org/10.2147/DDDT.S121518] [PMID: 28203057]
[503]
Androulakis XM, Muga SJ, Chen F, Koita Y, Toure B, Wargovich MJ. Chemopreventive effects of Khaya senegalensis bark extract on human colorectal cancer. Anticancer Res 2006; 26(3B): 2397-405.
[PMID: 16821623]
[504]
Wambua Mukavi J, Wafula Mayeku P, Muhoro Nyaga J, Naulikha Kituyi S. In vitro anti-cancer efficacy and phyto-chemical screening of solvent extracts of Kigelia africana (Lam.) Benth. Heliyon 2020; 6(7): e04481.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04481] [PMID: 32715139]
[505]
Horng CT, Wu YJ, Chen PN, Chu SC, Tsai CM, Hsieh YS. Koelreuteria formosana extract induces growth inhibition and cell death in human colon carcinoma cells via G2/M arrest and LC3-II activation-dependent autophagy. Nutr Cancer 2017; 69(1): 44-55.
[http://dx.doi.org/10.1080/01635581.2017.1247889] [PMID: 27880045]
[506]
Mbaoji FN, Behnisch-Cornwell S, Ezike AC, Nworu CS, Bednarski PJ. Pharmacological evaluation of the anticancer activity of extracts and fractions of Lannea barteri Oliv. (Anacardiaceae) on adherent human cancer cell lines. Molecules 2020; 25(4): 849.
[http://dx.doi.org/10.3390/molecules25040849] [PMID: 32075139]
[507]
Weerapreeyakul N, Junhom C, Barusrux S, Thitimetharoch T. Induction of apoptosis in human hepatocellular carcinoma cells by extracts of Lannea coromandelica (Houtt.) Merr. and Diospyros castanea (Craib) Fletcher. Chin Med 2016; 11(1): 19.
[http://dx.doi.org/10.1186/s13020-016-0091-z] [PMID: 27110278]
[508]
Manosroi A, Chankhampan C, Manosroi W, Manosroi J. Anti-proliferative and matrix metalloproteinase-2 inhibition of Longkong (Lansium domesticum) extracts on human mouth epidermal carcinoma. Pharm Biol 2013; 51(10): 1311-20.
[http://dx.doi.org/10.3109/13880209.2013.790064] [PMID: 23763335]
[509]
Hegazy MG, Imam AM, Abdelghany BE. Evaluation of cytotoxic and anticancer effect of Orobanche crenata methanolic extract on cancer cell lines. Tumour Biol 2020; 42(5): 1010428320918685.
[http://dx.doi.org/10.1177/1010428320918685] [PMID: 32367771]
[510]
Ramkumar R, Balasubramani G, Raja RK, et al. Lantana camara Linn root extract-mediated gold nanoparticles and their In vitro antioxidant and cytotoxic potentials. Artif Cells Nanomed Biotechnol 2017; 45(4): 748-57.
[http://dx.doi.org/10.1080/21691401.2016.1276923] [PMID: 28064507]
[511]
Chen YC. Bioactivities of selected Sutherlandia frutescens (L.) R. Br. leaf extracts. PhD diss 2007.
[512]
Elsharkawy ER. Isolation of phytoconstituents and evaluation of anticancer and Antioxidant potential of Launaea mucronata (Forssk.) Muschl. subsp. Pak J Pharm Sci 2017; 30(2): 399-405.
[PMID: 28649063]
[513]
Thomford NE, Mkhize B, Dzobo K, et al. African lettuce (Launaea taraxacifolia) displays possible anticancer effects and herb–drug interaction potential by CYP1A2, CYP2C9, and CYP2C19 inhibition. OMICS 2016; 20(9): 528-37.
[http://dx.doi.org/10.1089/omi.2016.0117] [PMID: 27631192]
[514]
Dalilan S, Rezaei-Tavirani M, Nabiuni M, Heidari-Keshel S, Zamanian Azodi M, Zali H. Aqueous extract of Lavender angustifolia inhibits lymphocytes proliferation of Hodgkin’s lymphoma patients. Iran J Cancer Prev 2013; 6(4): 201-8.
[PMID: 25250135]
[515]
Al-Sheddi ES. Cytotoxic potential of petroleum ether, ethyl acetate, chloroform, and ethanol extracts of lavandula coronopifolia against human breast carcinoma cell line (MDA-MB-321). Asian Pac J Cancer Prev 2019; 20(10): 2943-9.
[http://dx.doi.org/10.31557/APJCP.2019.20.10.2943] [PMID: 31653139]
[516]
Ishteyaque S, Mishra A, Mohapatra S, et al. In vitro: cytotoxicity, apoptosis and ameliorative potential of Lawsonia inermis extract in human lung, Colon and liver cancer cell line. Cancer Invest 2020; 38(8-9): 476-85.
[http://dx.doi.org/10.1080/07357907.2020.1811300] [PMID: 32845783]
[517]
Dufour D, Pichette A, Mshvildadze V, et al. Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from Ledum groenlandicum Retzius. J Ethnopharmacol 2007; 111(1): 22-8.
[http://dx.doi.org/10.1016/j.jep.2006.10.021] [PMID: 17156957]
[518]
Saeed MEM, Meyer M, Hussein A, Efferth T. Cytotoxicity of South-African medicinal plants towards sensitive and multidrug-resistant cancer cells. J Ethnopharmacol 2016; 186: 209-23.
[http://dx.doi.org/10.1016/j.jep.2016.04.005] [PMID: 27058630]
[519]
Sitarek P, Kowalczyk T, Santangelo S, et al. The extract of leonurus sibiricus transgenic roots with atpap1 transcriptional factor induces apoptosis via DNA damage and down regulation of selected epigenetic factors in human cancer cells. Neurochem Res 2018; 43(7): 1363-70.
[http://dx.doi.org/10.1007/s11064-018-2551-6] [PMID: 29786770]
[520]
Sitarek P, Skała E, Toma M, et al. A preliminary study of apoptosis induction in glioma cells via alteration of the Bax/Bcl-2-p53 axis by transformed and non-transformed root extracts of Leonurus sibiricus L. Tumour Biol 2016; 37(7): 8753-64.
[http://dx.doi.org/10.1007/s13277-015-4714-2] [PMID: 26743778]
[521]
Al-Sheddi ES, Farshori NN, Al-Oqail MM, Musarrat J, Al-Khedhairy AA, Siddiqui MA. Protective effect of Lepidium sativum seed extract against hydrogen peroxide-induced cytotoxicity and oxidative stress in human liver cells (HepG2). Pharm Biol 2016; 54(2): 314-21.
[http://dx.doi.org/10.3109/13880209.2015.1035795] [PMID: 25885937]
[522]
Sertel S, Eichhorn T, Plinkert PK, Efferth T. Chemical Composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells. Anticancer Res 2011; 31(1): 185-91.
[PMID: 21273597]
[523]
Guerra ACVA, Soares LAL, Ferreira MRA, et al. Libidibia ferrea presents antiproliferative, apoptotic and antioxidant effects in a colorectal cancer cell line. Biomed Pharmacother 2017; 92: 696-706.
[http://dx.doi.org/10.1016/j.biopha.2017.05.123] [PMID: 28586741]
[524]
Hu B, Du Q, Deng S, et al. Ligustrum lucidum Ait. fruit extract induces apoptosis and cell senescence in human hepatocellular carcinoma cells through upregulation of p21. Oncol Rep 2014; 32(3): 1037-42.
[http://dx.doi.org/10.3892/or.2014.3312] [PMID: 25017491]
[525]
Zhang YY, Luo LM, Wang YX, Zhu N, Zhao TJ, Qin L. Total saponins from Lilium lancifolium: a promising alternative to inhibit the growth of gastric carcinoma cells. J Cancer 2020; 11(14): 4261-73.
[http://dx.doi.org/10.7150/jca.42285] [PMID: 32368309]
[526]
Krifa M, Alhosin M, Muller CD, et al. Limoniastrum guyonianum aqueous gall extract induces apoptosis in human cervical cancer cells involving p16 INK4A re-expression related to UHRF1 and DNMT1 down-regulation. J Exp Clin Cancer Res 2013; 32(1): 30.
[http://dx.doi.org/10.1186/1756-9966-32-30] [PMID: 23688286]
[527]
Eren Y. Mutagenic and cytotoxic activities of Limonium globuliferum methanol extracts. Cytotechnology 2016; 68(5): 2115-24.
[http://dx.doi.org/10.1007/s10616-016-9951-8] [PMID: 26946145]
[528]
Li YM, Ohno Y, Minatoguchi S, et al. Extracts from the roots of Lindera strychifolia induces apoptosis in lung cancer cells and prolongs survival of tumor-bearing mice. Am J Chin Med 2003; 31(6): 857-69.
[http://dx.doi.org/10.1142/S0192415X03001545] [PMID: 14992538]
[529]
Maeda H, Yamazaki M, Katagata Y. Kuromoji (Lindera umbellata) essential oil-induced apoptosis and differentiation in human leukemia HL-60 cells. Exp Ther Med 2012; 3(1): 49-52.
[http://dx.doi.org/10.3892/etm.2011.357] [PMID: 22969843]
[530]
Mesa-Arango AC, Montiel-Ramos J, Zapata B, Durán C, Betancur-Galvis L, Stashenko E. Citral and carvone chemotypes from the essential oils of Colombian Lippia alba (Mill.) N.E. Brown: composition, cytotoxicity and antifungal activity. Mem Inst Oswaldo Cruz 2009; 104(6): 878-84.
[http://dx.doi.org/10.1590/S0074-02762009000600010] [PMID: 19876560]
[531]
Wang X, Yuan S, Wang J, et al. Anticancer activity of litchi fruit pericarp extract against human breast cancer In vitro and in vivo. Toxicol Appl Pharmacol 2006; 215(2): 168-78.
[http://dx.doi.org/10.1016/j.taap.2006.02.004] [PMID: 16563451]
[532]
Iqbal MJ, Ali S, Rashid U, et al. Biosynthesis of silver nanoparticles from leaf extract of Litchi chinensis and its dynamic biological impact on microbial cells and human cancer cell lines. Cell Mol Biol 2018; 64(13): 42-7.
[http://dx.doi.org/10.14715/cmb/2018.64.13.9] [PMID: 30403594]
[533]
Rajasekar S, Park DJ, Park C, et al. In vitro and in vivo anticancer effects of Lithospermum erythrorhizon extract on B16F10 murine melanoma. J Ethnopharmacol 2012; 144(2): 335-45.
[http://dx.doi.org/10.1016/j.jep.2012.09.017] [PMID: 22995444]
[534]
Ho CL, Jie-Ping O, Liu YC, et al. Compositions and In vitro anticancer activities of the leaf and fruit oils of Litsea cubeba from Taiwan. Natural Product Communications 2010; 5(4): 1934578X1000500425.
[http://dx.doi.org/10.1177/1934578X1000500425]
[535]
Zhong ZG, Zhang FF, Zhang WY, Cui JG. [Study on the anticancer effects of extracts from roots of Livistona chinensis in vitro]. Zhong Yao Cai 2007; 30(1): 60-3.
[PMID: 17539307]
[536]
Ajiboye TO, Yakubu MT, Oladiji AT. Cytotoxic, antimutagenic, and antioxidant activities of methanolic extract and chalcone dimers (lophirones B and C) derived from Lophira alata (Van Tiegh. Ex Keay) stem bark. J Evid Based Complementary Altern Med 2014; 19(1): 20-30.
[http://dx.doi.org/10.1177/2156587213505112] [PMID: 24647375]
[537]
Yerlikaya S, Baloglu MC, Diuzheva A, Jekő J, Cziáky Z, Zengin G. Investigation of chemical profile, biological properties of Lotus corniculatus L. extracts and their apoptotic-autophagic effects on breast cancer cells. J Pharm Biomed Anal 2019; 174: 286-99.
[http://dx.doi.org/10.1016/j.jpba.2019.05.068] [PMID: 31185340]
[538]
Shang LH, Li CM, Yang ZY, Che DH, Cao JY, Yu Y. Luffa echinata Roxb. induces human colon cancer cell (HT-29) death by triggering the mitochondrial apoptosis pathway. Molecules 2012; 17(5): 5780-94.
[http://dx.doi.org/10.3390/molecules17055780] [PMID: 22592084]
[539]
Wawruszak A, Czerwonka A, Okła K, Rzeski W. Anticancer effect of ethanol Lycium barbarum (Goji berry) extract on human breast cancer T47D cell line. Nat Prod Res 2016; 30(17): 1993-6.
[http://dx.doi.org/10.1080/14786419.2015.1101691] [PMID: 26525080]
[540]
Ghali W, Vaudry D, Jouenne T, Marzouki MN. Lycium europaeum fruit extract: antiproliferative activity on A549 human lung carcinoma cells and PC12 rat adrenal medulla cancer cells and assessment of its cytotoxicity on cerebellum granule cells. Nutr Cancer 2015; 67(4): 637-46.
[http://dx.doi.org/10.1080/01635581.2015.1017054] [PMID: 25825796]
[541]
Son M, Kim A, Lee J, et al. Ethanol extract of Lycoris radiata induces cell death in B16F10 melanoma via p38-mediated AP-1 activation. Oncol Rep 2010; 24(2): 473-8.
[PMID: 20596635]
[542]
Sodde VK, Lobo R, Kumar N, Maheshwari R, Shreedhara CS. Cytotoxic activity of Macrosolen parasiticus (L.) Danser on the growth of breast cancer cell line (MCF-7). Pharmacogn Mag 2015; 11(Suppl. 1): S156-60.
[http://dx.doi.org/10.4103/0973-1296.157719] [PMID: 26109761]
[543]
Ghosh P, Mitra D, Mitra S, Ray S, Banerjee S, Murmu N. Madhuca indica inhibits breast cancer cell proliferation by modulating COX-2 expression. Curr Mol Med 2018; 18(7): 459-74.
[http://dx.doi.org/10.2174/1566524019666181212100808] [PMID: 30539699]
[544]
Sarkar MK, Vadivel V, Charan Raja MR, Mahapatra SK. Potential anti-proliferative activity of AgNPs synthesized using M. longifolia in 4T1 cell line through ROS generation and cell membrane damage. J Photochem Photobiol B 2018; 186: 160-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.07.014] [PMID: 30064062]
[545]
Zheng Y, Zhang J, Zhang R, Luo Z, Wang C, Shi S. Gold nano particles synthesized from Magnolia officinalis and anticancer activity in A549 lung cancer cells. Artif Cells Nanomed Biotechnol 2019; 47(1): 3101-9.
[http://dx.doi.org/10.1080/21691401.2019.1645152] [PMID: 31343369]
[546]
Wong BS, Hsiao YC, Lin TW, et al. The In vitro and in vivo apoptotic effects of Mahonia oiwakensis on human lung cancer cells. Chem Biol Interact 2009; 180(2): 165-74.
[http://dx.doi.org/10.1016/j.cbi.2009.02.011] [PMID: 19497414]
[547]
El Khoury M, Haykal T, Hodroj MH, et al. Malva pseudolavatera Leaf Extract Promotes ROS Induction Leading to Apoptosis in Acute Myeloid Leukemia Cells In Vitro. Cancers (Basel) 2020; 12(2): 435.
[http://dx.doi.org/10.3390/cancers12020435] [PMID: 32069824]
[548]
Ediriweera MK, Tennekoon KH, Samarakoon SR, Thabrew I, De Silva ED. Cytotoxic and apoptotic effects of the bark of two common mango (Mangifera indica) varieties from Sri Lanka on breast and ovarian cancer cells. Journal of Pharmaceutical Research International 2016; 1-7.
[549]
Rajeshkumar S, Kumar SV, Ramaiah A, Agarwal H, Lakshmi T, Roopan SM. Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme Microb Technol 2018; 117: 91-5.
[http://dx.doi.org/10.1016/j.enzmictec.2018.06.009] [PMID: 30037558]
[550]
Ayatollahi A, Rahmati J, Salimi A, Pourahmad J. A Comparison of Cytotoxic Effects of Mangifera Indica L. and Juglans RegiaAqueous Extract on Human Chronic Lymphocytic Leukemia. Iran J Pharm Res 2019; 18(4): 1843-53.
[PMID: 32184851]
[551]
Vimalraj S, Ashokkumar T, Saravanan S. Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties. Biomed Pharmacother 2018; 105: 440-8.
[http://dx.doi.org/10.1016/j.biopha.2018.05.151] [PMID: 29879628]
[552]
Ganogpichayagrai A, Palanuvej C, Ruangrungsi N. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves. J Adv Pharm Technol Res 2017; 8(1): 19-24.
[http://dx.doi.org/10.4103/2231-4040.197371] [PMID: 28217550]
[553]
Abu Bakar MF, Mohamad M, Rahmat A, Burr SA, Fry JR. Cytotoxicity, cell cycle arrest, and apoptosis in breast cancer cell lines exposed to an extract of the seed kernel of Mangifera pajang (bambangan). Food Chem Toxicol 2010; 48(6): 1688-97.
[http://dx.doi.org/10.1016/j.fct.2010.03.046] [PMID: 20363279]
[554]
Ediriweera MK, Tennekoon KH, Samarakoon SR, Thabrew I, Dilip DE Silva E. A study of the potential anticancer activity of Mangifera zeylanica bark: Evaluation of cytotoxic and apoptotic effects of the hexane extract and bioassay-guided fractionation to identify phytochemical constituents. Oncol Lett 2016; 11(2): 1335-44.
[http://dx.doi.org/10.3892/ol.2016.4087] [PMID: 26893740]
[555]
Ediriweera MK, Tennekoon KH, Samarakoon SR, Thabrew I, De Silva ED. Induction of apoptosis in MCF-7 breast cancer cells by Sri Lankan Endemic Mango (Mangifera zeylanica) fruit peel through oxidative stress and analysis of its phytochemical constituents. J Food Biochem 2017; 41(1): e12294.
[http://dx.doi.org/10.1111/jfbc.12294]
[556]
Ibrahim B, Sowemimo A, Spies L, Koekomoer T, van de Venter M, Odukoya OA. Antiproliferative and apoptosis inducing activity of Markhamia tomentosa leaf extract on HeLa cells. J Ethnopharmacol 2013; 149(3): 745-9.
[http://dx.doi.org/10.1016/j.jep.2013.07.040] [PMID: 23928192]
[557]
Kozyra M, Korga A, Ostrowska M, et al. Cytotoxic activity of methanolic fractions of different Marrubium spp. against melanoma cells is independent of antioxidant activity and total phenolic content. FEBS Open Bio 2020; 10(1): 86-95.
[http://dx.doi.org/10.1002/2211-5463.12755] [PMID: 31691511]
[558]
Zarai Z, Kadri A, Ben Chobba I, et al. The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia. Lipids Health Dis 2011; 10(1): 161.
[http://dx.doi.org/10.1186/1476-511X-10-161] [PMID: 21936887]
[559]
Wang Y, Zhang Y, Guo Y, et al. Synthesis of Zinc oxide nanoparticles from Marsdenia tenacissima inhibits the cell proliferation and induces apoptosis in laryngeal cancer cells (Hep-2). J Photochem Photobiol B 2019; 201: 111624.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111624] [PMID: 31722283]
[560]
Sun B, Hu N, Han L, Pi Y, Gao Y, Chen K. Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artif Cells Nanomed Biotechnol 2019; 47(1): 4012-9.
[http://dx.doi.org/10.1080/21691401.2019.1575844] [PMID: 31591910]
[561]
Li L, Zhang W, Desikan Seshadri VD, Cao G. Synthesis and characterization of gold nanoparticles from Marsdenia tenacissima and its anticancer activity of liver cancer HepG2 cells. Artif Cells Nanomed Biotechnol 2019; 47(1): 3029-36.
[http://dx.doi.org/10.1080/21691401.2019.1642902] [PMID: 31328556]
[562]
Nikseresht M, Kamali AM, Rahimi HR, et al. The hydroalcoholic extract of Matricaria chamomilla suppresses migration and invasion of human breast cancer MDA-MB-468 and MCF-7 cell lines. Pharmacognosy Res 2017; 9(1): 87-95.
[http://dx.doi.org/10.4103/0974-8490.199778] [PMID: 28250660]
[563]
Al-Dabbagh B, Elhaty IA, Elhaw M, et al. Antioxidant and anticancer activities of chamomile (Matricaria recutita L.). BMC Res Notes 2019; 12(1): 3.
[http://dx.doi.org/10.1186/s13104-018-3960-y] [PMID: 30602390]
[564]
Chabir N, Romdhane M, Valentin A, et al. Chemical study and antimalarial, antioxidant, and anticancer activities of Melaleuca armillaris (Sol Ex Gateau) Sm essential oil. J Med Food 2011; 14(11): 1383-8.
[http://dx.doi.org/10.1089/jmf.2010.0168] [PMID: 21476932]
[565]
Nerome K, Ito-Kureha T, Paganini T, et al. Potent and broad anticancer activities of leaf extracts from Melia azedarach L. of the subtropical Okinawa islands. Am J Cancer Res 2020; 10(2): 581-94.
[PMID: 32195029]
[566]
Kathiravan V, Ravi S, Ashokkumar S. Synthesis of silver nanoparticles from Melia dubia leaf extract and their In vitro anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 2014; 130: 116-21.
[http://dx.doi.org/10.1016/j.saa.2014.03.107] [PMID: 24769382]
[567]
Liu XL, Wang H, Zhang L, et al. Anticancer effects of crude extract from Melia toosendan Sieb. et Zucc on hepatocellular carcinoma in vitro and in vivo. Chin J Integr Med 2016; 22(5): 362-9.
[http://dx.doi.org/10.1007/s11655-015-2084-7] [PMID: 26383159]
[568]
George S, Nair SA, Venkataraman R, Baby S. Chemical composition, antibacterial and anticancer activities of volatile oil of Melicope denhamii leaves. Nat Prod Res 2015; 29(20): 1959-62.
[http://dx.doi.org/10.1080/14786419.2015.1013471] [PMID: 25702605]
[569]
Kabir MF, Mohd Ali J, Abolmaesoomi M, Hashim OH. Melicope ptelefolia leaf extracts exhibit antioxidant activity and exert anti-proliferative effect with apoptosis induction on four different cancer cell lines. BMC Complement Altern Med 2017; 17(1): 252.
[http://dx.doi.org/10.1186/s12906-017-1761-9] [PMID: 28476158]
[570]
Jahanban-Esfahlan A, Modaeinama S, Abasi M, Abbasi MM, Jahanban-Esfahlan R. Anti proliferative properties of Melissa officinalis in different human cancer cells. Asian Pac J Cancer Prev 2015; 16(14): 5703-7.
[http://dx.doi.org/10.7314/APJCP.2015.16.14.5703] [PMID: 26320439]
[571]
Mondal A, Singha T, Maity TK, Pal D. Evaluation of antitumor and antioxidant activity of Melothria heterophylla (Lour.) Cogn. Indian J Pharm Sci 2013; 75(5): 515-22.
[PMID: 24403651]
[572]
Patti F, Palmioli A, Vitalini S, et al. Anticancer Effects of Wild Mountain Mentha longifolia Extract in Adrenocortical Tumor Cell Models. Front Pharmacol 2020; 10: 1647.
[http://dx.doi.org/10.3389/fphar.2019.01647] [PMID: 32116670]
[573]
Kowalczyk T, Sitarek P, Skała E, et al. Induction of apoptosis by In vitro and in vivo plant extracts derived from Menyanthes trifoliata L. in human cancer cells. Cytotechnology 2019; 71(1): 165-80.
[http://dx.doi.org/10.1007/s10616-018-0274-9] [PMID: 30610508]
[574]
Asif M, Yehya AHS, Dahham SS, et al. Establishment of In vitro and in vivo anti-colon cancer efficacy of essential oils containing oleo-gum resin extract of Mesua ferrea. Biomed Pharmacother 2019; 109: 1620-9.
[http://dx.doi.org/10.1016/j.biopha.2018.10.127] [PMID: 30551416]
[575]
Asif M, Shafaei A, Abdul Majid AS, et al. Mesua ferrea stem bark extract induces apoptosis and inhibits metastasis in human colorectal carcinoma HCT 116 cells, through modulation of multiple cell signalling pathways. Chin J Nat Med 2017; 15(7): 505-14.
[http://dx.doi.org/10.1016/S1875-5364(17)30076-6] [PMID: 28807224]
[576]
Kumar G, Gupta R, Sharan S, Roy P, Pandey DM. Anticancer activity of plant leaves extract collected from a tribal region of India. 3 Biotech 2019; v(11): 399.
[577]
Anantachoke N, Lovacharaporn D, Reutrakul V, et al. Cytotoxic compounds from the leaves and stems of the endemic Thai plant Mitrephora sirikitiae. Pharm Biol 2020; 58(1): 490-7.
[http://dx.doi.org/10.1080/13880209.2020.1765813] [PMID: 32478640]
[578]
Liu HR, Meng LY, Lin ZY, Shen Y, Yu YQ, Zhu YZ. Cochinchina momordica seed extract induces apoptosis and cell cycle arrest in human gastric cancer cells via PARP and p53 signal pathways. Nutr Cancer 2012; 64(7): 1070-7.
[http://dx.doi.org/10.1080/01635581.2012.712737] [PMID: 23020228]
[579]
Petchsak P, Sripanidkulchai B. Momordica cochinchinensis aril extract induced apoptosis in human MCF-7 breast cancer cells. Asian Pac J Cancer Prev 2015; 16(13): 5507-13.
[http://dx.doi.org/10.7314/APJCP.2015.16.13.5507] [PMID: 26225702]
[580]
Park SH, Chi GY, Eom HS, et al. Role of autophagy in apoptosis induction by methylene chloride extracts of Mori cortex in NCI-H460 human lung carcinoma cells. Int J Oncol 2012; 40(6): 1929-40.
[PMID: 22367066]
[581]
Rajivgandhi G, Saravanan K, Ramachandran G, et al. Enhanced anti-cancer activity of chitosan loaded Morinda citrifolia essential oil against A549 human lung cancer cells. Int J Biol Macromol 2020; 164: 4010-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.169] [PMID: 32853609]
[582]
Sharma K, Pachauri SD, Khandelwal K, et al. Anticancer effects of extracts from the fruit of Morinda Citrifolia (Noni) in breast cancer cell lines. Drug Res (Stuttg) 2016; 66(3): 141-7.
[PMID: 26158795]
[583]
Abou-Hashem MMM, Abo-Elmatty DM, Mesbah NM, Abd El-Mawgoud AM. Induction of sub-G0 arrest and apoptosis by seed extract of Moringa peregrina (Forssk.) Fiori in cervical and prostate cancer cell lines. J Integr Med 2019; 17(6): 410-22.
[http://dx.doi.org/10.1016/j.joim.2019.09.004] [PMID: 31669164]
[584]
Khan F, Pandey P, Ahmad V, Upadhyay TK. Moringa oleifera methanolic leaves extract induces apoptosis and G0/G1 cell cycle arrest via downregulation of Hedgehog Signaling Pathway in human prostate PC-3 cancer cells. J Food Biochem 2020; 44(8): e13338.
[http://dx.doi.org/10.1111/jfbc.13338] [PMID: 32588472]
[585]
Barhoi D, Upadhaya P, Barbhuiya SN, Giri A, Giri S. Aqueous extract of moringa oleifera exhibit potential anticancer activity and can be used as a possible cancer therapeutic agent: a study involving In vitro and in vivo approach. J Am Coll Nutr 2020; 1-6.
[http://dx.doi.org/10.1080/07315724.2020.1735572] [PMID: 32191153]
[586]
Mansour M, Mohamed MF, Elhalwagi A, El-Itriby HA, Shawki HH, Abdelhamid IA. Moringa peregrina leaves extracts induce apoptosis and cell cycle arrest of hepatocellular carcinoma. BioMed research international 2019; 2019
[http://dx.doi.org/10.1155/2019/2698570]
[587]
Kikuchi T, Nihei M, Nagai H, et al. Albanol A from the root bark of Morus alba L. induces apoptotic cell death in HL60 human leukemia cell line. Chem Pharm Bull (Tokyo) 2010; 58(4): 568-71.
[http://dx.doi.org/10.1248/cpb.58.568] [PMID: 20410645]
[588]
Min TR, Park HJ, Park MN, Kim B, Park SH. The Root Bark of Morus alba L. Suppressed the Migration of Human Non-Small-Cell Lung Cancer Cells through Inhibition of Epithelial–Mesenchymal Transition Mediated by STAT3 and Src. Int J Mol Sci 2019; 20(9): 2244.
[http://dx.doi.org/10.3390/ijms20092244]
[589]
Turan I, Demir S, Kilinc K, et al. Antiproliferative and apoptotic effect of Morus nigra extract on human prostate cancer cells. Saudi Pharm J 2017; 25(2): 241-8.
[http://dx.doi.org/10.1016/j.jsps.2016.06.002] [PMID: 28344475]
[590]
Tang Q, Xia H, Liang W, Huo X, Wei X. Synthesis and characterization of zinc oxide nanoparticles from Morus nigra and its anticancer activity of AGS gastric cancer cells. J Photochem Photobiol B 2020; 202: 111698.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111698] [PMID: 31734436]
[591]
Sinha S, Sharma S, Vora J, Shah H, Srivastava A, Shrivastava N. Mucuna pruriens (L.) DC chemo sensitize human breast cancer cells via downregulation of prolactin-mediated JAK2/STAT5A signaling. J Ethnopharmacol 2018; 217: 23-35.
[http://dx.doi.org/10.1016/j.jep.2018.02.006] [PMID: 29427634]
[592]
Devi GK, Sathishkumar K. Synthesis of gold and silver nanoparticles using Mukia maderaspatna plant extract and its anticancer activity. IET nanobiotechnology 2016; 11(2): 143-51.
[593]
Amna U, Halimatussakdiah PW, Wahyuningsih P, Saidi N, Nasution R. Evaluation of cytotoxic activity from Temurui (Murraya koenigii [Linn.] Spreng) leaf extracts against HeLa cell line using MTT assay. J Adv Pharm Technol Res 2019; 10(2): 51-5.
[http://dx.doi.org/10.4103/japtr.JAPTR_373_18] [PMID: 31041182]
[594]
Valsalam S, Agastian P, Esmail GA, Ghilan AM, Al-Dhabi NA, Arasu MV. Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy. J Photochem Photobiol B 2019; 201: 111670.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111670] [PMID: 31706087]
[595]
K B A, Madhavan A, T R R, Thomas S, Nisha P. Musa paradisiaca inflorescence induces human colon cancer cell death by modulating cascades of transcriptional events. Food Funct 2018; 9(1): 511-24.
[http://dx.doi.org/10.1039/C7FO01454F] [PMID: 29243757]
[596]
Mendonca P, Darwish AG, Tsolova V, El-Sharkawy I, Soliman KFA. The anticancer and antioxidant effects of muscadine grape extracts on racially different triple-negative breast cancer cells. Anticancer Res 2019; 39(8): 4043-53.
[http://dx.doi.org/10.21873/anticanres.13560] [PMID: 31366486]
[597]
Ginting B, Saidi N, Murniana , Mustanir , Maulidna , Simanjuntak P. Lignan compound isolated from n-Hexane extract myristica fragrans Houtt root as antioxidant and antitumor activities against MCF-7 cell lines data. Data Brief 2020; 31: 105997.
[http://dx.doi.org/10.1016/j.dib.2020.105997] [PMID: 32743030]
[598]
Ju A, Cho YC, Kim BR, et al. Anticancer effects of methanol extract of Myrmecodia platytyrea Becc. leaves against human hepatocellular carcinoma cells via inhibition of ERK and STAT3 signaling pathways. Int J Oncol 2018; 52(1): 201-10.
[PMID: 29075791]
[599]
Soeksmanto A, Subroto MA, Wijaya H, Simanjuntak P. Anticancer activity test for extracts of Sarang semut plant (Myrmecodya pendens) to HeLa and MCM-B2 cells. Pak J Biol Sci 2010; 13(3): 148-51.
[http://dx.doi.org/10.3923/pjbs.2010.148.151] [PMID: 20437705]
[600]
Hsu LS, Chang CH, Lee YJ, Wang CJ. Nelumbo nucifera Leaves Prevent NMU-Induced Mammary Tumor through Downregulation of Fatty Acid Synthase, Estrogen Receptor-α and Her2 Expression. Am J Chin Med 2019; 47(8): 1885-99.
[http://dx.doi.org/10.1142/S0192415X19500964] [PMID: 31838869]
[601]
Tang JY, Peng SY, Cheng YB, et al. Ethyl acetate extract of Nepenthes adrianii x clipeata induces antiproliferation, apoptosis, and DNA damage against oral cancer cells through oxidative stress. Environ Toxicol 2019; 34(8): 891-901.
[http://dx.doi.org/10.1002/tox.22748] [PMID: 31157515]
[602]
Tang JY, Li LJ, Ou-Yang F, et al. Ethyl Acetate Extract of Nepenthes ventricosa x maxima Exerts Preferential Killing to Oral Cancer Cells. DNA Cell Biol 2019; 38(8): 763-72.
[http://dx.doi.org/10.1089/dna.2018.4436] [PMID: 31170002]
[603]
Al-Oqail MM, Al-Sheddi ES, Siddiqui MA, Musarrat J, Al-Khedhairy AA, Farshori NN. Anticancer activity of chloroform extract and sub-fractions of nepeta deflersiana on human breast and lung cancer cells: an In vitro cytotoxicity assessment. Pharmacogn Mag 2015; 11(Suppl. 4): S598-605.
[http://dx.doi.org/10.4103/0973-1296.172968] [PMID: 27013801]
[604]
Arunachalam T, Khader SZA, Syed Zameer Ahmed S, et al. Radical scavenging and antiproliferative effect of novel phenolic derivatives isolated from Nerium indicum against human breast cancer cell line (MCF-7)-an in silico and In vitro approach. Environ Sci Pollut Res Int 2020; 27(9): 9038-57.
[http://dx.doi.org/10.1007/s11356-019-07252-x] [PMID: 31893365]
[605]
Mohapatra S, Biswal AK, Dandapat J, Debata PR. Leaf extract of nerium oleander L. inhibits cell proliferation, migration and arrest of cell cycle at G2/M phase in heLa cervical cancer cell. Anticancer Agents Med Chem 2020.
[http://dx.doi.org/10.2174/1871520620666200811121400] [PMID: 32781975]
[606]
Zhen HS, Zhou YY, Yuan YF, Zhong ZG, Liang CY, Qiu Q. [Study on anticancer effect in vivo of active fraction from Nervilia fordii]. Zhong Yao Cai 2007; 30(9): 1095-8.
[PMID: 18236753]
[607]
Khurshid Y, Syed B, Simjee SU, Beg O, Ahmed A. Antiproliferative and apoptotic effects of proteins from black seeds (Nigella sativa) on human breast MCF-7 cancer cell line. BMC Complement Med Ther 2020; 20(1): 5.
[http://dx.doi.org/10.1186/s12906-019-2804-1] [PMID: 32020890]
[608]
Maqbool T, Awan SJ, Malik S, Hadi F, Shehzadi S, Tariq K. In- vitro anti-proliferative, apoptotic and antioxidative activities of medicinal herb kalonji (nigella sativa). Curr Pharm Biotechnol 2019; 20(15): 1288-308.
[http://dx.doi.org/10.2174/1389201020666190821144633] [PMID: 31433749]
[609]
Boubaker J, Ben Toumia I, Sassi A, et al. Antitumoral potency by immunomodulation of chloroform extract from leaves of Nitraria retusa, Tunisian medicinal plant, via its major compounds β-sitosterol and palmitic acid in BALB/c mice bearing induced tumor. Nutr Cancer 2018; 70(4): 650-62.
[http://dx.doi.org/10.1080/01635581.2018.1460683] [PMID: 29697283]
[610]
Ozer J, Fishman D, Eilam B, Golan-Goldhirsh A, Gopas J. Anti-metastatic effect of semi-purified Nuphar lutea leaf extracts. J Cancer 2017; 8(8): 1433-40.
[http://dx.doi.org/10.7150/jca.18435] [PMID: 28638458]
[611]
Rezzoug M, Bakchiche B, Gherib A, et al. Chemical composition and bioactivity of essential oils and Ethanolic extracts of Ocimum basilicum L. and Thymus algeriensis Boiss. & Reut. from the Algerian Saharan Atlas. BMC Complement Altern Med 2019; 19(1): 146.
[http://dx.doi.org/10.1186/s12906-019-2556-y] [PMID: 31227024]
[612]
de Lima VT, Vieira MC, Kassuya CA, et al. Chemical composition and free radical-scavenging, anticancer and anti-inflammatory activities of the essential oil from Ocimum kilimandscharicum. Phytomedicine 2014; 21(11): 1298-302.
[http://dx.doi.org/10.1016/j.phymed.2014.07.004] [PMID: 25172793]
[613]
Jamali T, Kavoosi G, Ardestani SK. In-vitro and in-vivo anti-breast cancer activity of OEO (Oliveria decumbens vent essential oil) through promoting the apoptosis and immunomodulatory effects. J Ethnopharmacol 2020; 248: 112313.
[http://dx.doi.org/10.1016/j.jep.2019.112313] [PMID: 31655147]
[614]
Yang J, Lee YJ, Kwon YS, Kim MJ. Anticancer activity of an Oplopanax elatus stem extract and biologically active isolated compounds. Curr Pharm Biotechnol 2018; 19(3): 258-64.
[http://dx.doi.org/10.2174/1389201019666180515105447] [PMID: 29766799]
[615]
Ahmed SB, Hamed MS, Khiralla GM, Mohamed AF. Cactus and lupin extracts as prospective anticancer agents compared with utoral drug. J Food Biochem 2020; 44(8): e13299.
[http://dx.doi.org/10.1111/jfbc.13299] [PMID: 32488919]
[616]
Tajaldini M, Samadi F, Khosravi A, Ghasemnejad A, Asadi J. Protective and anticancer effects of orange peel extract and naringin in doxorubicin treated esophageal cancer stem cell xenograft tumor mouse model. Biomed Pharmacother 2020; 121: 109594.
[http://dx.doi.org/10.1016/j.biopha.2019.109594] [PMID: 31707344]
[617]
Ali H, Al-Khalifa AR, Aouf A, Boukhebti H, Farouk A. Effect of nanoencapsulation on volatile constituents, and antioxidant and anticancer activities of Algerian Origanum glandulosum Desf. essential oil. Sci Rep 2020; 10(1): 2812.
[http://dx.doi.org/10.1038/s41598-020-59686-w] [PMID: 32071359]
[618]
Tuncer E, Unver-Saraydin S, Tepe B, et al. Antitumor effects of Origanum acutidens extracts on human breast cancer. J BUON 2013; 18(1): 77-85.
[PMID: 23613392]
[619]
Thoppil RJ, Harlev E, Mandal A, Nevo E, Bishayee A. Antitumor activities of extracts from selected desert plants against HepG2 human hepatocellular carcinoma cells. Pharm Biol 2013; 51(5): 668-74.
[http://dx.doi.org/10.3109/13880209.2012.749922] [PMID: 23368935]
[620]
Al Dhaheri Y, Attoub S, Arafat K, et al. Anti-metastatic and anti-tumor growth effects of Origanum majorana on highly metastatic human breast cancer cells: inhibition of NFκB signaling and reduction of nitric oxide production. PLoS One 2013; 8(7): e68808.
[http://dx.doi.org/10.1371/journal.pone.0068808] [PMID: 23874773]
[621]
Spyridopoulou K, Fitsiou E, Bouloukosta E, et al. Extraction, chemical composition, and anticancer potential of Origanum onites L. essential oil. Molecules 2019; 24(14): 2612.
[http://dx.doi.org/10.3390/molecules24142612] [PMID: 31323754]
[622]
Ayesh BM, Abed AA, Faris DM. In vitro inhibition of human leukemia THP-1 cells by Origanum syriacum L. and Thymus vulgaris L. extracts. BMC Res Notes 2014; 7(1): 612.
[http://dx.doi.org/10.1186/1756-0500-7-612] [PMID: 25194985]
[623]
Rubin B, Manso J, Monticelli H, et al. Crude extract of Origanum vulgare L. induced cell death and suppressed MAPK and PI3/Akt signaling pathways in SW13 and H295R cell lines. Nat Prod Res 2019; 33(11): 1646-9.
[http://dx.doi.org/10.1080/14786419.2018.1425846] [PMID: 29334260]
[624]
Elshafie HS, Armentano MF, Carmosino M, Bufo SA, De Feo V, Camele I. Cytotoxic activity of Origanum vulgare L. on hepatocellular carcinoma cell line HepG2 and evaluation of its biological activity. Molecules 2017; 22(9): 1435.
[http://dx.doi.org/10.3390/molecules22091435] [PMID: 28867805]
[625]
Koyuncu I, Gönel A, Akdağ A, Yilmaz MA. Identification of phenolic compounds, antioxidant activity and anti-cancer effects of the extract obtained from the shoots of Ornithogalum narbonense L. Cell Mol Biol 2018; 64(1): 75-83.
[http://dx.doi.org/10.14715/cmb/2018.64.1.14] [PMID: 29412798]
[626]
Suhaimi SH, Hasham R, Hafiz Idris MK, Ismail HF, Mohd Ariffin NH, Abdul Majid FA. Optimization of ultrasound-assisted extraction conditions followed by solid phase extraction fractionation from Orthosiphon stamineus Benth (Lamiace) leaves for antiproliferative effect on prostate cancer cells. Molecules 2019; 24(22): 4183.
[http://dx.doi.org/10.3390/molecules24224183] [PMID: 31752230]
[627]
Schmidt M, Skaf J, Gavril G, et al. The influence of Osmunda regalis root extract on head and neck cancer cell proliferation, invasion and gene expression. BMC Complement Altern Med 2017; 17(1): 518.
[http://dx.doi.org/10.1186/s12906-017-2009-4] [PMID: 29202741]
[628]
An EJ, Kim Y, Lee SH, Ko HM, Chung WS, Jang HJ. Anti- Cancer Potential of Oxialis obtriangulata in Pancreatic Cancer Cell through Regulation of the ERK/Src/STAT3-Mediated Pathway. Molecules 2020; 25(10): 2301.
[http://dx.doi.org/10.3390/molecules25102301] [PMID: 32422890]
[629]
Pradhan N, Parbin S, Kausar C, et al. Paederia foetida induces anticancer activity by modulating chromatin modification enzymes and altering pro-inflammatory cytokine gene expression in human prostate cancer cells. Food Chem Toxicol 2019; 130: 161-73.
[http://dx.doi.org/10.1016/j.fct.2019.05.016] [PMID: 31112703]
[630]
Lee SM, Li ML, Tse YC, et al. Paeoniae Radix, a Chinese herbal extract, inhibit hepatoma cells growth by inducing apoptosis in a p53 independent pathway. Life Sci 2002; 71(19): 2267-77.
[http://dx.doi.org/10.1016/S0024-3205(02)01962-8] [PMID: 12215374]
[631]
Li C, Yazawa K, Kondo S, et al. The root bark of Paeonia moutan is a potential anticancer agent in human oral squamous cell carcinoma cells. Anticancer Res 2012; 32(7): 2625-30.
[PMID: 22753719]
[632]
Kim D, Radin D, Leonardi D. Probing the molecular mechanisms governing the oncolytic activity of Paeonia suffruticosa on triple-negative breast cancer cells in vitro. Anticancer Res 2017; 37(9): 4813-9.
[http://dx.doi.org/10.21873/anticanres.11041] [PMID: 28870900]
[633]
Saleh AM, Al-Qudah MA, Nasr A, Rizvi SA, Borai A, Daghistani M. Comprehensive analysis of the chemical composition and In vitro cytotoxic mechanisms of Pallines spinosa flower and leaf essential oils against breast cancer cells. Cell Physiol Biochem 2017; 42(5): 2043-65.
[http://dx.doi.org/10.1159/000479900] [PMID: 28803233]
[634]
Pavithra PS, Mehta A, Verma RS. Induction of apoptosis by essential oil from P. missionis in skin epidermoid cancer cells. Phytomedicine 2018; 50: 184-95.
[http://dx.doi.org/10.1016/j.phymed.2017.11.004] [PMID: 30466977]
[635]
Wang L, Xu J, Yan Y, Liu H, Li F. Synthesis of gold nanoparticles from leaf Panax notoginseng and its anticancer activity in pancreatic cancer PANC-1 cell lines. Artif Cells Nanomed Biotechnol 2019; 47(1): 1216-23.
[http://dx.doi.org/10.1080/21691401.2019.1593852] [PMID: 30942628]
[636]
Tayoub G, Al-Odat M, Amer A, Aljapawe A, Ekhtiar A. Antiproliferative effects of Pancratium maritimum extracts on normal and cancerous cells. Iran J Med Sci 2018; 43(1): 52-64.
[PMID: 29398752]
[637]
Raj GG, Varghese HS, Kotagiri S, Vrushabendra Swamy BM, Swamy A, Pathan RK. Anticancer studies of aqueous extract of roots and leaves of Pandanus odoratissimus f. ferreus (Y. Kimura) Hatus: an In vitro approach. J Tradit Complement Med 2014; 4(4): 279-84.
[http://dx.doi.org/10.4103/2225-4110.129199] [PMID: 25379472]
[638]
Li Y, Gu JF, Zou X, et al. The anti-lung cancer activities of steroidal saponins of P. polyphylla Smith var. chinensis (Franch.) Hara through enhanced immunostimulation in experimental Lewis tumor-bearing C57BL/6 mice and induction of apoptosis in the A549 cell line. Molecules 2013; 18(10): 12916-36.
[http://dx.doi.org/10.3390/molecules181012916] [PMID: 24141243]
[639]
Xia C, Chen L, Sun W, et al. Total saponins from Paris forrestii (Takht) H. Li. show the anticancer and RNA expression regulating effects on prostate cancer cells. Biomed Pharmacother 2020; 121: 109674.
[http://dx.doi.org/10.1016/j.biopha.2019.109674] [PMID: 31810132]
[640]
Lin J, Cai QY, Xu W, Lin JM, Peng J. Chemical composition, anticancer, anti-neuroinflammatory, and antioxidant activities of the essential oil of Patrinia scabiosaefolia. Chin J Integr Med 2018; 24(3): 207-12.
[http://dx.doi.org/10.1007/s11655-016-2459-4] [PMID: 27586471]
[641]
Thi-Kim Nguyen Y, Moon JY, Ryu JY, Eum S, Bach TT, Cho SK. Methanol extract of aerial parts of Pavetta indica L. enhances the cytotoxic effect of doxorubicin and induces radiation sensitization in MDA-MB-231 triple-negative breast cancer cells. Molecules 2019; 24(12): 2273.
[http://dx.doi.org/10.3390/molecules24122273] [PMID: 31216782]
[642]
Okeleye BI, Mkwetshana NT, Ndip RN. In-vitro assessment of the antiproliferative and apoptotic potential of the ethyl acetate extract of Peltophorum africanum on different cancer cell lines. Iranian journal of pharmaceutical research. IJPR 2017; 16(2): 714.
[PMID: 28979326]
[643]
Wei LS, Wee W, Siong JY, Syamsumir DF. Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Med Iran 2011; 49(10): 670-4.
[PMID: 22071643]
[644]
Mohd-Salleh SF, Wan-Ibrahim WS, Ismail N. Pereskia bleo Leaves Extract Induces Cell Death via Cell Cycle Arrest and Apoptosis in Cervical Cancer Cells HeLa. Nutr Cancer 2020; 72(5): 826-34.
[http://dx.doi.org/10.1080/01635581.2019.1654530] [PMID: 31433251]
[645]
Lin CS, Kuo CL, Wang JP, Cheng JS, Huang ZW, Chen CF. Growth inhibitory and apoptosis inducing effect of Perilla frutescens extract on human hepatoma HepG2 cells. J Ethnopharmacol 2007; 112(3): 557-67.
[http://dx.doi.org/10.1016/j.jep.2007.05.008] [PMID: 17574356]
[646]
Wang Y, Huang X, Han J, Zheng W, Ma W. Extract of Perilla frutescens inhibits tumor proliferation of HCC via PI3K/AKT signal pathway. Afr J Tradit Complement Altern Med 2012; 10(2): 251-7.
[PMID: 24146448]
[647]
Devi Khwairakpam A, Monisha J, Roy NK, et al. Vietnamese coriander inhibits cell proliferation, survival and migration via suppression of Akt/mTOR pathway in oral squamous cell carcinoma. J Basic Clin Physiol Pharmacol 2019; 31(3)
[http://dx.doi.org/10.1515/jbcpp-2019-0162] [PMID: 31747377]
[648]
Kim HJ, Park SY, Lee HM, Seo DI, Kim YM. Antiproliferative effect of the methanol extract from the roots of Petasites japonicus on Hep3B hepatocellular carcinoma cells in vitro and in vivo. Exp Ther Med 2015; 9(5): 1791-6.
[http://dx.doi.org/10.3892/etm.2015.2296] [PMID: 26136894]
[649]
Yadegari S, Saidijam M, Moradi M, Dastan D, Mahdavinezhad A. Aerial parts of peucedanum chenur have anti-cancer properties through the induction of apoptosis and inhibition of invasion in human colorectal cancer cells. Iran Biomed J 2020; 24(5): 314-23.
[http://dx.doi.org/10.29252/ibj.24.5.309] [PMID: 32429645]
[650]
Kumar S, Sharma VK, Yadav S, Dey S. Antiproliferative and apoptotic effects of black turtle bean extracts on human breast cancer cell line through extrinsic and intrinsic pathway. Chem Cent J 2017; 11(1): 56.
[http://dx.doi.org/10.1186/s13065-017-0281-5] [PMID: 29086840]
[651]
Moreno-Jiménez MR, López-Barraza R, Cervantes-Cardoza V, et al. Mechanisms associated to apoptosis of cancer cells by phenolic extracts from two canned common beans varieties (Phaseolus vulgaris L.). J Food Biochem 2019; 43(6): e12680.
[http://dx.doi.org/10.1111/jfbc.12680] [PMID: 31353616]
[652]
Oves M, Aslam M, Rauf MA, et al. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater Sci Eng C 2018; 89: 429-43.
[http://dx.doi.org/10.1016/j.msec.2018.03.035] [PMID: 29752116]
[653]
Al Alawi R, Alhamdani MSS, Hoheisel JD, Baqi Y. Antifibrotic and tumor microenvironment modulating effect of date palm fruit (Phoenix dactylifera L.) extracts in pancreatic cancer. Biomed Pharmacother 2020; 121: 109522.
[http://dx.doi.org/10.1016/j.biopha.2019.109522] [PMID: 31675539]
[654]
Mirza MB, Elkady AI, Al-Attar AM, Syed FQ, Mohammed FA, Hakeem KR. Induction of apoptosis and cell cycle arrest by ethyl acetate fraction of Phoenix dactylifera L. (Ajwa dates) in prostate cancer cells. J Ethnopharmacol 2018; 218: 35-44.
[http://dx.doi.org/10.1016/j.jep.2018.02.030] [PMID: 29476962]
[655]
Mohamed SI, Jantan I, Nafiah MA, Seyed MA, Chan KM. Lignans and polyphenols of phyllanthus amarus schumach and thonn induce apoptosis in HCT116 human colon cancer cells through caspases–dependent pathway. Curr Pharm Biotechnol 2020.
[http://dx.doi.org/10.2174/1389201021666200612173029] [PMID: 32532192]
[656]
Perera D, Soysa P, Wijeratne S. Polyphenols contribute to the antioxidant and antiproliferative activity of Phyllanthus debilis plant in-vitro. BMC Complement Altern Med 2016; 16(1): 339.
[http://dx.doi.org/10.1186/s12906-016-1324-5] [PMID: 27586856]
[657]
Huang ST, Pang JH, Yang RC. Anti-cancer effects of Phyllanthus urinaria and relevant mechanisms. Chang Gung Med J 2010; 33(5): 477-87.
[PMID: 20979698]
[658]
Ramasamy S, Abdul Wahab N, Zainal Abidin N, Manickam S. Effect of extracts from Phyllanthus watsonii Airy Shaw on cell apoptosis in cultured human breast cancer MCF-7 cells. Exp Toxicol Pathol 2013; 65(3): 341-9.
[http://dx.doi.org/10.1016/j.etp.2011.11.005] [PMID: 22217449]
[659]
Jung S, Shin J, Oh J, et al. Cytotoxic and apoptotic potential of Phyllodium elegans extracts on human cancer cell lines. Bioengineered 2019; 10(1): 501-12.
[http://dx.doi.org/10.1080/21655979.2019.1682110] [PMID: 31633448]
[660]
Leong OK, Muhammad TS, Sulaiman SF. Cytotoxic activities of Physalis minima L. chloroform extract on human lung adenocarcinoma NCI-H23 cell lines by induction of apoptosis. Evidence-Based Complementary and Alternative Medicine 2011; 2011.
[661]
Mier-Giraldo H, Díaz-Barrera LE, Delgado-Murcia LG, Valero- Valdivieso MF, Cáez-Ramírez G. Cytotoxic and immunomodulatory potential activity of Physalis peruviana fruit extracts on cervical cancer (HeLa) and fibroblast (L929) cells. J Evid Based Complementary Altern Med 2017; 22(4): 777-87.
[http://dx.doi.org/10.1177/2156587217718751] [PMID: 28719984]
[662]
Xie DP, Gong YX, Jin YH, et al. Anti-tumor Properties of Picrasma quassioides Extracts in H-RasG12V Liver Cancer Are Mediated Through ROS-dependent Mitochondrial Dysfunction. Anticancer Res 2020; 40(7): 3819-30.
[http://dx.doi.org/10.21873/anticanres.14371] [PMID: 32620621]
[663]
Jo JR, Park JS, Park YK, et al. Pinus densiflora leaf essential oil induces apoptosis via ROS generation and activation of caspases in YD-8 human oral cancer cells. Int J Oncol 2012; 40(4): 1238-45.
[http://dx.doi.org/10.3892/ijo.2011.1263] [PMID: 22086183]
[664]
Basholli-Salihu M, Schuster R, Hajdari A, et al. Phytochemical composition, anti-inflammatory activity and cytotoxic effects of essential oils from three Pinus spp. Pharm Biol 2017; 55(1): 1553-60.
[http://dx.doi.org/10.1080/13880209.2017.1309555] [PMID: 28385055]
[665]
Ma H, Liu B, Feng D, et al. Pinus massoniana bark extract selectively induces apoptosis in human hepatoma cells, possibly through caspase-dependent pathways. Int J Mol Med 2010; 25(5): 751-9.
[PMID: 20372819]
[666]
Macedo AL, da Silva DPD, Moreira DL, et al. Cytotoxicity and selectiveness of Brazilian Piper species towards oral carcinoma cells. Biomed Pharmacother 2019; 110: 342-52.
[http://dx.doi.org/10.1016/j.biopha.2018.11.129] [PMID: 30529767]
[667]
Bezerra DP, Ferreira PM, Machado CM, et al. Antitumour efficacy of Piper tuberculatum and piplartine based on the hollow fiber assay. Planta Med 2015; 81(1): 15-9.
[PMID: 25519832]
[668]
Iwamoto LH, Vendramini-Costa DB, Monteiro PA, et al. Anticancer and anti-inflammatory activities of a standardized dichloromethane extract from Piper umbellatum L. leaves. Evidence-Based Complementary and Alternative Medicine 2015; 2015.
[669]
Koyuncu İ, Gönel A, Temiz E, Karaoğul E, Uyar Z. Pistachio green hull extract induces apoptosis through multiple signaling pathways by causing oxidative stress on colon cancer cells. Anticancer Agents Med Chem 2020..
[http://dx.doi.org/10.2174/1871520620999200730155524] [PMID: 32748756]
[670]
Pasban-Aliabadi H, Sobhani V, Esmaeili-Mahani S, Najafipour H, Askari A, Jalalian H. Effects of Baneh (Pistacia atlantica) gum on human breast cancer cell line (MCF-7) and its interaction with anticancer drug doxorubicin. Iran J Pharm Res 2019; 18(4): 1959-66.
[PMID: 32184861]
[671]
Bibi Y, Nisa S, Zia M, Waheed A, Ahmed S, Chaudhary MF. The study of anticancer and antifungal activities of pistacia integerrima extract in vitro. Indian J Pharm Sci 2012; 74(4): 375-9.
[http://dx.doi.org/10.4103/0250-474X.107085] [PMID: 23626397]
[672]
Yemmen M, Landolsi A, Mégraud F. Antioxidant activities, anticancer activity and polyphenolics profile, of leaf, fruit and stem extracts of Pistacia lentiscus from Tunisia. Cellular and molecular biology (Noisy-le-Grand, France) 2017; 63(9): 87-95.
[http://dx.doi.org/10.14715/cmb/2017.63.9.16]
[673]
Spyridopoulou K, Tiptiri-Kourpeti A, Lampri E, et al. Dietary mastic oil extracted from Pistacia lentiscus var. chia suppresses tumor growth in experimental colon cancer models. Sci Rep 2017; 7(1): 3782.
[http://dx.doi.org/10.1038/s41598-017-03971-8] [PMID: 28630399]
[674]
Nyongbela KD, Lannang AM, Ayimele GA, Ngemenya MN, Bickle Q, Efange S. Isolation and identification of an antiparasitic triterpenoid estersaponin from the stem bark of Pittosporum mannii (Pittosporaceae). Asian Pac J Trop Dis 2013; 3(5): 389-92.
[http://dx.doi.org/10.1016/S2222-1808(13)60089-4]
[675]
Mahomoodally MF, Picot-Allain C, Hosenally M, et al. Multi-targeted potential of Pittosporum senacia Putt.: HPLC-ESI-MSn analysis, in silico docking, DNA protection, antimicrobial, enzyme inhibition, anti-cancer and apoptotic activity. Comput Biol Chem 2019; 83: 107114.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107114] [PMID: 31493741]
[676]
Krifa M, El Meshri SE, Bentouati N, et al. In vitro and in vivo anti-melanoma effects of Pituranthos tortuosus essential oil via inhibition of FAK and Src activities. J Cell Biochem 2016; 117(5): 1167-75.
[http://dx.doi.org/10.1002/jcb.25400] [PMID: 26477879]
[677]
Rahamooz-Haghighi S, Bagheri K, Sharafi A, Danafar H. Establishment and elicitation of transgenic root culture of Plantago lanceolata and evaluation of its anti-bacterial and cytotoxicity activity. Prep Biochem Biotechnol 2020; 1-18.
[http://dx.doi.org/10.1080/10826068.2020.1805757] [PMID: 32845793]
[678]
Patel MK, Tanna B, Mishra A, Jha B. Physicochemical characterization, antioxidant and anti-proliferative activities of a polysaccharide extracted from psyllium (P. ovata) leaves. Int J Biol Macromol 2018; 118(Pt A): 976-87.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.139] [PMID: 29964112]
[679]
Yu JS, Kim AK. Platycodin D induces apoptosis in MCF-7 human breast cancer cells. J Med Food 2010; 13(2): 298-305.
[http://dx.doi.org/10.1089/jmf.2009.1226] [PMID: 20412017]
[680]
Lee JY, Hwang WI, Lim ST. Antioxidant and anticancer activities of organic extracts from Platycodon grandiflorum A. De Candolle roots. J Ethnopharmacol 2004; 93(2-3): 409-15.
[http://dx.doi.org/10.1016/j.jep.2004.04.017] [PMID: 15234786]
[681]
Zaitun Hasibuan PA, Sumaiyah S. The anti-proliferative and pro-apoptotic properties of ethanol Plectranthus amboinicus (Lour.) Spreng. leaves ethanolic extract nanoparticles on T47D cell lines. Asian Pac J Cancer Prev 2019; 20(3): 897-901.
[http://dx.doi.org/10.31557/APJCP.2019.20.3.897] [PMID: 30912412]
[682]
Xu WW, Li B, Lai ET, et al. Water extract from Pleurotus pulmonarius with antioxidant activity exerts in vivo chemoprophylaxis and chemosensitization for liver cancer. Nutr Cancer 2014; 66(6): 989-98.
[http://dx.doi.org/10.1080/01635581.2014.936950] [PMID: 25072857]
[683]
Cho CL, Lee YZ, Tseng CN, et al. Hexane fraction of Pluchea indica root extract inhibits proliferation and induces autophagy in human glioblastoma cells. Biomed Rep 2017; 7(5): 416-22.
[http://dx.doi.org/10.3892/br.2017.979] [PMID: 29181154]
[684]
Gridling M, Stark N, Madlener S, et al. In vitro anti-cancer activity of two ethno-pharmacological healing plants from Guatemala Pluchea odorata and Phlebodium decumanum. Int J Oncol 2009; 34(4): 1117-28.
[PMID: 19287970]
[685]
Patel MS, Antala BV, Dowerah E, Senthilkumar R, Lahkar M. Antitumor activity of Pogostemon benghalensis Linn. on ehrlich ascites carcinoma tumor bearing mice. J Cancer Res Ther 2014; 10(4): 1071-5.
[http://dx.doi.org/10.4103/0973-1482.138014] [PMID: 25579556]
[686]
Machana S, Weerapreeyakul N, Barusrux S. Anticancer effect of the extracts from Polyalthia evecta against human hepatoma cell line (HepG2). Asian Pac J Trop Biomed 2012; 2(5): 368-74.
[http://dx.doi.org/10.1016/S2221-1691(12)60058-6] [PMID: 23569932]
[687]
Vijayarathna S, Oon CE, Chen Y, Kanwar JR, Sasidharan S. Polyalthia longifolia Methanolic Leaf Extracts (PLME) induce apoptosis, cell cycle arrest and mitochondrial potential depolarization by possibly modulating the redox status in hela cells. Biomed Pharmacother 2017; 89: 499-514.
[http://dx.doi.org/10.1016/j.biopha.2017.02.075] [PMID: 28249252]
[688]
Paul S, Bhattacharyya SS, Samaddar A, Boujedaini N, Khuda-Bukhsh AR. Anticancer potentials of root extract of Polygala senega against benzo[a]pyrene-induced lung cancer in mice. J Chin Integr Med 2011; 9(3): 320-7.
[http://dx.doi.org/10.3736/jcim20110314] [PMID: 21419086]
[689]
Yao H, Cui P, Xu D, Liu Y, Tian Q, Zhang F. A water-soluble polysaccharide from the roots of Polygala tenuifolia suppresses ovarian tumor growth and angiogenesis in vivo. Int J Biol Macromol 2018; 107(Pt A): 713-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.043] [PMID: 28923567]
[690]
Kumar Singh S, Patra A. Evaluation of phenolic composition, antioxidant, anti-inflammatory and anticancer activities of Polygonatum verticillatum (L.). J Integr Med 2018; 16(4): 273-82.
[http://dx.doi.org/10.1016/j.joim.2018.04.005] [PMID: 29706573]
[691]
Cha MR, Yoon MY, Son ES, Park HR. Selective cytotoxicity of Ponciri Fructus against glucose-deprived PANC-1 human pancreatic cancer cells via blocking activation of GRP78. Biosci Biotechnol Biochem 2009; 73(10): 2167-71.
[http://dx.doi.org/10.1271/bbb.90235] [PMID: 19809193]
[692]
da Silva EB, Matsuo AL, Figueiredo CR, Chaves MH, Sartorelli P, Lago JH. Chemical constituents and cytotoxic evaluation of essential oils from leaves of Porcelia macrocarpa (Annonaceae). Natural Product Communications 2013; 8(2): 1934578X1300800237.
[693]
Farshori NN, Al-Sheddi ES, Al-Oqail MM, Musarrat J, Al-Khedhairy AA, Siddiqui MA. Cytotoxicity assessments of Portulaca oleracea and Petroselinum sativum seed extracts on human hepatocellular carcinoma cells (HepG2). Asian Pac J Cancer Prev 2014; 15(16): 6633-8.
[http://dx.doi.org/10.7314/APJCP.2014.15.16.6633] [PMID: 25169500]
[694]
Yu HJ, Ahn CH, Yang IH, et al. Apoptosis induced by methanol extract of Potentilla discolor in human mucoepidermoid carcinoma cells through STAT3/PUMA signaling axis. Mol Med Rep 2018; 17(4): 5258-64.
[PMID: 29363716]
[695]
Barrios J, Cordero CP, Aristizabal F, Heredia FJ, Morales AL, Osorio C. Chemical analysis and screening as anticancer agent of anthocyanin-rich extract from Uva Caimarona ( Pourouma cecropiifolia Mart.) fruit. J Agric Food Chem 2010; 58(4): 2100-10.
[http://dx.doi.org/10.1021/jf9041497] [PMID: 20121190]
[696]
Abi-Rizk A, Rayess YE, Iriti M, Tabet E, Mezher R, Beyrouthy ME. Chemical composition, antitumor and antioxidant effects of four lebanese plants extracts on human pulmonary adenocarcinoma. Nat Prod Res 2020; 1-4.
[http://dx.doi.org/10.1080/14786419.2020.1737056] [PMID: 32146843]
[697]
Hao J, Ding XL, Yang X, Wu XZ. Prunella vulgaris polysaccharide inhibits growth and migration of breast carcinoma-associated fibroblasts by suppressing expression of basic fibroblast growth factor. Chin J Integr Med 2020; 26(4): 270-6.
[http://dx.doi.org/10.1007/s11655-016-2587-x] [PMID: 27586473]
[698]
Gao W, Xu HLYLYLY, Li Y, Liu Y, Xu Y. Root extract of Prunella vulgaris inhibits In vitro and in vivo carcinogenesis in MCF-5 human breast carcinoma via suppression of angiogenesis, induction of apoptosis, cell cycle arrest and modulation of PI3K/AKT signalling pathway. J BUON 2019; 24(2): 549-54.
[PMID: 31128004]
[699]
Kim A, Lee SY, Seo CS, Chung SK. Prunellae spica extract suppresses teratoma formation of pluripotent stem cells through p53-mediated apoptosis. Nutrients 2020; 12(3): 721.
[http://dx.doi.org/10.3390/nu12030721] [PMID: 32182802]
[700]
Yu MH, Im HG, Lee SO, Sung C, Park DC, Lee IS. Induction of apoptosis by immature fruits of Prunus salicina Lindl. cv. Soldam in MDA-MB-231 human breast cancer cells. Int J Food Sci Nutr 2007; 58(1): 42-53.
[http://dx.doi.org/10.1080/09637480601121938] [PMID: 17415955]
[701]
Bailly C. Anticancer properties of Prunus mume extracts (Chinese plum, Japanese apricot). J Ethnopharmacol 2020; 246: 112215.
[http://dx.doi.org/10.1016/j.jep.2019.112215] [PMID: 31491438]
[702]
Rizzo LY, Longato GB, Ruiz AL, et al. In vitro, in vivo and in silico analysis of the anticancer and estrogen-like activity of guava leaf extracts. Curr Med Chem 2014; 21(20): 2322-30.
[http://dx.doi.org/10.2174/0929867321666140120120031] [PMID: 24438525]
[703]
Park GH, Sung JH, Song HM, Jeong JB. Anti-cancer activity of Psoralea fructus through the downregulation of cyclin D1 and CDK4 in human colorectal cancer cells. BMC Complement Altern Med 2016; 16(1): 373.
[http://dx.doi.org/10.1186/s12906-016-1364-x] [PMID: 27670681]
[704]
Kwon HJ, Hong YK, Kim KH, et al. Methanolic extract of Pterocarpus santalinus induces apoptosis in HeLa cells. J Ethnopharmacol 2006; 105(1-2): 229-34.
[http://dx.doi.org/10.1016/j.jep.2005.10.025] [PMID: 16326057]
[705]
Pereira MF, DE Almeida Simão T, Dalmau SR, Albano RM, Coelho MG, DE Carvalho Sabino KC. Pterodon pubescens seed extract induces the cell cycle arrest of leukemic cells by deregulating cyclin D1 and E2 mRNA levels. Oncol Lett 2010; 1(3): 533-6.
[http://dx.doi.org/10.3892/ol_00000094] [PMID: 22966338]
[706]
Tripathi SK, Biswal BK. Pterospermum acerifolium (L.) wild bark extract induces anticarcinogenic effect in human cancer cells through mitochondrial-mediated ROS generation. Mol Biol Rep 2018; 45(6): 2283-94.
[http://dx.doi.org/10.1007/s11033-018-4390-6] [PMID: 30267191]
[707]
Satpathy S, Patra A, Ahirwar B, Delwar Hussain M. Antioxidant and anticancer activities of green synthesized silver nanoparticles using aqueous extract of tubers of Pueraria tuberosa. Artificial cells, nanomedicine, and biotechnology 2018; 46(sup3): S71-85.
[http://dx.doi.org/10.1080/21691401.2018.1489265]
[708]
Adedapo AA, Fagbohun OA, Dawurung C, Oyagbemi AA, Omobowale TO, Yakubu MA. The aqueous tuber extract of Pueraria tuberosa (Willd.) D.C. caused cytotoxic effect on HT 29 cell lines with down regulation of nuclear factor-kappa B (NF-κB). J Complement Integr Med 2017; 16: (4).
[http://dx.doi.org/10.1515/jcim-2016-0119] [PMID: 29045235]
[709]
Saratale RG, Shin HS, Kumar G, Benelli G, Kim DS, Saratale GD. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artif Cells Nanomed Biotechnol 2018; 46(1): 211-22.
[http://dx.doi.org/10.1080/21691401.2017.1337031] [PMID: 28612655]
[710]
Chaves FM, Pavan ICB, da Silva LGS, et al. Pomegranate juice and peel extracts are able to inhibit proliferation, migration and colony formation of prostate cancer cell lines and modulate the Akt/mTOR/S6K signaling pathway. Plant Foods Hum Nutr 2020; 75(1): 54-62.
[http://dx.doi.org/10.1007/s11130-019-00776-0] [PMID: 31838616]
[711]
Deng Y, Li Y, Yang F, et al. The extract from Punica granatum (pomegranate) peel induces apoptosis and impairs metastasis in prostate cancer cells. Biomed Pharmacother 2017; 93: 976-84.
[http://dx.doi.org/10.1016/j.biopha.2017.07.008] [PMID: 28724216]
[712]
Esther Lydia D, Khusro A, Immanuel P, Esmail GA, Al-Dhabi NA, Arasu MV. Photo-activated synthesis and characterization of gold nanoparticles from Punica granatum L. seed oil: An assessment on antioxidant and anticancer properties for functional yoghurt nutraceuticals. J Photochem Photobiol B 2020; 206: 111868.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111868] [PMID: 32259745]
[713]
Balkrishna A, Sharma VK, Das SK, et al. Characterization and anti-cancerous effect of Putranjiva roxburghii seed extract mediated silver nanoparticles on human colon (HCT-116), pancreatic (PANC-1) and breast (MDA-MB 231) cancer cell lines: A comparative study. Int J Nanomedicine 2020; 15: 573-85.
[http://dx.doi.org/10.2147/IJN.S230244] [PMID: 32158209]
[714]
Moradi MT, Karimi A, Alidadi S. In vitro antiproliferative and apoptosis-inducing activities of crude ethyle alcohole extract of Quercus brantii L. acorn and subsequent fractions. Chin J Nat Med 2016; 14(3): 196-202.
[http://dx.doi.org/10.1016/S1875-5364(16)30016-4] [PMID: 27025366]
[715]
Bao R, Shu Y, Wu X, et al. Oridonin induces apoptosis and cell cycle arrest of gallbladder cancer cells via the mitochondrial pathway. BMC Cancer 2014; 14(1): 217.
[http://dx.doi.org/10.1186/1471-2407-14-217] [PMID: 24655726]
[716]
Hajebi S, Tabrizi MH, Moghaddam MN, Shahraki F, Yadamani S. Rapeseed flower pollen bio-green synthesized silver nanoparticles: a promising antioxidant, anticancer and antiangiogenic compound. J Biol Inorg Chem 2019; 24(3): 395-404.
[http://dx.doi.org/10.1007/s00775-019-01655-4] [PMID: 30927090]
[717]
Dória GA, Menezes PP, Lima BS, et al. In vivo antitumor effect, induction of apoptosis and safety of Remirea maritima Aubl. (Cyperaceae) extracts. Phytomedicine 2016; 23(9): 914-22.
[http://dx.doi.org/10.1016/j.phymed.2016.05.001] [PMID: 27387399]
[718]
Kim A, Im M, Ma JY. Ethanol extract of Remotiflori radix induces endoplasmic reticulum stress-mediated cell death through AMPK/mTOR signaling in human prostate cancer cells. Sci Rep 2015; 5: 8394.
[http://dx.doi.org/10.1038/srep08394] [PMID: 25670261]
[719]
Wen F, Zhao X, Zhao Y, Lu Z, Guo Q. The anticancer effects of Resina Draconis extract on cholangiocarcinoma. Tumour Biol 2016; 37(11): 15203-10.
[http://dx.doi.org/10.1007/s13277-016-5393-3] [PMID: 27683055]
[720]
Merghoub N, Benbacer L, El Btaouri H. AitBenhassou H, Terryn C, Attaleb M, Madoulet C, Benjouad A, El Mzibri M, Morjani H, Amzazi S. In vitro antiproliferative effect and induction of apoptosis by Retama monosperma L. extract in human cervical cancer cells. Cell Mol Biol 2011; 15: 81-91.
[721]
Kim BR, Ha J, Lee S, Park J, Cho S. Anti-cancer effects of ethanol extract of Reynoutria japonica Houtt. radix in human hepatocellular carcinoma cells via inhibition of MAPK and PI3K/Akt signaling pathways. J Ethnopharmacol 2019; 245: 112179.
[http://dx.doi.org/10.1016/j.jep.2019.112179] [PMID: 31445130]
[722]
Iqbal J, Abbasi BA, Ahmad R, et al. Phytogenic Synthesis of Nickel Oxide Nanoparticles (NiO) Using Fresh Leaves Extract of Rhamnus triquetra (Wall.) and Investigation of Its Multiple In vitro Biological Potentials. Biomedicines 2020; 8(5): 117.
[http://dx.doi.org/10.3390/biomedicines8050117] [PMID: 32408532]
[723]
Skała E, Kowalczyk T, Toma M, et al. Induction of apoptosis in human glioma cell lines of various grades through the ROS-mediated mitochondrial pathway and caspase activation by Rhaponticum carthamoides transformed root extract. Mol Cell Biochem 2018; 445(1-2): 89-97.
[http://dx.doi.org/10.1007/s11010-017-3254-z] [PMID: 29238899]
[724]
Al-Dabbagh B, Elhaty IA, Al Hrout A, et al. Antioxidant and anticancer activities of Trigonella foenum-graecum, Cassia acutifolia and Rhazya stricta. BMC Complement Altern Med 2018; 18(1): 240.
[http://dx.doi.org/10.1186/s12906-018-2285-7] [PMID: 30134897]
[725]
Li WY, Chan SW, Guo DJ, Chung MK, Leung TY, Yu PH. Water extract of Rheum officinale Baill. induces apoptosis in human lung adenocarcinoma A549 and human breast cancer MCF-7 cell lines. J Ethnopharmacol 2009; 124(2): 251-6.
[http://dx.doi.org/10.1016/j.jep.2009.04.030] [PMID: 19397973]
[726]
El-Saied MA, Sobeh M, Abdo W, et al. Rheum palmatum root extract inhibits hepatocellular carcinoma in rats treated with diethylnitrosamine. J Pharm Pharmacol 2018; 70(6): 821-9.
[http://dx.doi.org/10.1111/jphp.12899] [PMID: 29520909]
[727]
Aygün A, Gülbağça F, Nas MS, et al. Biological synthesis of silver nanoparticles using Rheum ribes and evaluation of their anticarcinogenic and antimicrobial potential: A novel approach in phytonanotechnology. J Pharm Biomed Anal 2020; 179: 113012.
[http://dx.doi.org/10.1016/j.jpba.2019.113012] [PMID: 31791838]
[728]
Achakzai JK, Anwar Panezai M, Kakar MA, et al. In vitro anticancer MCF-7, anti-inflammatory, and brine shrimp lethality assay (BSLA) and GC-MS analysis of whole plant butanol fraction of Rheum ribes (WBFRR). BioMed research international 2019; 2019.
[729]
Shiezadeh F, Mousavi SH, Amiri MS, Iranshahi M, Tayarani-Najaran Z, Karimi G. Cytotoxic and apoptotic potential of Rheum turkestanicum Janisch root extract on human cancer and normal cells. Iranian journal of pharmaceutical research. Iran J Pharm Res 2013; 12(4): 811-9.
[PMID: 24523761]
[730]
Fang Y, Ning A, Li S, et al. Polysaccharides extracted from rhizoma pleionis have antitumor properties In vitro and in an H22 mouse hepatoma ascites model in vivo. Int J Mol Sci 2018; 19(5): 1386.
[http://dx.doi.org/10.3390/ijms19051386] [PMID: 29735884]
[731]
Wang S, Zhong Z, Wan J, et al. Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am J Chin Med 2013; 41(1): 177-96.
[http://dx.doi.org/10.1142/S0192415X13500134] [PMID: 23336515]
[732]
Bassa LM, Jacobs C, Gregory K, Henchey E, Ser-Dolansky J, Schneider SS. Rhodiola crenulata induces an early estrogenic response and reduces proliferation and tumorsphere formation over time in MCF7 breast cancer cells. Phytomedicine 2016; 23(1): 87-94.
[http://dx.doi.org/10.1016/j.phymed.2015.11.014] [PMID: 26850689]
[733]
Mishra KP, Padwad YS, Dutta A, et al. Aqueous extract of Rhodiola imbricata rhizome inhibits proliferation of an erythroleukemic cell line K-562 by inducing apoptosis and cell cycle arrest at G2/M phase. Immunobiology 2008; 213(2): 125-31.
[http://dx.doi.org/10.1016/j.imbio.2007.07.003] [PMID: 18241696]
[734]
Mahomoodally MF, Sieniawska E, Sinan KI, et al. Utilisation of Rhododendron luteum Sweet bioactive compounds as valuable source of enzymes inhibitors, antioxidant, and anticancer agents. Food Chem Toxicol 2020; 135: 111052.
[http://dx.doi.org/10.1016/j.fct.2019.111052] [PMID: 31837349]
[735]
Naz S, Tabassum S, Freitas Fernandes N, Mujahid M, Zia M, Carcache de Blanco EJ. Anticancer and antibacterial potential of Rhus punjabensis and CuO nanoparticles. Nat Prod Res 2020; 34(5): 720-5.
[http://dx.doi.org/10.1080/14786419.2018.1495633] [PMID: 30320505]
[736]
El Hasasna H, Saleh A, Al Samri H, et al. Rhus coriaria suppresses angiogenesis, metastasis and tumor growth of breast cancer through inhibition of STAT3, NFκB and nitric oxide pathways. Sci Rep 2016; 6: 21144.
[http://dx.doi.org/10.1038/srep21144] [PMID: 26888313]
[737]
Varela-Rodríguez L, Sánchez-Ramírez B, Rodríguez-Reyna IS, et al. Biological and toxicological evaluation of Rhus trilobata Nutt. (Anacardiaceae) used traditionally in mexico against cancer. BMC Complement Altern Med 2019; 19(1): 153.
[http://dx.doi.org/10.1186/s12906-019-2566-9] [PMID: 31262287]
[738]
Suruga K, Hiruma W, Kadokura K, et al. Antitumour and apoptotic effects of a plant extract mixture containing Rhus verniciflua and other herbs in human leukaemia cells. Drug Res (Stuttg) 2017; 67(2): 127-30.
[PMID: 27626609]
[739]
Bethu MS, Netala VR, Domdi L, Tartte V, Janapala VR. Potential anticancer activity of biogenic silver nanoparticles using leaf extract of Rhynchosia suaveolens: an insight into the mechanism. Artificial cells, nanomedicine, and biotechnology 2018; 46(sup1): 104-14.
[http://dx.doi.org/10.1080/21691401.2017.1414824]
[740]
Shobha N, Nanda N, Giresha AS, et al. Synthesis and characterization of Zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Mater Sci Eng C 2019; 97: 842-50.
[http://dx.doi.org/10.1016/j.msec.2018.12.023] [PMID: 30678976]
[741]
Majumder M, Debnath S, Gajbhiye RL, et al. Ricinus communis L. fruit extract inhibits migration/invasion, induces apoptosis in breast cancer cells and arrests tumor progression in vivo. Sci Rep 2019; 9(1): 14493.
[http://dx.doi.org/10.1038/s41598-019-50769-x] [PMID: 31601896]
[742]
Ozkan A, Erdogan A. Antioxidant and anticancer activity of fresh corm extract from Romulea tempskyana (Iridaceae). Nat Prod Res 2012; 26(22): 2126-8.
[PMID: 22010856]
[743]
Zeng C, Luo S, Feng S, et al. Phenolic Composition, Antioxidant and Anticancer Potentials of Extracts from Rosa banksiae Ait. Flowers. Molecules 2020; 25(13): 3068.
[http://dx.doi.org/10.3390/molecules25133068] [PMID: 32640514]
[744]
Liu W, Li SY, Huang XE, Cui JJ, Zhao T, Zhang H. Inhibition of tumor growth in vitro by a combination of extracts from Rosa roxburghii Tratt and Fagopyrum cymosum. Asian Pac J Cancer Prev 2012; 13(5): 2409-14.
[http://dx.doi.org/10.7314/APJCP.2012.13.5.2409] [PMID: 22901230]
[745]
Pérez-Sánchez A, Barrajón-Catalán E, Ruiz-Torres V, et al. Rosemary (Rosmarinus officinalis) extract causes ROS-induced necrotic cell death and inhibits tumor growth in vivo. Sci Rep 2019; 9(1): 808.
[http://dx.doi.org/10.1038/s41598-018-37173-7] [PMID: 30692565]
[746]
Allegra A, Tonacci A, Pioggia G, Musolino C, Gangemi S. Anticancer activity of Rosmarinus officinalis L.: Mechanisms of action and therapeutic potentials. Nutrients 2020; 12(6): 1739.
[http://dx.doi.org/10.3390/nu12061739] [PMID: 32532056]
[747]
Jaglanian A, Tsiani E. Rosemary extract inhibits proliferation, survival, Akt, and mTOR signaling in triple-negative breast cancer cells. Int J Mol Sci 2020; 21(3): 810.
[http://dx.doi.org/10.3390/ijms21030810] [PMID: 32012648]
[748]
Jardak M, Elloumi-Mseddi J, Aifa S, Mnif S. Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia. Lipids Health Dis 2017; 16(1): 190.
[http://dx.doi.org/10.1186/s12944-017-0580-9] [PMID: 28969677]
[749]
Bhatia A, Singh Buttar H, Arora R, et al. Antiproliferative effects of Roylea cinerea (D. Don) baillon leaves in immortalized L6 rat skeletal muscle cell line: role of reactive oxygen species mediated pathway. Front Pharmacol 2020; 11: 322.
[http://dx.doi.org/10.3389/fphar.2020.00322] [PMID: 32231579]
[750]
Ghandehari S, Tabrizi MH, Ardalan P, Neamati A, Shali R. Green synthesis of silver nanoparticles using Rubia tinctorum extract and evaluation the anti-cancer properties in vitro. IET nanobiotechnology 2018; 13(3): 269-74.
[751]
Sisubalan N, Ramkumar VS, Pugazhendhi A, et al. ROS-mediated cytotoxic activity of ZnO and CeO2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines. Environ Sci Pollut Res Int 2018; 25(11): 10482-92.
[http://dx.doi.org/10.1007/s11356-017-0003-5] [PMID: 28963600]
[752]
George BP, Abrahamse H. Increased oxidative stress induced by rubus bioactive compounds induce apoptotic cell death in human breast cancer cells. Oxidative medicine and cellular longevity 2019; 2019.
[http://dx.doi.org/10.1155/2019/6797921]
[753]
George BPA, Abrahamse H, Hemmaragala NM. Caspase dependent apoptotic inhibition of melanoma and lung cancer cells by tropical Rubus extracts. Biomed Pharmacother 2016; 80: 193-9.
[http://dx.doi.org/10.1016/j.biopha.2016.03.022] [PMID: 27133056]
[754]
Huang YW, Chuang CY, Hsieh YS, et al. Rubus idaeus extract suppresses migration and invasion of human oral cancer by inhibiting MMP-2 through modulation of the Erk1/2 signaling pathway. Environ Toxicol 2017; 32(3): 1037-46.
[http://dx.doi.org/10.1002/tox.22302] [PMID: 27322511]
[755]
Eom T, Kim E, Kim JS. In vitro antioxidant, antiinflammation, and anticancer activities and anthraquinone content from Rumex crispus root extract and fractions. Antioxidants 2020; 9(8): 726.
[http://dx.doi.org/10.3390/antiox9080726] [PMID: 32784977]
[756]
Ahmad S, Ullah F, Zeb A, Ayaz M, Ullah F, Sadiq A. Evaluation of Rumex hastatus D. Don for cytotoxic potential against HeLa and NIH/3T3 cell lines: chemical characterization of chloroform fraction and identification of bioactive compounds. BMC Complement Altern Med 2016; 16(1): 308.
[http://dx.doi.org/10.1186/s12906-016-1302-y] [PMID: 27552817]
[757]
Farooq M, Abutaha N, Mahboob S, Baabbad A, Almoutiri ND, Wadaan MAAM. Investigating the antiangiogenic potential of Rumex vesicarius (humeidh), anticancer activity in cancer cell lines and assessment of developmental toxicity in zebrafish embryos. Saudi J Biol Sci 2020; 27(2): 611-22.
[http://dx.doi.org/10.1016/j.sjbs.2019.11.042] [PMID: 32210679]
[758]
Fadlalla K, Watson A, Yehualaeshet T, Turner T, Samuel T. Ruta graveolens extract induces DNA damage pathways and blocks Akt activation to inhibit cancer cell proliferation and survival. Anticancer Res 2011; 31(1): 233-41.
[PMID: 21273604]
[759]
Rodrigues ACBDC, Oliveira FP, Dias RB, et al. In vitro and in vivo anti-leukemia activity of the stem bark of Salacia impressifolia (Miers) A. C. Smith (Celastraceae). J Ethnopharmacol 2019; 231: 516-24.
[http://dx.doi.org/10.1016/j.jep.2018.11.008] [PMID: 30445109]
[760]
Russo A, Cardile V, Graziano ACE, Avola R, Bruno M, Rigano D. Involvement of Bax and Bcl-2 in induction of apoptosis by essential oils of three Lebanese Salvia species in human prostate cancer cells. Int J Mol Sci 2018; 19(1): 292.
[http://dx.doi.org/10.3390/ijms19010292] [PMID: 29351194]
[761]
Tayarani-Najaran Z, Asili J, Aioubi E, Emami SA. Growth inhibition and apoptosis induction of Salvia chloroleuca on MCF-7 breast cancer cell line. Iranian journal of pharmaceutical research. Iran J Pharm Res 2013; 12(4): 789-99.
[PMID: 24523759]
[762]
Hadavand Mirzaei H, Jassbi AR, Pirhadi S, Firuzi O. Study of the mechanism of action, molecular docking, and dynamics of anticancer terpenoids from Salvia lachnocalyx. J Recept Signal Transduct Res 2020; 40(1): 24-33.
[http://dx.doi.org/10.1080/10799893.2019.1710847] [PMID: 31913736]
[763]
Zhang K, Liu X, Samuel Ravi SOA, et al. Synthesis of silver nanoparticles (AgNPs) from leaf extract of Salvia miltiorrhiza and its anticancer potential in human prostate cancer LNCaP cell lines. Artif Cells Nanomed Biotechnol 2019; 47(1): 2846-54.
[http://dx.doi.org/10.1080/21691401.2019.1638792] [PMID: 31299869]
[764]
Jiang Y, Zhang L, Rupasinghe HP. Antiproliferative effects of extracts from Salvia officinalis L. and Saliva miltiorrhiza Bunge on hepatocellular carcinoma cells. Biomed Pharmacother 2017; 85: 57-67.
[http://dx.doi.org/10.1016/j.biopha.2016.11.113] [PMID: 27930987]
[765]
Paydar M, Wong YL, Moharam BA, Wong WF, Looi CY. In vitro anti-oxidant and anti-cancer activity of methanolic extract from Sanchezia speciosa leaves. Pak J Biol Sci 2013; 16(20): 1212-5.
[http://dx.doi.org/10.3923/pjbs.2013.1212.1215] [PMID: 24506026]
[766]
Choi ES, Kim JS, Kwon KH, Kim HS, Cho NP, Cho SD. Methanol extract of Sanguisorba officinalis L. with cytotoxic activity against PC3 human prostate cancer cells. Mol Med Rep 2012; 6(3): 670-4.
[http://dx.doi.org/10.3892/mmr.2012.949] [PMID: 22710351]
[767]
Wang Z, Loo WT, Wang N, et al. Effect of Sanguisorba officinalis L on breast cancer growth and angiogenesis. Expert opinion on therapeutic targets 2012; 16(sup1): S79-89.
[http://dx.doi.org/10.1517/14728222.2011.642371]
[768]
Akindele AJ, Wani ZA, Sharma S, et al. In vitro and in vivo anticancer activity of root extracts of Sansevieria liberica Gerome and Labroy (Agavaceae). Evidence-Based Complementary and Alternative Medicine 2015; 2015
[769]
Liu M, Chen YL, Kuo YH, Lu MK, Liao CC. Aqueous extract of Sapindus mukorossi induced cell death of A549 cells and exhibited antitumor property in vivo. Sci Rep 2018; 8(1): 4831.
[http://dx.doi.org/10.1038/s41598-018-23096-w] [PMID: 29555954]
[770]
Matusiewicz M, Bączek KB, Kosieradzka I, et al. Effect of Juice and Extracts from Saposhnikovia divaricata Root on the Colon Cancer Cells Caco-2. Int J Mol Sci 2019; 20(18): 4526.
[http://dx.doi.org/10.3390/ijms20184526] [PMID: 31547375]
[771]
Mfotie Njoya E, Munvera AM, Mkounga P, Nkengfack AE, McGaw LJ. Phytochemical analysis with free radical scavenging, nitric oxide inhibition and antiproliferative activity of Sarcocephalus pobeguinii extracts. BMC Complement Altern Med 2017; 17(1): 199.
[http://dx.doi.org/10.1186/s12906-017-1712-5] [PMID: 28376770]
[772]
Loizzo MR, Bonesi M, Passalacqua NG, Saab A, Menichini F, Tundis R. Antiproliferative activities on renal, prostate and melanoma cancer cell lines of Sarcopoterium spinosum aerial parts and its major constituent tormentic acid. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2013; 13(5): 768-76.
[http://dx.doi.org/10.2174/1871520611313050011]
[773]
Patil MP, Jin X, Simeon NC, et al. Anticancer activity of Sasa borealis leaf extract-mediated gold nanoparticles. Artif Cells Nanomed Biotechnol 2018; 46(1): 82-8.
[http://dx.doi.org/10.1080/21691401.2017.1293675] [PMID: 28278576]
[774]
Selek S, Koyuncu I, Caglar HG, et al. The evaluation of antioxidant and anticancer effects of Lepidium Sativum Subsp Spinescens L. methanol extract on cancer cells. Cell Mol Biol 2018; 64(3): 72-80.
[http://dx.doi.org/10.14715/cmb/2018.64.3.12] [PMID: 29506633]
[775]
Yousefzadi M, Riahi-Madvar A, Hadian J, Rezaee F, Rafiee R, Biniaz M. Toxicity of essential oil of Satureja khuzistanica: In vitro cytotoxicity and anti-microbial activity. J Immunotoxicol 2014; 11(1): 50-5.
[http://dx.doi.org/10.3109/1547691X.2013.789939] [PMID: 23662744]
[776]
Esmaeili-Mahani S, Samandari-Bahraseman MR, Yaghoobi MM. In-vitro anti-proliferative and pro-apoptotic properties of Sutureja khuzestanica on human breast cancer cell line (MCF-7) and its synergic effects with anticancer drug vincristine. Iranian journal of pharmaceutical research. Iran J Pharm Res 2018; 17(1): 343-52.
[PMID: 29755565]
[777]
Badisa RB, Badisa VL, Walker EH, Latinwo LM. Potent cytotoxic activity of Saururus cernuus extract on human colon and breast carcinoma cultures under normoxic conditions. Anticancer Res 2007; 27(1A): 189-93.
[PMID: 17352231]
[778]
Alaklabi A, Arif IA, Ahamed A, Surendra Kumar R, Idhayadhulla A. Evaluation of antioxidant and anticancer activities of chemical constituents of the Saururus chinensis root extracts. Saudi J Biol Sci 2018; 25(7): 1387-92.
[http://dx.doi.org/10.1016/j.sjbs.2016.12.021] [PMID: 30505186]
[779]
Batool A, Miana GA, Muddassir M, Khan MA, Zafar S. In vitro cytotoxic, antioxidant, antibacterial and antifungal activity of Saussurea heteromalla indigenous to Pakistan. Pak J Pharm Sci 2019; 32(6(Supplementary)): 2771-7.
[PMID: 32024613]
[780]
Byambaragchaa M, Dela Cruz J, Kh A, Hwang SG. Anticancer potential of an ethanol extract of Saussurea involucrata against hepatic cancer cells in vitro. Asian Pac J Cancer Prev 2014; 15(18): 7527-32.
[http://dx.doi.org/10.7314/APJCP.2014.15.18.7527] [PMID: 25292023]
[781]
Bendaoud H, Romdhane M, Souchard JP, Cazaux S, Bouajila J. Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils. J Food Sci 2010; 75(6): C466-72.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01711.x] [PMID: 20722898]
[782]
Chou CK, Liu W, Hong YJ, et al. Ethyl acetate extract of Scindapsus cf. hederaceus exerts the inhibitory bioactivity on human non-small cell lung cancer cells through modulating ER stress. Int J Mol Sci 2018; 19(7): 1832.
[http://dx.doi.org/10.3390/ijms19071832] [PMID: 29933620]
[783]
Shivhare SC, Patidar AO, Malviya KG, Shivhare-Malviya KK. Antioxidant and anticancer evaluation of Scindapsus officinalis (Roxb.) Schott fruits. Ayu 2011; 32(3): 388-94.
[http://dx.doi.org/10.4103/0974-8520.93921] [PMID: 22529657]
[784]
Tanih NF, Ndip RN. The acetone extract of Sclerocarya birrea (Anacardiaceae) possesses antiproliferative and apoptotic potential against human breast cancer cell lines (MCF-7). Sci World J 2013; 2013.
[785]
Promraksa B, Phetcharaburanin J, Namwat N, Techasen A, Boonsiri P, Loilome W. Evaluation of anticancer potential of Thai medicinal herb extracts against cholangiocarcinoma cell lines. PLoS One 2019; 14(5): e0216721.
[http://dx.doi.org/10.1371/journal.pone.0216721] [PMID: 31120926]
[786]
Lange I, Moschny J, Tamanyan K, et al. Scrophularia orientalis extract induces calcium signaling and apoptosis in neuroblastoma cells. Int J Oncol 2016; 48(4): 1608-16.
[http://dx.doi.org/10.3892/ijo.2016.3373] [PMID: 26848085]
[787]
Orangi M, Pasdaran A, Shanehbandi D, et al. Cytotoxic and apoptotic activities of methanolic subfractions of Scrophularia oxysepala against human breast cancer cell line. Evid-based Complement Altern Med 2016; 2016.
[788]
Ardeshiry Lajimi A, Rezaie-Tavirani M, Mortazavi SA, Barzegar M, Moghadamnia SH, Rezaee MB. Study of anti cancer property of Scrophularia striata extract on the human astrocytoma cell line (1321). Iran J Pharm Res 2010; 9(4): 403-10.
[PMID: 24381605]
[789]
Mansouri M, Moallem SA, Asili J, Etemad L. Cytotoxic and Apoptotic Effects of Scrophularia Umbrosa Dumort Extract on MCF-7 Breast Cancer and 3T3 Cells. Rep Biochem Mol Biol 2019; 8(1): 79-84.
[PMID: 31334292]
[790]
Azadmehr A, Hajiaghaee R, Baradaran B, Haghdoost-Yazdi H. Apoptosis cell death effect of scrophularia variegata on breast cancer cells via mitochondrial intrinsic pathway. Adv Pharm Bull 2015; 5(3): 443-6.
[http://dx.doi.org/10.15171/apb.2015.060] [PMID: 26504768]
[791]
Sato D, Kondo S, Yazawa K, et al. The potential anticancer activity of extracts derived from the roots of Scutellaria baicalensis on human oral squamous cell carcinoma cells. Mol Clin Oncol 2013; 1(1): 105-11.
[http://dx.doi.org/10.3892/mco.2012.14] [PMID: 24649131]
[792]
Yang X, Yang Y, Tang S, et al. Anti-tumor effect of polysaccharides from Scutellaria barbata D. Don on the 95-D xenograft model via inhibition of the C-met pathway. J Pharmacol Sci 2014; 125(3): 255-63.
[http://dx.doi.org/10.1254/jphs.13276FP] [PMID: 25048016]
[793]
Wang L, Xu J, Yan Y, Liu H, Karunakaran T, Li F. Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC-1). Artif Cells Nanomed Biotechnol 2019; 47(1): 1617-27.
[http://dx.doi.org/10.1080/21691401.2019.1594862] [PMID: 31014134]
[794]
Wei LH, Lin JM, Chu JF, Chen HW, Li QY, Peng J. Scutellaria barbata D. Don inhibits colorectal cancer growth via suppression of Wnt/β-catenin signaling pathway. Chin J Integr Med 2017; 23(11): 858-63.
[http://dx.doi.org/10.1007/s11655-017-2775-3] [PMID: 29080197]
[795]
Kim HI, Hong SH, Ku JM, et al. Scutellaria radix promotes apoptosis in non-small cell lung cancer cells via induction of AMPK-dependent autophagy. Am J Chin Med 2019; 47(3): 691-705.
[http://dx.doi.org/10.1142/S0192415X19500368] [PMID: 30974965]
[796]
Samarakoon SR, Shanmuganathan C, Ediriweera MK, et al. Anti-hepatocarcinogenic and anti-oxidant effects of mangrove plant Scyphiphora hydrophyllacea. Pharmacogn Mag 2017; 13(Suppl. 1): S76-83.
[http://dx.doi.org/10.4103/0973-1296.203989] [PMID: 28479730]
[797]
Bai Y, Chen B, Hong W, Liang Y, Zhou M, Zhou L. Sedum sarmentosum Bunge extract induces apoptosis and inhibits proliferation in pancreatic cancer cells via the hedgehog signaling pathway. Oncol Rep 2016; 35(5): 2775-84.
[http://dx.doi.org/10.3892/or.2016.4679] [PMID: 26987050]
[798]
Le MH, Do TT, Hoang TH, Chau VM, Nguyen TD. Toxicity and anticancer effects of an extract from Selaginella tamariscina on a mice model. Nat Prod Res 2012; 26(12): 1130-4.
[http://dx.doi.org/10.1080/14786419.2011.560847] [PMID: 21995305]
[799]
Sui Y, Li S, Shi P, et al. Ethyl acetate extract from Selaginella doederleinii Hieron inhibits the growth of human lung cancer cells A549 via caspase-dependent apoptosis pathway. Journal of ethnopharmacology 2016; 190: 261-71.
[800]
Wang G, Yao S, Cheng L, Luo Y, Song H. Antioxidant and anticancer effection of the volatile oil from various habitats of Selaginella doederleinii Hieron. Technology and Health Care 2015; 23(s1): S21-7.
[801]
Nair PK, Melnick SJ, Wnuk SF, Rapp M, Escalon E, Ramachandran C. Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium. J Ethnopharmacol 2009; 122(3): 450-6.
[http://dx.doi.org/10.1016/j.jep.2009.02.001] [PMID: 19429311]
[802]
Masoko P, Gololo SS, Mokgotho MP, Eloff JN, Howard RI, Mampuru LJ. Evaluation of the antioxidant, antibacterial, and antiproliferative activities of the acetone extract of the roots of Senna italica (Fabaceae). Afr J Tradit Complement Altern Med 2009; 7(2): 138-48.
[PMID: 21304625]
[803]
Kowalczyk T, Sitarek P, Toma M, et al. An Extract of Transgenic Senna obtusifolia L. Hairy Roots with Overexpression of PgSS1 Gene in Combination with Chemotherapeutic Agent Induces Apoptosis in the Leukemia Cell Line. Biomolecules 2020; 10(4): 510.
[http://dx.doi.org/10.3390/biom10040510] [PMID: 32230928]
[804]
Castro DT, Campos JF, Damião MJ, et al. Ethanolic extract of Senna velutina roots: chemical composition, In vitro and in vivo antitumor effects, and B16F10-Nex2 melanoma cell death mechanisms. Oxidative medicine and cellular longevity 2019; 2019.
[http://dx.doi.org/10.1155/2019/5719483]
[805]
Campos JF, de Castro DT, Damião MJ, et al. The chemical profile of Senna velutina leaves and their antioxidant and cytotoxic effects. Oxidative Medicine and Cellular Longevity 2016; 2016.
[806]
Alfuraydi AA, Devanesan S, Al-Ansari M, AlSalhi MS, Ranjitsingh AJ. Eco-friendly green synthesis of silver nanoparticles from the sesame oil cake and its potential anticancer and antimicrobial activities. J Photochem Photobiol B 2019; 192: 83-9.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.01.011] [PMID: 30710829]
[807]
Pajaniradje S, Mohankumar K, Pamidimukkala R, Subramanian S, Rajagopalan R. Antiproliferative and apoptotic effects of Sesbania grandiflora leaves in human cancer cells. BioMed research international 2014; 2014.
[808]
Wu F, Zhu J, Li G, et al. Biologically synthesized green gold nanoparticles from Siberian ginseng induce growth-inhibitory effect on melanoma cells (B16). Artif Cells Nanomed Biotechnol 2019; 47(1): 3297-305.
[http://dx.doi.org/10.1080/21691401.2019.1647224] [PMID: 31379212]
[809]
Chang CC, Hsu HF, Huang KH, et al. Anti-proliferative effects of Siegesbeckia orientalis ethanol extract on human endometrial RL-95 cancer cells. Molecules 2014; 19(12): 19980-94.
[http://dx.doi.org/10.3390/molecules191219980] [PMID: 25470271]
[810]
Jose A, Kannan E, Madhunapantula SV. Anti-proliferative potential of phytochemical fractions isolated from Simarouba glauca DC leaf. Heliyon 2020; 6(4): e03836.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03836] [PMID: 32373740]
[811]
Myint PP, Dao TTP, Kim YS. Anticancer activity of Smallanthus sonchifolius methanol extract against human hepatocellular carcinoma cells. Molecules 2019; 24(17): 3054.
[http://dx.doi.org/10.3390/molecules24173054] [PMID: 31443460]
[812]
She T, Feng J, Lian S, et al. Sarsaparilla (Smilax Glabra Rhizome) extract activates redox-dependent ATM/ATR pathway to inhibit cancer cell growth by s phase arrest, apoptosis, and autophagy. Nutr Cancer 2017; 69(8): 1281-9.
[http://dx.doi.org/10.1080/01635581.2017.1362447] [PMID: 29111814]
[813]
Seelinger M, Popescu R, Giessrigl B, et al. Methanol extract of the ethnopharmaceutical remedy Smilax spinosa exhibits anti-neoplastic activity. Int J Oncol 2012; 41(3): 1164-72.
[http://dx.doi.org/10.3892/ijo.2012.1538] [PMID: 22752086]
[814]
Cordier W, Steenkamp V. Evaluation of four assays to determine cytotoxicity of selected crude medicinal plant extracts in vitro. Int J Pharma Res Intl 2015; 16-21.
[http://dx.doi.org/10.9734/BJPR/2015/16906]
[815]
Koduru S, Grierson DS, Van de Venter M, Afolayan AJ. In vitro Antitumour Activity of Solanum aculeastrum. Int J Cancer Res 2006; 2(4): 397-402.
[http://dx.doi.org/10.3923/ijcr.2006.397.402]
[816]
Omosa LK, Midiwo JO, Masila VM, et al. Cytotoxicity of 91 Kenyan indigenous medicinal plants towards human CCRF-CEM leukemia cells. J Ethnopharmacol 2016; 179: 177-96.
[http://dx.doi.org/10.1016/j.jep.2015.12.028] [PMID: 26721219]
[817]
Lin YT, Huang AC, Kuo CL, et al. Induction of cell cycle arrest and apoptosis in human osteosarcoma U-2 OS cells by Solanum lyratum extracts. Nutr Cancer 2013; 65(3): 469-79.
[http://dx.doi.org/10.1080/01635581.2013.757627] [PMID: 23530647]
[818]
Ling B, Xiao S, Yang J, Wei Y, Sakharkar MK, Yang J. Probing the antitumor mechanism of Solanum nigrum L. aqueous extract against human breast cancer MCF7 cells. Bioengineering (Basel) 2019; 6(4): 112.
[http://dx.doi.org/10.3390/bioengineering6040112] [PMID: 31835887]
[819]
Zhang P, Wang P, Yan L, Liu L. Synthesis of gold nanoparticles with Solanum xanthocarpum extract and their In vitro anticancer potential on nasopharyngeal carcinoma cells. Int J Nanomedicine 2018; 13: 7047-59.
[http://dx.doi.org/10.2147/IJN.S180138] [PMID: 30464458]
[820]
Su G, Yang W, Meng W, et al. Anti-proliferation effects of ethanolic extracts from Sophora moorcroftiana seeds on human hepatocarcinoma HepG2 cell line. Nat Prod Res 2018; 32(12): 1472-5.
[http://dx.doi.org/10.1080/14786419.2017.1353503] [PMID: 28715918]
[821]
Mathi P, Nikhil K, Ambatipudi N, Roy P, Bokka VR, Botlagunta M. In-Vitro and in-Silico characterization of Sophora interrupta plant extract as an anticancer activity. Bioinformation 2014; 10(3): 144-51.
[http://dx.doi.org/10.6026/97320630010144] [PMID: 24748754]
[822]
Jin S, Kim KC, Kim JS, Jang KI, Hyun TK. Anti-Melanoma Activities and Phytochemical Compositions of Sorbus commixta Fruit Extracts. Plants (Basel) 2020; 9(9): 1076.
[http://dx.doi.org/10.3390/plants9091076] [PMID: 32825598]
[823]
Ha ES, Lee EO, Yoon TJ, et al. Methylene chloride fraction of Spatholobi Caulis induces apoptosis via caspase dependent pathway in U937 cells. Biol Pharm Bull 2004; 27(9): 1348-52.
[http://dx.doi.org/10.1248/bpb.27.1348] [PMID: 15340217]
[824]
Gayatri S, Maheswara Reddy CU, Chitra K, Parthasarathy V. Assessment of In vitro cytotoxicity and in vivo antitumor activity of Sphaeranthus amaranthoides burm.f. Pharmacognosy Res 2015; 7(2): 198-202.
[http://dx.doi.org/10.4103/0974-8490.150544] [PMID: 25829795]
[825]
Nahata A, Saxena A, Suri N, Saxena AK, Dixit VK. Sphaeranthus indicus induces apoptosis through mitochondrial-dependent pathway in HL-60 cells and exerts cytotoxic potential on several human cancer cell lines. Integr Cancer Ther 2013; 12(3): 236-47.
[http://dx.doi.org/10.1177/1534735412451997] [PMID: 22914874]
[826]
Jaradat N, Al-Maharik N. Fingerprinting, antimicrobial, antioxidant, anticancer, cyclooxygenase and metabolic enzymes inhibitory characteristic evaluations of Stachys viticina boiss. essential oil. Molecules 2019; 24(21): 3880.
[http://dx.doi.org/10.3390/molecules24213880] [PMID: 31661884]
[827]
Rawat P, Kumar A, Singh TD, Pal M. Chemical composition and cytotoxic activity of methanol extract and its fractions of Streblus asper leaves on human cancer cell lines. Pharmacogn Mag 2018; 14(54): 141-4.
[http://dx.doi.org/10.4103/pm.pm_391_17] [PMID: 29720821]
[828]
Nasrollahi S, Ghoreishi SM, Ebrahimabadi AH, Khoobi A. Gas chromatography-mass spectrometry analysis and antimicrobial, antioxidant and anti-cancer activities of essential oils and extracts of Stachys schtschegleevii plant as biological macromolecules. Int J Biol Macromol 2019; 128: 718-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.165] [PMID: 30708000]
[829]
Li Z, Sturm S, Stuppner H, et al. The dichloromethane fraction of Stemona tuberosa Lour inhibits tumor cell growth and induces apoptosis of human medullary thyroid carcinoma cells. Biologics 2007; 1(4): 455-63.
[PMID: 19707315]
[830]
Koh RY, Sim YC, Toh HJ, et al. Cytotoxic and apoptogenic effects of Strobilanthes crispa Blume extracts on nasopharyngeal cancer cells. Mol Med Rep 2015; 12(4): 6293-9.
[http://dx.doi.org/10.3892/mmr.2015.4152] [PMID: 26239257]
[831]
Baraya YS, Wong KK, Yaacob NS. Strobilanthes crispus inhibits migration, invasion and metastasis in breast cancer. J Ethnopharmacol 2019; 233: 13-21.
[http://dx.doi.org/10.1016/j.jep.2018.12.041] [PMID: 30594607]
[832]
Li Y, Ke Y, Zou H, et al. Gold nano particles synthesized from Strychni semen and its anticancer activity in cholangiocarcinoma cell (KMCH-1). Artif Cells Nanomed Biotechnol 2019; 47(1): 1610-6.
[http://dx.doi.org/10.1080/21691401.2019.1594860] [PMID: 31072209]
[833]
Du J, Singh H, Yi TH. Antibacterial, anti-biofilm and anticancer potentials of green synthesized silver nanoparticles using benzoin gum (Styrax benzoin) extract. Bioprocess Biosyst Eng 2016; 39(12): 1923-31.
[http://dx.doi.org/10.1007/s00449-016-1666-x] [PMID: 27495263]
[834]
Khodavirdipour A, Zarean R, Safaralizadeh R. Evaluation of the anti-cancer effect of syzygium cumini ethanolic extract on HT-29 colorectal cell line. J Gastrointest Cancer 2020.
[PMID: 32506290]
[835]
Nirmala MJ, Durai L, Gopakumar V, Nagarajan R. Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system. Int J Nanomedicine 2019; 14: 6439-50.
[http://dx.doi.org/10.2147/IJN.S211047] [PMID: 31496696]
[836]
Li C, Xu H, Chen X, et al. Aqueous extract of clove inhibits tumor growth by inducing autophagy through AMPK/ULK pathway. Phytother Res 2019; 33(7): 1794-804.
[http://dx.doi.org/10.1002/ptr.6367] [PMID: 30993793]
[837]
Liu M, Zhao G, Zhang D, et al. Active fraction of clove induces apoptosis via PI3K/Akt/mTOR-mediated autophagy in human colorectal cancer HCT-116 cells. Int J Oncol 2018; 53(3): 1363-73.
[http://dx.doi.org/10.3892/ijo.2018.4465] [PMID: 30015913]
[838]
Siddika MA, Das PK, Asha SY, et al. Antiproliferative activity and apoptotic efficiency of syzygium cumini bark methanolic extract against EAC cells in vivo. Anticancer Agents Med Chem 2020.
[PMID: 32781964]
[839]
Panda SP, Panigrahy UP, Panda S, Jena BR. Stem extract of tabebuia chrysantha induces apoptosis by targeting sEGFR in ehrlich ascites carcinoma. J Ethnopharmacol 2019; 235: 219-26.
[http://dx.doi.org/10.1016/j.jep.2019.02.023] [PMID: 30769041]
[840]
Kumar A, Selvakumar S. Antiproliferative efficacy of Tabernaemontana divaricata against HEP2 cell line and Vero cell line. Pharmacogn Mag 2015; 11(Suppl. 1): S46-52.
[http://dx.doi.org/10.4103/0973-1296.157682] [PMID: 26109773]
[841]
Boulaaba M, Tsolmon S, Ksouri R, et al. Anticancer effect of Tamarix gallica extracts on human colon cancer cells involves Erk1/2 and p38 action on G2/M cell cycle arrest. Cytotechnology 2013; 65(6): 927-36.
[http://dx.doi.org/10.1007/s10616-013-9564-4] [PMID: 23801270]
[842]
Karimian H, Mohan S, Moghadamtousi SZ, et al. Tanacetum polycephalum (L.) Schultz-Bip. induces mitochondrial-mediated apoptosis and inhibits migration and invasion in MCF7 cells. Molecules 2014; 19(7): 9478-501.
[http://dx.doi.org/10.3390/molecules19079478] [PMID: 24995928]
[843]
Silva-Oliveira RJ, Lopes GF, Camargos LF, et al. Tapirira guianensis Aubl. extracts inhibit proliferation and migration of oral cancer cells lines. Int J Mol Sci 2016; 17(11): 1839.
[http://dx.doi.org/10.3390/ijms17111839] [PMID: 27834805]
[844]
Saratale RG, Benelli G, Kumar G, Kim DS, Saratale GD. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ Sci Pollut Res Int 2018; 25(11): 10392-406.
[http://dx.doi.org/10.1007/s11356-017-9581-5] [PMID: 28699009]
[845]
Reddy MN, Adnan M, Alreshidi MM, Saeed M, Patel M. Evaluation of anticancer, antibacterial and antioxidant properties of a medicinally treasured fern tectaria coadunata with its phytoconstituents analysis by HR-LCMS. Anticancer Agents Med Chem 2020; 20(15): 1845-56.
[http://dx.doi.org/10.2174/1871520620666200318101938] [PMID: 32188388]
[846]
Gulecha V, Sivakuma T. Anticancer activity of Tephrosia purpurea and Ficus religiosa using MCF 7 cell lines. Asian Pac J Trop Med 2011; 4(7): 526-9.
[http://dx.doi.org/10.1016/S1995-7645(11)60139-9] [PMID: 21803302]
[847]
Tsering J, Hu X. Triphala suppresses growth and migration of human gastric carcinoma cells In vitro and in a zebrafish xenograft model. Bio Med research international 2018; 2018.
[http://dx.doi.org/10.1155/2018/7046927]
[848]
Shanehbandi D, Zarredar H, Asadi M, et al. Anticancer impacts of terminalia catappa extract on SW480 colorectal neoplasm cell line. J Gastrointest Cancer 2019; 1-7.
[http://dx.doi.org/10.1007/s12029-019-00349-z] [PMID: 31823219]
[849]
Ravi Shankara BE, Ramachandra YL, Rajan SS, et al. Evaluating the anticancer potential of ethanolic gall extract of Terminalia chebula (Gaertn.) Retz.(combretaceae). Pharmacognosy Res 2016; 8(3): 209-12.
[http://dx.doi.org/10.4103/0974-8490.182919] [PMID: 27365992]
[850]
Persia FA, Rinaldini E, Carrión A, Hapon MB, Gamarra-Luques C. Evaluation of cytotoxic and antitumoral properties of Tessaria absinthioides (Hook & Arn) DC, “pájaro bobo”, aqueous extract. Medicina (B Aires) 2017; 77(4): 283-90.
[PMID: 28825571]
[851]
Tafrihi M, Toosi S, Minaei T, Gohari AR, Niknam V, Arab Najafi SM. Anticancer properties of Teucrium persicum in PC-3 prostate cancer cells. Asian Pac J Cancer Prev 2014; 15(2): 785-91.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.785] [PMID: 24568496]
[852]
Khodaei F, Ahmadi K, Kiyani H, Hashemitabar M, Rezaei M. Mitochondrial effects of Teucrium polium and Prosopis farcta extracts in colorectal cancer cells. Asian Pacific journal of cancer prevention. Asian Pac J Cancer Prev 2018; 19(1): 103-9.
[PMID: 29373899]
[853]
Ebuehi OAT, Anams C, Gbenle OD, Ajagun-Ogunleye MO. Hydro-ethanol seed extract of Theobroma cacao exhibits antioxidant activities and potential anticancer property. J Food Biochem 2019; 43(4): e12767.
[http://dx.doi.org/10.1111/jfbc.12767] [PMID: 31353596]
[854]
Ramos-Silva A, Tavares-Carreón F, Figueroa M, et al. Anticancer potential of Thevetia peruviana fruit methanolic extract. BMC Complement Altern Med 2017; 17(1): 241.
[http://dx.doi.org/10.1186/s12906-017-1727-y] [PMID: 28464893]
[855]
Mukherjee A, Sikdar S, Bishayee K, et al. Ethanolic extract of Thuja occidentalis blocks proliferation of A549 cells and induces apoptosis in vitro. J Chin Integr Med 2012; 10(12): 1451-9.
[http://dx.doi.org/10.3736/jcim20121218] [PMID: 23257140]
[856]
Fekrazad R, Afzali M, Pasban-Aliabadi H, Esmaeili-Mahani S, Aminizadeh M, Mostafavi A. Cytotoxic effect of Thymus caramanicus Jalas on human oral epidermoid carcinoma KB cells. Braz Dent J 2017; 28(1): 72-7.
[http://dx.doi.org/10.1590/0103-6440201700737] [PMID: 28301021]
[857]
Çetinus E, Temiz T, Ergül M, Altun A, Çetinus Ş, Kaya T. Thyme essential oil inhibits proliferation of DLD-1 colorectal cancer cells through antioxidant effect. Cumhuriyet Med J 2013; 35(1): 14-24.
[http://dx.doi.org/10.7197/1305-0028.1757]
[858]
Bozkurt E, Atmaca H, Kisim A, Uzunoglu S, Uslu R, Karaca B. Effects of Thymus serpyllum extract on cell proliferation, apoptosis and epigenetic events in human breast cancer cells. Nutr Cancer 2012; 64(8): 1245-50.
[http://dx.doi.org/10.1080/01635581.2012.719658] [PMID: 23163852]
[859]
Kubatka P, Uramova S, Kello M, et al. Anticancer activities of Thymus vulgaris L. in experimental breast carcinoma in vivo and in vitro. Int J Mol Sci 2019; 20(7): 1749.
[http://dx.doi.org/10.3390/ijms20071749] [PMID: 30970626]
[860]
Silva AM, Martins-Gomes C, Souto EB, et al. Thymus zygis subsp. zygis an endemic portuguese plant: phytochemical profiling, antioxidant, anti-proliferative and anti-inflammatory activities. Antioxidants 2020; 9(6): 482.
[http://dx.doi.org/10.3390/antiox9060482] [PMID: 32503184]
[861]
Mittal J, Pal U, Sharma L, Verma AK, Ghosh M, Sharma MM. Unveiling the cytotoxicity of phytosynthesised silver nanoparticles using Tinospora cordifolia leaves against human lung adenocarcinoma A549 cell line. IET nanobiotechnology 2020; 14(3): 230-8.
[http://dx.doi.org/10.1049/iet-nbt.2019.0335]
[862]
Ansari JA, Rastogi N, Ahmad MK, et al. ROS mediated pro-apoptotic effects of Tinospora cordifolia on breast cancer cells. Front Biosci (Elite Ed) 2017; 9: 89-100.
[http://dx.doi.org/10.2741/e788] [PMID: 27814592]
[863]
Javir G, Joshi K. Evaluation of the combinatorial effect of Tinospora cordifolia and Zingiber officinale on human breast cancer cells. 3 Biotech 2019; 9(11): 428.
[864]
Li X, Qiu Z, Jin Q, Chen G, Guo M. Cell cycle arrest and apoptosis in HT-29 cells induced by dichloromethane fraction from Toddalia asiatica (L.) Lam. Front Pharmacol 2018; 9: 629.
[http://dx.doi.org/10.3389/fphar.2018.00629] [PMID: 29950999]
[865]
Kim GT, Lee SH, Kim YM. Torilis japonica extract-generated intracellular ROS induces apoptosis by reducing the mitochondrial membrane potential via regulation of the AMPK-p38 MAPK signaling pathway in HCT116 colon cancer. Int J Oncol 2016; 49(3): 1088-98.
[http://dx.doi.org/10.3892/ijo.2016.3578] [PMID: 27314881]
[866]
Al-Rimawi F, Rishmawi S, Ariqat SH, Khalid MF, Warad I, Salah Z. Anticancer activity, antioxidant activity, and phenolic and flavonoids content of wild Tragopogon porrifolius plant extracts. Evidence-Based Complementary and Alternative Medicine 2016; 2016.
[http://dx.doi.org/10.1155/2016/9612490]
[867]
Kabir M, Al-Noman A, Dash BK, Hasan M, Akhter S, Rahman M. Trema orientalis (Linn.) leaves promotes anticancer activity in Ehrlich ascites carcinoma (EAC) in Swiss albino mice. J Basic Clin Physiol Pharmacol 2019; 31: (2).
[PMID: 31743104]
[868]
Kim HJ, Kim JC, Min JS, et al. Aqueous extract of Tribulus terrestris Linn induces cell growth arrest and apoptosis by down-regulating NF-κB signaling in liver cancer cells. J Ethnopharmacol 2011; 136(1): 197-203.
[http://dx.doi.org/10.1016/j.jep.2011.04.060] [PMID: 21549825]
[869]
Sun X, Xu X, Song L. TKP, a serine protease extracted from Trichosanthes kirilowii, inhibits the migration and invasion of colorectal adenocarcinoma cells by targeting Wnt/β-catenin and Hedgehog/Gli1 signalings. Phytother Res 2020; 34(4): 867-78.
[http://dx.doi.org/10.1002/ptr.6569] [PMID: 31854039]
[870]
Han X, Jiang X, Guo L, et al. Anticarcinogenic potential of gold nanoparticles synthesized from Trichosanthes kirilowii in colon cancer cells through the induction of apoptotic pathway. Artif Cells Nanomed Biotechnol 2019; 47(1): 3577-84.
[http://dx.doi.org/10.1080/21691401.2019.1626412] [PMID: 31456423]
[871]
Syed A, Benit N, Alyousef AA, Alqasim A, Arshad M. In-vitro antibacterial, antioxidant potentials and cytotoxic activity of the leaves of Tridax procumbens. Saudi J Biol Sci 2020; 27(2): 757-61.
[http://dx.doi.org/10.1016/j.sjbs.2019.12.031] [PMID: 32210697]
[872]
Sarno F, Pepe G, Termolino P, et al. Trifolium Repens blocks proliferation in chronic myelogenous leukemia via the BCR-ABL/STAT5 pathway. Cells 2020; 9(2): 379.
[http://dx.doi.org/10.3390/cells9020379] [PMID: 32041350]
[873]
Goyal S, Gupta N, Kumar A, Chatterjee S, Nimesh S. Antibacterial, anticancer and antioxidant potential of silver nanoparticles engineered using Trigonella foenum-graecum seed extract. IET nanobiotechnology 2018; 12(4): 526-33.
[http://dx.doi.org/10.1049/iet-nbt.2017.0089]
[874]
Iranmanesh M, Mohebbati R, Forouzanfar F, et al. In vivo and In vitro effects of ethanolic extract of Trigonella foenum-graecum L. seeds on proliferation, angiogenesis and tube formation of endothelial cells. Res Pharm Sci 2018; 13(4): 343-52.
[http://dx.doi.org/10.4103/1735-5362.235161] [PMID: 30065767]
[875]
Qian S, Tong S, Wu J, et al. Paris saponin VII extracted from Trillium tschonoskii induces autophagy and apoptosis in NSCLC cells. J Ethnopharmacol 2020; 248: 112304.
[http://dx.doi.org/10.1016/j.jep.2019.112304] [PMID: 31626908]
[876]
Antonoff MB, Chugh R, Borja-Cacho D, et al. Triptolide therapy for neuroblastoma decreases cell viability In vitro and inhibits tumor growth in vivo. Surgery 2009; 146(2): 282-90.
[http://dx.doi.org/10.1016/j.surg.2009.04.023] [PMID: 19628086]
[877]
Ki HH, Poudel B, Lee JH, Lee YM, Kim DK. In vitro and in vivo anti-cancer activity of dichloromethane fraction of Triticum aestivum sprouts. Biomed Pharmacother 2017; 96: 120-8.
[http://dx.doi.org/10.1016/j.biopha.2017.09.118] [PMID: 28972884]
[878]
Shakya G, Balasubramanian S, Hoda M, Rajagopalan R. Inhibition of metastasis and angiogenesis in Hep-2 cells by wheatgrass extract - an In vitro and in silico approach. Toxicol Mech Methods 2018; 28(3): 205-18.
[http://dx.doi.org/10.1080/15376516.2017.1388460] [PMID: 29160133]
[879]
Moyo B, Mukanganyama S. Antiproliferative activity of T. welwitschii extract on Jurkat T cells in vitro. BioMed research international 2015; 2015.
[880]
Valsalam S, Agastian P, Arasu MV, et al. Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. J Photochem Photobiol B 2019; 191: 65-74.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.12.010] [PMID: 30594044]
[881]
Motadi LR, Choene MS, Mthembu NN. Anticancer properties of Tulbaghia violacea regulate the expression of p53-dependent mechanisms in cancer cell lines. Sci Rep 2020; 10(1): 12924.
[http://dx.doi.org/10.1038/s41598-020-69722-4] [PMID: 32737339]
[882]
Moonsamy S. The effects of Tulbaghia violacea (wild garlic) leaf and bulb extracts on an oesophageal cancer cell line (SNO). PhD diss 2012. (Doctoral dissertation)
[883]
Raajshree RK, Brindha D. In vivo anticancer activity of biosynthesized zinc oxide nanoparticle using turbinaria conoides on a dalton’s lymphoma ascites mice model. J Environ Pathol Toxicol Oncol 2018; 37(2): 103-15.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018025086] [PMID: 30055546]
[884]
Avelino-Flores MdelC, Cruz-López MdelC, Jiménez-Montejo FE, Reyes-Leyva J. Cytotoxic activity of the methanolic extract of Turnera diffusa Willd on breast cancer cells. J Med Food 2015; 18(3): 299-305.
[http://dx.doi.org/10.1089/jmf.2013.0055] [PMID: 25299247]
[885]
Lee MR, Cha MR, Jo KJ, Yoon MY, Park HR. Cytotoxic and apoptotic activities of Tussilago farfara extract in HT-29 human colon cancer cells. Food Sci Biotechnol 2008; 17(2): 308-12.
[886]
Li Q, Jiang C, Zu Y, et al. SFE-CO2 extract from Typhonium giganteum Engl. tubers, induces apoptosis in human hepatoma SMMC-7721 cells involvement of a ROS-mediated mitochondrial pathway. Molecules 2011; 16(10): 8228-42.
[http://dx.doi.org/10.3390/molecules16108228] [PMID: 21959296]
[887]
Paschke D, Abarzua S, Schlichting A, Richter DU, Leinweber P, Briese V. Inhibitory effects of bark extracts from Ulmus laevis on endometrial carcinoma: an in-vitro study. Eur J Cancer Prev 2009; 18(2): 162-8.
[http://dx.doi.org/10.1097/CEJ.0b013e32831bc546.] [PMID: 19337064]
[888]
Ribeiro AF, Santos JF, Mattos RR, et al. Characterization and In vitro antitumor activity of polymeric nanoparticles loaded with Uncaria tomentosa extract. An Acad Bras Cienc 2020; 92(1): e20190336.
[http://dx.doi.org/10.1590/0001-3765202020190336] [PMID: 32321026]
[889]
Ciani F, Tafuri S, Troiano A, et al. Anti-proliferative and pro-apoptotic effects of Uncaria tomentosa aqueous extract in squamous carcinoma cells. J Ethnopharmacol 2018; 211: 285-94.
[http://dx.doi.org/10.1016/j.jep.2017.09.031] [PMID: 28964869]
[890]
Kardan M, Rafiei A, Golpour M, Ebrahimzadeh MA, Akhavan-Niaki H, Fattahi S. Urtica dioica extract inhibits cell proliferation and induces apoptosis in HepG2 and HTC116 as Gastrointestinal cancer cell lines. Anti-Cancer Agents in Med Chem 2020; 20(8): 963-9.
[http://dx.doi.org/10.2174/1871520620666200311095836]
[891]
Esposito S, Bianco A, Russo R, Di Maro A, Isernia C, Pedone PV. Therapeutic perspectives of molecules from urtica dioica extracts for cancer treatment. Molecules 2019; 24(15): 2753.
[http://dx.doi.org/10.3390/molecules24152753] [PMID: 31362429]
[892]
Pumiputavon K, Chaowasku T, Saenjum C, et al. Cytotoxic and cytostatic effects of four Annonaceae plants on human cancer cell lines. In vitro Cell Dev Biol Anim 2019; 55(9): 723-32.
[http://dx.doi.org/10.1007/s11626-019-00393-w] [PMID: 31452061]
[893]
Ribera-Fonseca A, Jiménez D, Leal P, et al. The anti-proliferative and anti-invasive effect of leaf extracts of blueberry plants treated with methyl jasmonate on human gastric cancer In vitro is related to their antioxidant properties. Antioxidants 2020; 9(1): 45.
[http://dx.doi.org/10.3390/antiox9010045] [PMID: 31948009]
[894]
George BP, Chandran R, Thamburaj S, Parimelazhagan T. Combined effect of vaccinium nilgiriensis bark extract and 680 nm laser irradiation in inducing breast cancer cell death. Anticancer Agents Med Chem 2020.
[http://dx.doi.org/10.2174/1871520620666200410082302]
[895]
Opata MM, Izevbigie EB. Aqueous Vernomia amygdalina extracts alter MCF-7 cell membrane permeability and efflux. Int J Environ Res Public Health 2006; 3(2): 174-9.
[http://dx.doi.org/10.3390/ijerph2006030019] [PMID: 16823089]
[896]
Beeran AA, Udupa N, Maliyakkal N. The dichloromethane fraction of vernonia cinerea impart pro-apoptotic, genotoxic, cell cycle arrest, and drug efflux inhibitory effects on human adenocarcinoma cells. Recent Patents Anticancer Drug Discov 2020; 15(3): 239-56.
[http://dx.doi.org/10.2174/1574892815999200824122723] [PMID: 32838722]
[897]
Thomas E, Gopalakrishnan V, Somasagara RR, Choudhary B, Raghavan SC. Extract of vernonia condensata, inhibits tumor progression and improves survival of tumor-allograft bearing mouse. Sci Rep 2016; 6: 23255.
[http://dx.doi.org/10.1038/srep23255] [PMID: 27009490]
[898]
Yun Z, Chinnathambi A, Alharbi SA, Jin Z. Biosynthesis of gold nanoparticles using Vetex negundo and evaluation of pro-apoptotic effect on human gastric cancer cell lines. J Photochem Photobiol B 2020; 203: 111749.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111749] [PMID: 31884347]
[899]
Devanathadesikan Seshadri V, Vijayaraghavan P, Kim YO, et al. In vitro antioxidant and cytotoxic activities of polyherbal extracts from Vetiveria zizanioides, Trichosanthes cucumerina, and Mollugo cerviana on HeLa and MCF-7 cell lines. Saudi J Biol Sci 2020; 27(6): 1475-81.
[http://dx.doi.org/10.1016/j.sjbs.2020.04.005] [PMID: 32489283]
[900]
Han B, Wu J, Huang L. Induction of apoptosis in lung cancer cells by Viburnum grandiflorum via mitochondrial pathway. Med Sci Monit 2020; 26: e920265-1.
[http://dx.doi.org/10.12659/MSM.920265] [PMID: 31900380]
[901]
Ceylan D, Aksoy A, Ertekin T, et al. The effects of gilaburu (Viburnum opulus) juice on experimentally induced Ehrlich ascites tumor in mice. J Cancer Res Ther 2018; 14(2): 314-20.
[PMID: 29516912]
[902]
Sadeghnia HR, Ghorbani Hesari T, Mortazavian SM, Mousavi SH, Tayarani-Najaran Z, Ghorbani A. Viola tricolor induces apoptosis in cancer cells and exhibits antiangiogenic activity on chicken chorioallantoic membrane. BioMed research international 2014; 2014.
[903]
dela Cruz JF, Kim YS, Lumbera WM, Hwang SG. Viscum album var hot water extract mediates anti-cancer effects through G1 phase cell cycle arrest in SK-Hep1 human hepatocarcinoma cells. Asian Pac J Cancer Prev 2015; 16(15): 6417-21.
[http://dx.doi.org/10.7314/APJCP.2015.16.15.6417] [PMID: 26434853]
[904]
Mishra R, Sharma S, Sharma RS, et al. Viscum articulatum Burm. f. aqueous extract exerts antiproliferative effect and induces cell cycle arrest and apoptosis in leukemia cells. J Ethnopharmacol 2018; 219: 91-102.
[http://dx.doi.org/10.1016/j.jep.2018.03.005] [PMID: 29555410]
[905]
Song HM, Park GH, Park SB, et al. Vitex rotundifolia fruit suppresses the proliferation of human colorectal cancer cells through down-regulation of cyclin D1 and CDK4 via proteasomal-dependent degradation and transcriptional inhibition. Am J Chin Med 2018; 46(1): 191-207.
[http://dx.doi.org/10.1142/S0192415X18500118] [PMID: 29298515]
[906]
Paramanantham A, Kim MJ, Jung EJ, et al. Pretreatment of Anthocyanin from the Fruit of Vitis coignetiae Pulliat Acts as a Potent Inhibitor of TNF-α Effect by Inhibiting NF-κB-Regulated Genes in Human Breast Cancer Cells. Molecules 2020; 25(10): 2396.
[http://dx.doi.org/10.3390/molecules25102396] [PMID: 32455624]
[907]
Manjamalai A, Berlin Grace VM. Antioxidant activity of essential oils from Wedelia chinensis (Osbeck) In vitro and in vivo lung cancer bearing C57BL/6 mice. Asian Pac J Cancer Prev 2012; 13(7): 3065-71.
[http://dx.doi.org/10.7314/APJCP.2012.13.7.3065] [PMID: 22994711]
[908]
Maqsood M, Qureshi R, Ikram M, et al. In vitro anticancer activities of Withania coagulans against HeLa, MCF-7, RD, RG2, and INS-1 cancer cells and phytochemical analysis. Integr Med Res 2018; 7(2): 184-91.
[http://dx.doi.org/10.1016/j.imr.2018.03.003] [PMID: 29984179]
[909]
Dar PA, Mir SA, Bhat JA, et al. An anti-cancerous protein fraction from Withania somnifera induces ROS-dependent mitochondria-mediated apoptosis in human MDA-MB-231 breast cancer cells. Int J Biol Macromol 2019; 135: 77-87.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.120] [PMID: 31121227]
[910]
Lakshmipriya T, Soumya T, Jayasree PR, Manish Kumar PR. Selective induction of DNA damage, G2 abrogation, and mitochondrial apoptosis by leaf extract of traditional medicinal plant Wrightia arborea in K562 cells. Protoplasma 2018; 255(1): 203-16.
[http://dx.doi.org/10.1007/s00709-017-1137-5] [PMID: 28730515]
[911]
Chakravarti B, Maurya R, Siddiqui JA, et al. In vitro anti-breast cancer activity of ethanolic extract of Wrightia tomentosa: role of pro-apoptotic effects of oleanolic acid and urosolic acid. J Ethnopharmacol 2012; 142(1): 72-9.
[http://dx.doi.org/10.1016/j.jep.2012.04.015] [PMID: 22855944]
[912]
Ferraz RP, Cardoso GM, da Silva TB, et al. Antitumour properties of the leaf essential oil of Xylopia frutescens Aubl. (Annonaceae). Food Chem 2013; 141(1): 196-200.
[http://dx.doi.org/10.1016/j.foodchem.2013.02.114] [PMID: 23768347]
[913]
Silva SL, Figueiredo PM, Yano T. Cytotoxic evaluation of essential oil from Zanthoxylum rhoifolium Lam. leaves. Acta Amazon 2007; 37(2): 281-6.
[http://dx.doi.org/10.1590/S0044-59672007000200015]
[914]
Alam F, Najum Us Saqib Q, Waheed A. Cytotoxic activity of extracts and crude saponins from Zanthoxylum armatum DC. against human breast (MCF-7, MDA-MB-468) and colorectal (Caco-2) cancer cell lines. BMC Complement Altern Med 2017; 17(1): 368.
[http://dx.doi.org/10.1186/s12906-017-1882-1] [PMID: 28716103]
[915]
Fu YH, Guo JM, Xie YT, et al. Structural characterization, antiproliferative and anti-inflammatory activities of alkaloids from the roots of Zanthoxylum austrosinense. Bioorg Chem 2020; 102: 104101.
[http://dx.doi.org/10.1016/j.bioorg.2020.104101] [PMID: 32721778]
[916]
Pang W, Liu S, He F, et al. Anticancer activities of Zanthoxylum bungeanum seed oil on malignant melanoma. J Ethnopharmacol 2019; 229: 180-9.
[http://dx.doi.org/10.1016/j.jep.2018.10.012] [PMID: 30336305]
[917]
Kaigongi MM, Lukhoba CW, Yaouba S, Makunga NP, Githiomi J, Yenesew A. In vitro antimicrobial and antiproliferative activities of the root bark extract and isolated chemical constituents of Zanthoxylum paracanthum kokwaro (rutaceae). Plants (Basel) 2020; 9(7): 920.
[http://dx.doi.org/10.3390/plants9070920] [PMID: 32708115]
[918]
Azadi M, Jamali T, Kianmehr Z, Kavoosi G, Ardestani SK. In-vitro (2D and 3D cultures) and in-vivo cytotoxic properties of Zataria multiflora essential oil (ZEO) emulsion in breast and cervical cancer cells along with the investigation of immunomodulatory potential. J Ethnopharmacol 2020; 257: 112865.
[http://dx.doi.org/10.1016/j.jep.2020.112865] [PMID: 32298750]
[919]
Baharara J, Ramezani T, Hosseini N, Mousavi M. Silver nanoparticles synthesized coating with Zataria multiflora leaves extract induced apoptosis in HeLa cells through p53 activation. Iranian journal of pharmaceutical research. Iran J Pharm Res 2018; 17(2): 627-39.
[PMID: 29881420]
[920]
Al-Oqail MM, Al-Sheddi ES, Farshori NN, et al. Corn Silk (Zea mays L.) induced apoptosis in human breast cancer (MCF-7) cells via the ros-mediated mitochondrial pathway. Oxidative medicine and cellular longevity 2019; 2019.
[921]
Hwang E, Sim S, Park SH, et al. Anti-proliferative effect of Zea mays L. cob extract on rat C6 glioma cells through regulation of glycolysis, mitochondrial ROS, and apoptosis. Biomed Pharmacother 2018; 98: 726-32.
[http://dx.doi.org/10.1016/j.biopha.2017.12.115] [PMID: 29306210]
[922]
Elkady AI, Abu-Zinadah OA, Hussein RAEH. Crude flavonoid extract of medicinal herb Zingibar officinale inhibits proliferation and induces apoptosis in hepatocellular carcinoma cells. Oncol Res 2017; 25(6): 897-912.
[http://dx.doi.org/10.3727/096504016X14816352324532] [PMID: 28245170]
[923]
Mega Tiber P, Kocyigit Sevinc S, Kilinc O, Orun O. Biological effects of whole Z.Officinale extract on chronic myeloid leukemia cell line K562. Gene 2019; 692: 217-22.
[http://dx.doi.org/10.1016/j.gene.2019.01.015] [PMID: 30684525]
[924]
Hoshyar R, Jamali S, Fereidouni M, Abedini MR. The cytotoxic activity of Ziziphus Jujube on cervical cancer cells: In vitro study. In: Cellular and molecular biology (Noisy-le-Grand, France). 2015; 61: pp. (8)128-30.
[925]
Batool M, Afzal S, Afzal K, et al. Short communication-anticancer activity of Ziziphus mauritiana roots against human breast cancer cell line. Pak J Pharm Sci 2019; 32(4): 1715-6.
[PMID: 31608895]
[926]
Jafarian A, Zolfaghari B, Shirani K. Cytotoxicity of different extracts of arial parts of Ziziphus spina-christi on Hela and MDA-MB-468 tumor cells. Adv Biomed Res 2014; 3: 38.
[http://dx.doi.org/10.4103/2277-9175.125727] [PMID: 24627846]
[927]
Huang X, Kojima-Yuasa A, Norikura T, Kennedy DO, Hasuma T, Matsui-Yuasa I. Mechanism of the anti-cancer activity of Zizyphus jujuba in HepG2 cells. Am J Chin Med 2007; 35(3): 517-32.
[http://dx.doi.org/10.1142/S0192415X0700503X] [PMID: 17597510]
[928]
Wang XN, Xu LN, Peng JY, Liu KX, Zhang LH, Zhang YK. In vivo inhibition of S180 tumors by the synergistic effect of the Chinese medicinal herbs Coptis chinensis and Evodia rutaecarpa. Planta Med 2009; 75(11): 1215-20.
[http://dx.doi.org/10.1055/s-0029-1185538] [PMID: 19350478]
[929]
Rocha DD, Balgi A, Maia AI, et al. Cell cycle arrest through inhibition of tubulin polymerization by withaphysalin F, a bioactive compound isolated from Acnistus arborescens. Invest New Drugs 2012; 30(3): 959-66.
[http://dx.doi.org/10.1007/s10637-011-9649-x] [PMID: 21416228]
[930]
Cheng QL, Li HL, Li YC, Liu ZW, Guo XH, Cheng YJ. CRA(Crosolic Acid) isolated from Actinidia valvata Dunn.Radix induces apoptosis of human gastric cancer cell line BGC823 in vitro via down-regulation of the NF-κB pathway. Food Chem Toxicol 2017; 105: 475-85.
[http://dx.doi.org/10.1016/j.fct.2017.05.021] [PMID: 28506699]
[931]
Balachandran C, Arun Y, Sangeetha B, et al. In vitro and in vivo anticancer activity of 2-acetyl-benzylamine isolated from Adhatoda vasica L. leaves. Biomed Pharmacother 2017; 93: 796-806.
[http://dx.doi.org/10.1016/j.biopha.2017.06.096] [PMID: 28715864]
[932]
Wang J, Li H, Wang X, Shen T, Wang S, Ren D. Alisol B-23-acetate, a tetracyclic triterpenoid isolated from Alisma orientale, induces apoptosis in human lung cancer cells via the mitochondrial pathway. Biochem Biophys Res Commun 2018; 505(4): 1015-21.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.022] [PMID: 30314700]
[933]
Abdelrahman M, Mahmoud HYAH, El-Sayed M, Tanaka S, Tran LS. Isolation and characterization of Cepa2, a natural alliospiroside A, from shallot (Allium cepa L. Aggregatum group) with anticancer activity. Plant Physiol Biochem 2017; 116: 167-73.
[http://dx.doi.org/10.1016/j.plaphy.2017.05.006] [PMID: 28577504]
[934]
Jeong JW, Park S, Park C, et al. N-benzyl-N-methyldecan-1-amine, a phenylamine derivative isolated from garlic cloves, induces G2/M phase arrest and apoptosis in U937 human leukemia cells. Oncol Rep 2014; 32(1): 373-81.
[http://dx.doi.org/10.3892/or.2014.3215] [PMID: 24859825]
[935]
Ludwiczuk A, Saha A, Kuzuhara T, Asakawa Y. Bioactivity guided isolation of anticancer constituents from leaves of Alnus sieboldiana (Betulaceae). Phytomedicine 2011; 18(6): 491-8.
[http://dx.doi.org/10.1016/j.phymed.2010.10.005] [PMID: 21111588]
[936]
León-Gonzalez AJ, Acero N, Muñoz-Mingarro D, López-Lázaro M, Martín-Cordero C. Cytotoxic activity of hirsutanone, a diarylheptanoid isolated from Alnus glutinosa leaves. Phytomedicine 2014; 21(6): 866-70.
[http://dx.doi.org/10.1016/j.phymed.2014.01.008] [PMID: 24581747]
[937]
Hseu YC, Huang YC, Thiyagarajan V, et al. Anticancer activities of chalcone flavokawain B from Alpinia pricei Hayata in human lung adenocarcinoma (A549) cells via induction of reactive oxygen species-mediated apoptotic and autophagic cell death. J Cell Physiol 2019; 234(10): 17514-26.
[http://dx.doi.org/10.1002/jcp.28375] [PMID: 30847898]
[938]
Mondal A, Guria T, Maity TK, Bishayee A. A Novel Tetraenoic Fatty Acid Isolated from Amaranthus spinosus Inhibits Proliferation and Induces Apoptosis of Human Liver Cancer Cells. Int J Mol Sci 2016; 17(10): 1604.
[http://dx.doi.org/10.3390/ijms17101604] [PMID: 27669220]
[939]
Aydoğmuş-Öztürk F, Jahan H, Beyazit N, Günaydın K, Choudhary MI. The anticancer activity of visnagin, isolated from Ammi visnaga L., against the human malignant melanoma cell lines, HT 144. Mol Biol Rep 2019; 46(2): 1709-14.
[http://dx.doi.org/10.1007/s11033-019-04620-1] [PMID: 30694454]
[940]
Taiwo BJ, Fatokun AA, Olubiyi OO, Bamigboye-Taiwo OT, van Heerden FR, Wright CW. Identification of compounds with cytotoxic activity from the leaf of the Nigerian medicinal plant, Anacardium occidentale L. (Anacardiaceae). Bioorg Med Chem 2017; 25(8): 2327-35.
[http://dx.doi.org/10.1016/j.bmc.2017.02.040] [PMID: 28291684]
[941]
Hussain S, Ullah F, Ayaz M, et al. In Silico, Cytotoxic and Antioxidant Potential of Novel Ester, 3-hydroxyoctyl -5- trans-docosenoate Isolated from Anchusa arvensis (L.) M.Bieb. Against HepG-2 Cancer Cells. Drug Des Devel Ther 2019; 13: 4195-205.
[http://dx.doi.org/10.2147/DDDT.S228971] [PMID: 31849451]
[942]
Sachan R, Kundu A, Jeon Y, et al. Afrocyclamin A, a triterpene saponin, induces apoptosis and autophagic cell death via the PI3K/Akt/mTOR pathway in human prostate cancer cells. Phytomedicine 2018; 51: 139-50.
[http://dx.doi.org/10.1016/j.phymed.2018.10.012] [PMID: 30466611]
[943]
Luo KW, Sun JG, Chan JY, et al. Anticancer effects of imperatorin isolated from Angelica dahurica: induction of apoptosis in HepG2 cells through both death-receptor- and mitochondria-mediated pathways. Chemotherapy 2011; 57(6): 449-59.
[http://dx.doi.org/10.1159/000331641] [PMID: 22189406]
[944]
Ko YM, Wu TY, Wu YC, Chang FR, Guh JY, Chuang LY. Annonacin induces cell cycle-dependent growth arrest and apoptosis in estrogen receptor-α-related pathways in MCF-7 cells. J Ethnopharmacol 2011; 137(3): 1283-90.
[http://dx.doi.org/10.1016/j.jep.2011.07.056] [PMID: 21840388]
[945]
Yuan SS, Chang HL, Chen HW, et al. Annonacin, a mono-tetrahydrofuran acetogenin, arrests cancer cells at the G1 phase and causes cytotoxicity in a Bax- and caspase-3-related pathway. Life Sci 2003; 72(25): 2853-61.
[http://dx.doi.org/10.1016/S0024-3205(03)00190-5] [PMID: 12697268]
[946]
Kim GS, Zeng L, Alali F, et al. Muricoreacin and murihexocin C, mono-tetrahydrofuran acetogenins, from the leaves of Annona muricata. Phytochemistry 1998; 49(2): 565-71.
[http://dx.doi.org/10.1016/S0031-9422(98)00172-1] [PMID: 9747542]
[947]
Hien NT, Nhiem NX, Yen DT, et al. Chemical constituents of the Annona glabra fruit and their cytotoxic activity. Pharm Biol 2015; 53(11): 1602-7.
[http://dx.doi.org/10.3109/13880209.2014.993042] [PMID: 25856711]
[948]
Zhao HG, Zhou SL, Lin YY, Dai HF, Huang FY. Toxicarioside N induces apoptosis in human gastric cancer SGC-7901 cell by activating the p38MAPK pathway. Arch Pharm Res 2018; 41(1): 71-8.
[http://dx.doi.org/10.1007/s12272-017-0956-4] [PMID: 28940036]
[949]
Nganou BK, Mbaveng AT, Fobofou SAT, et al. Furoquinolines and dihydrooxazole alkaloids with cytotoxic activity from the stem bark of Araliopsis soyauxii. Fitoterapia 2019; 133: 193-9.
[http://dx.doi.org/10.1016/j.fitote.2019.01.003] [PMID: 30654126]
[950]
Sun Q, Liu K, Shen X, et al. Lappaol F, a novel anticancer agent isolated from plant arctium Lappa L. Mol Cancer Ther 2014; 13(1): 49-59.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0552] [PMID: 24222662]
[951]
Clement JA, Bleich RM, Campbell HE, et al. Cytotoxic oplopane sesquiterpenoids from Arnoglossum atriplicifolium. Nat Prod Res 2016; 30(18): 2028-33.
[http://dx.doi.org/10.1080/14786419.2015.1107063] [PMID: 26540019]
[952]
Masuda Y, Asada K, Satoh R, Takada K, Kitajima J. Capillin, a major constituent of Artemisia capillaris Thunb. flower essential oil, induces apoptosis through the mitochondrial pathway in human leukemia HL-60 cells. Phytomedicine 2015; 22(5): 545-52.
[http://dx.doi.org/10.1016/j.phymed.2015.03.008] [PMID: 25981920]
[953]
Hong L, Ying SH. Ethanol extract and isolated constituents from artemisia dracunculus inhibit esophageal squamous cell carcinoma and induce apoptotic cell death. Drug Res (Stuttg) 2015; 65(2): 101-6.
[PMID: 25076224]
[954]
Shoaib M, Shah I, Ali N, et al. Sesquiterpene lactone! a promising antioxidant, anticancer and moderate antinociceptive agent from Artemisia macrocephala jacquem. BMC Complement Altern Med 2017; 17(1): 27.
[http://dx.doi.org/10.1186/s12906-016-1517-y] [PMID: 28061778]
[955]
Yuan H, Lu X, Ma Q, Li D, Xu G, Piao G. Flavonoids from Artemisia sacrorum Ledeb. and their cytotoxic activities against human cancer cell lines. Exp Ther Med 2016; 12(3): 1873-8.
[http://dx.doi.org/10.3892/etm.2016.3556] [PMID: 27602097]
[956]
Fang SC, Hsu CL, Yu YS, Yen GC. Cytotoxic effects of new geranyl chalcone derivatives isolated from the leaves of Artocarpus communis in SW 872 human liposarcoma cells. J Agric Food Chem 2008; 56(19): 8859-68.
[http://dx.doi.org/10.1021/jf8017436] [PMID: 18767861]
[957]
Guo J, You H, Li D. Baicalein exerts anticancer effect in nasopharyngeal carcinoma in vitro and in vivo. Oncol Res 2019; 27(5): 601-11.
[http://dx.doi.org/10.3727/096504018X15399945637736] [PMID: 31053182]
[958]
Donoso-Fierro C, Tiezzi A, Ovidi E, et al. Antiproliferative activity of yatein isolated from Austrocedrus chilensis against murine myeloma cells: cytological studies and chemical investigations. Pharm Biol 2015; 53(3): 378-85.
[http://dx.doi.org/10.3109/13880209.2014.922588] [PMID: 25420758]
[959]
Illian DN, Hasibuan PAZ, Sumardi S, Nuryawan A, Wati R, Basyuni M. Anticancer activity of polyisoprenoids from Avicennia alba blume. in WiDr cells. Iran J Pharm Res 2019; 18(3): 1477-87.
[PMID: 32641956]
[960]
Shilpa G, Renjitha J, Saranga R, et al. Epoxyazadiradione purified from the Azadirachta indica seed induced mitochondrial apoptosis and inhibition of NFκB nuclear translocation in human cervical cancer cells. Phytother Res 2017; 31(12): 1892-902.
[http://dx.doi.org/10.1002/ptr.5932] [PMID: 29044755]
[961]
Ali H, Dixit S, Ali D, Alqahtani SM, Alkahtani S, Alarifi S. Isolation and evaluation of anticancer efficacy of stigmasterol in a mouse model of DMBA-induced skin carcinoma. Drug Des Devel Ther 2015; 9: 2793-800.
[http://dx.doi.org/10.2147/DDDT.S83514] [PMID: 26060396]
[962]
Roy MK, Kobori M, Takenaka M, et al. Antiproliferative effect on human cancer cell lines after treatment with nimbolide extracted from an edible part of the neem tree (Azadirachta indica). Phytother Res 2007; 21(3): 245-50.
[http://dx.doi.org/10.1002/ptr.2058] [PMID: 17163581]
[963]
Sharma N, Sharma A, Bhatia G, et al. Isolation of phytochemicals from Bauhinia variegata l. Bark and their In vitro antioxidant and cytotoxic potential. Antioxidants 2019; 8(10): 492.
[http://dx.doi.org/10.3390/antiox8100492] [PMID: 31627372]
[964]
Alali F, El-Elimat T, Albataineh H, et al. Cytotoxic homoisoflavones from the bulbs of Bellevalia eigii. J Nat Prod 2015; 78(7): 1708-15.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00357] [PMID: 26147490]
[965]
Wang N, Wang W, Liu C, Jin J, Shao B, Shen L. Inhibition of growth and induction of apoptosis in A549 cells by compounds from oxheart cabbage extract. J Sci Food Agric 2016; 96(11): 3813-20.
[http://dx.doi.org/10.1002/jsfa.7575] [PMID: 26679410]
[966]
Kim HS, Lim J, Lee DY, Ryu JH, Lim JS. Kazinol C from Broussonetia kazinoki activates AMP-activated protein kinase to induce antitumorigenic effects in HT-29 colon cancer cells. Oncol Rep 2015; 33(1): 223-9.
[http://dx.doi.org/10.3892/or.2014.3601] [PMID: 25394483]
[967]
Park S, Fudhaili A, Oh SS, et al. Cytotoxic effects of kazinol A derived from Broussonetia papyrifera on human bladder cancer cells, T24 and T24R2. Phytomedicine 2016; 23(12): 1462-8.
[http://dx.doi.org/10.1016/j.phymed.2016.08.005] [PMID: 27765366]
[968]
Tambama P, Abegaz B, Mukanganyama S. Antiproliferative activity of the isofuranonaphthoquinone isolated from Bulbine frutescens against jurkat T cells. BioMed Res Int 2014; 2014.
[969]
Habib MR, Karim MR. Antitumour evaluation of di-(2-ethylhexyl) phthalate (DEHP) isolated from Calotropis gigantea L. flower. Acta Pharm 2012; 62(4): 607-15.
[http://dx.doi.org/10.2478/v10007-012-0035-9] [PMID: 23333892]
[970]
Ibrahim SR, Mohamed GA, Shaala LA, et al. Proceraside A, a new cardiac glycoside from the root barks of Calotropis procera with In vitro anticancer effects. Nat Prod Res 2014; 28(17): 1322-7.
[http://dx.doi.org/10.1080/14786419.2014.901323] [PMID: 24678783]
[971]
Ibrahim SR, Mohamed GA, Shaala LA, Banuls LM, Kiss R, Youssef DT. Calotroposides H-N, new cytotoxic oxypregnane oligoglycosides from the root bark of Calotropis procera. Steroids 2015; 96: 63-72.
[http://dx.doi.org/10.1016/j.steroids.2015.01.012] [PMID: 25641077]
[972]
Rathee P, Rathee D, Rathee D, Rathee S. In vitro anticancer activity of stachydrine isolated from Capparis decidua on prostate cancer cell lines. Nat Prod Res 2012; 26(18): 1737-40.
[http://dx.doi.org/10.1080/14786419.2011.608673] [PMID: 21988653]
[973]
Liu F, Zhang Q, Yang X, et al. Cytotoxic diterpenoids as potential anticancer agents from the twigs of Casearia kurzii. Bioorg Chem 2019; 89: 102995.
[http://dx.doi.org/10.1016/j.bioorg.2019.102995] [PMID: 31185389]
[974]
Esakkirajan M, Prabhu NM, Manikandan R, et al. Apoptosis mediated anti-proliferative effect of compound isolated from Cassia auriculata leaves against human colon cancer cell line. Spectrochim Acta A Mol Biomol Spectrosc 2014; 127: 484-9.
[http://dx.doi.org/10.1016/j.saa.2014.02.073] [PMID: 24657422]
[975]
Fei W, Xuan Y, Jian X, et al. One new phenolic compound from Castanea mollissima shells and its suppression of HepatomaCell proliferation and inflammation by inhibiting NF-κB pathway. Int J Mol Sci 2019; 20(3): 466.
[http://dx.doi.org/10.3390/ijms20030466] [PMID: 30678222]
[976]
Rub RA, Pati MJ, Siddiqui AA, Moghe AS, Shaikh NN. Characterization of anticancer principles of Celosia argentea (Amaranthaceae). Pharmacognosy Res 2016; 8(2): 97-104.
[http://dx.doi.org/10.4103/0974-8490.172659] [PMID: 27034599]
[977]
Looi CY, Arya A, Cheah FK, et al. Induction of apoptosis in human breast cancer cells via caspase pathway by vernodalin isolated from Centratherum anthelminticum (L.) seeds. PLoS One 2013; 8(2): e56643.
[http://dx.doi.org/10.1371/journal.pone.0056643] [PMID: 23437193]
[978]
Yunos NM, Osman A, Jauri MH, Sallehudin NJ, Mutalip SSM. The In vitro anti-cancer activities of 17βH-neriifolin isolated from cerbera odollam and its binding activity on Na+, K+-ATPase. Curr Pharm Biotechnol 2020; 21(1): 37-44.
[http://dx.doi.org/10.2174/1389201020666190917154850] [PMID: 31530258]
[979]
Luo Y, Yu H, Yang Y, et al. A flavonoid compound from Chrysosplenium nudicaule inhibits growth and induces apoptosis of the human stomach cancer cell line SGC-7901. Pharm Biol 2016; 54(7): 1133-9.
[http://dx.doi.org/10.3109/13880209.2015.1055634] [PMID: 26428258]
[980]
Huyen CTT, Luyen BTT, Khan GJ, et al. Chemical constituents from Cimicifuga dahurica and their anti-proliferative effects on MCF-7 breast cancer cells. Molecules 2018; 23(5): 1083.
[http://dx.doi.org/10.3390/molecules23051083] [PMID: 29734650]
[981]
Shen KH, Lin ES, Kuo PL, Chen CY, Hsu YL. Isolinderanolide B, a butanolide extracted from the stems of Cinnamomum subavenium, inhibits proliferation of T24 human bladder cancer cells by blocking cell cycle progression and inducing apoptosis. Integr Cancer Ther 2011; 10(4): 350-8.
[http://dx.doi.org/10.1177/1534735410391662] [PMID: 21196431]
[982]
Shahwar D, Ullah S, Khan MA, Ahmad N, Saeed A, Ullah S. Anticancer activity of Cinnamon tamala leaf constituents towards human ovarian cancer cells. Pak J Pharm Sci 2015; 28(3): 969-72.
[PMID: 26004731]
[983]
Park KI, Park HS, Nagappan A, et al. Induction of the cell cycle arrest and apoptosis by flavonoids isolated from Korean Citrus aurantium L. in non-small-cell lung cancer cells. Food Chem 2012; 135(4): 2728-35.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.097] [PMID: 22980865]
[984]
Wu HJ, Wu HB, Zhao YQ, Chen LJ, Zou HZ. Bergamottin isolated from Citrus bergamia exerts In vitro and in vivo antitumor activity in lung adenocarcinoma through the induction of apoptosis, cell cycle arrest, mitochondrial membrane potential loss and inhibition of cell migration and invasion. Oncol Rep 2016; 36(1): 324-32.
[http://dx.doi.org/10.3892/or.2016.4833] [PMID: 27222242]
[985]
Waziri PM, Abdullah R, Yeap SK, et al. Clausenidin from Clausena excavata induces apoptosis in hepG2 cells via the mitochondrial pathway. J Ethnopharmacol 2016; 194: 549-58.
[http://dx.doi.org/10.1016/j.jep.2016.10.030] [PMID: 27729282]
[986]
Cheng L, Shi L, Wu J, et al. A hederagenin saponin isolated from Clematis ganpiniana induces apoptosis in breast cancer cells via the mitochondrial pathway. Oncol Lett 2018; 15(2): 1737-43.
[PMID: 29434869]
[987]
Saadullah M, Asif M, A Ch B, Yaseen HS, Uzair M, Afzal K. Isolation, characterization and preliminary cytotoxic and antifungal evaluations of novel lancifoliate isolated from methanol extract of Conocarpus lancifolius. Anticancer Agents Med Chem 2020; 20(14): 1664-72.
[http://dx.doi.org/10.2174/1871520620666200424110923] [PMID: 32329701]
[988]
Lee D, Lee SR, Kang KS, et al. Betulinic acid suppresses ovarian cancer cell proliferation through induction of apoptosis. Biomolecules 2019; 9(7): 257.
[http://dx.doi.org/10.3390/biom9070257] [PMID: 31277238]
[989]
Selim S, Al Jaouni S. Anticancer and apoptotic effects on cell proliferation of diosgenin isolated from Costus speciosus (Koen.) Sm. BMC Complement Altern Med 2015; 15(1): 301.
[http://dx.doi.org/10.1186/s12906-015-0836-8] [PMID: 26329920]
[990]
Premanathan M, Radhakrishnan S, Kulangiappar K, et al. Antioxidant & anticancer activities of isatin (1H-indole-2,3-dione), isolated from the flowers of Couroupita guianensis Aubl. Indian J Med Res 2012; 136(5): 822-6.
[PMID: 23287130]
[991]
Wen L, Guo R, You L, et al. Major triterpenoids in Chinese hawthorn “Crataegus pinnatifida” and their effects on cell proliferation and apoptosis induction in MDA-MB-231 cancer cells. Food Chem Toxicol 2017; 100: 149-60.
[http://dx.doi.org/10.1016/j.fct.2016.12.032] [PMID: 28025124]
[992]
Zingue S, Gbaweng Yaya AJ, Michel T, et al. Bioguided identification of daucosterol, a compound that contributes to the cytotoxicity effects of Crateva adansonii DC (capparaceae) to prostate cancer cells. J Ethnopharmacol 2020; 247: 112251.
[http://dx.doi.org/10.1016/j.jep.2019.112251] [PMID: 31560992]
[993]
Ahn KS, Hahm MS, Park EJ, Lee HK, Kim IH. Corosolic acid isolated from the fruit of Crataegus pinnatifida var. psilosa is a protein kinase C inhibitor as well as a cytotoxic agent. Planta Med 1998; 64(5): 468-70.
[http://dx.doi.org/10.1055/s-2006-957487] [PMID: 9690354]
[994]
Aponte JC, Jin Z, Vaisberg AJ, et al. Cytotoxic and anti-infective phenolic compounds isolated from Mikania decora and Cremastosperma microcarpum. Planta Med 2011; 77(14): 1597-9.
[http://dx.doi.org/10.1055/s-0030-1270960] [PMID: 21472652]
[995]
Jeon SM, Lee DS, Jeong GS. Cudraticusxanthone A isolated from the roots of Cudrania tricuspidata inhibits metastasis and induces apoptosis in breast cancer cells. J Ethnopharmacol 2016; 194: 57-62.
[http://dx.doi.org/10.1016/j.jep.2016.08.042] [PMID: 27586822]
[996]
Jiang X, Cao C, Sun W, et al. Scandenolone from Cudrania tricuspidata fruit extract suppresses the viability of breast cancer cells (MCF-7) In vitro and in vivo. Food Chem Toxicol 2019; 126: 56-66.
[http://dx.doi.org/10.1016/j.fct.2019.02.020] [PMID: 30753858]
[997]
Riaz M, Bilal A, Ali MS, et al. Natural products from Cuscuta reflexa Roxb. with antiproliferation activities in HCT116 colorectal cell lines. Nat Prod Res 2017; 31(5): 583-7.
[http://dx.doi.org/10.1080/14786419.2016.1198349] [PMID: 27450325]
[998]
El Hosry L, Di Giorgio C, Birer C, et al. In vitro cytotoxic and anticlastogenic activities of saxifragifolin B and cyclamin isolated from Cyclamen persicum and Cyclamen libanoticum. Pharm Biol 2014; 52(9): 1134-40.
[http://dx.doi.org/10.3109/13880209.2013.879600] [PMID: 24649909]
[999]
Zarei M, Shivanandappa T, Zarei M. Natural bioactive 4-Hydroxyisophthalic acid (4-HIPA) exhibited antiproliferative potential by upregulating apoptotic markers in In vitro and in vivo cancer models. Mol Biol Rep 2020; 47(7): 5343-53.
[http://dx.doi.org/10.1007/s11033-020-05617-x] [PMID: 32607952]
[1000]
Shu D, Qing Y, Tong Q, et al. Deltonin isolated from Dioscorea zingiberensis inhibits cancer cell growth through inducing mitochondrial apoptosis and suppressing Akt and mitogen activated protein kinase signals. Biol Pharm Bull 2011; 34(8): 1231-9.
[http://dx.doi.org/10.1248/bpb.34.1231] [PMID: 21804211]
[1001]
Liu ZD, Zhao DD, Jiang S, Xue B, Zhang YL, Yan XF. Anticancer Phenolics from Dryopteris fragrans (L.) Schott. Molecules 2018; 23(3): 680.
[http://dx.doi.org/10.3390/molecules23030680] [PMID: 29562617]
[1002]
Weidner C, Rousseau M, Micikas RJ, et al. Amorfrutin C induces apoptosis and inhibits proliferation in colon cancer cells through targeting mitochondria. J Nat Prod 2016; 79(1): 2-12.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00072] [PMID: 26731300]
[1003]
Mottaghipisheh J, Nové M, Spengler G, Kúsz N, Hohmann J, Csupor D. Antiproliferative and cytotoxic activities of furocoumarins of Ducrosia anethifolia. Pharm Biol 2018; 56(1): 658-64.
[http://dx.doi.org/10.1080/13880209.2018.1548625] [PMID: 31070540]
[1004]
Jain SK, Meena S, Gupta AP, et al. Dysoxylum binectariferum bark as a new source of anticancer drug camptothecin: bioactivity-guided isolation and LCMS-based quantification. Bioorg Med Chem Lett 2014; 24(14): 3146-9.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.001] [PMID: 24878199]
[1005]
Lee JS, Ahn JH, Cho YJ, et al. α-Terthienylmethanol, isolated from Eclipta prostrata, induces apoptosis by generating reactive oxygen species via NADPH oxidase in human endometrial cancer cells. J Ethnopharmacol 2015; 169: 426-34.
[http://dx.doi.org/10.1016/j.jep.2015.04.029] [PMID: 25940205]
[1006]
Chan CK, Chan G, Awang K, Abdul Kadir H. Deoxyelephantopin from elephantopus scaber inhibits HCT116 human colorectal carcinoma cell growth through apoptosis and cell cycle arrest. Molecules 2016; 21(3): 385.
[http://dx.doi.org/10.3390/molecules21030385] [PMID: 27007366]
[1007]
Pitchai D, Roy A, Ignatius C. In vitro evaluation of anticancer potentials of lupeol isolated from Elephantopus scaber L. on MCF-7 cell line. J Adv Pharm Technol Res 2014; 5(4): 179-84.
[http://dx.doi.org/10.4103/2231-4040.143037] [PMID: 25364696]
[1008]
Zhan R, Wang ZC, Yin BL, Liu Y, Chen YG. Novel 9, 10-dihydrophenanthrene derivatives from Eria bambusifolia with cytotoxicity aganist human cancer cells in vitro. Chin J Nat Med 2016; 14(8): 621-5.
[http://dx.doi.org/10.1016/S1875-5364(16)30073-5] [PMID: 27608952]
[1009]
Magura J, Moodley R, Maduray K, Mackraj I. Phytochemical constituents and in vitro anticancer screening of isolated compounds from Eriocephalus africanus‡. Nat Prod Res 2020; 1-4.
[http://dx.doi.org/10.1080/14786419.2020.1744138] [PMID: 32208740]
[1010]
Citi V, Piragine E, Pagnotta E, et al. Anticancer properties of erucin, an H2 S-releasing isothiocyanate, on human pancreatic adenocarcinoma cells (AsPC-1). Phytother Res 2019; 33(3): 845-55.
[http://dx.doi.org/10.1002/ptr.6278] [PMID: 30632211]
[1011]
Kwamou GM, Sandjo LP, Kuete V, et al. Unprecedented new nonadecyl para-hydroperoxycinnamate isolated from Erythrina excelsa and its cytotoxic activity. Nat Prod Res 2015; 29(10): 921-5.
[http://dx.doi.org/10.1080/14786419.2014.959519] [PMID: 25220189]
[1012]
Kumar S, Pathania AS, Saxena AK, Vishwakarma RA, Ali A, Bhushan S. The anticancer potential of flavonoids isolated from the stem bark of Erythrina suberosa through induction of apoptosis and inhibition of STAT signaling pathway in human leukemia HL-60 cells. Chem Biol Interact 2013; 205(2): 128-37.
[http://dx.doi.org/10.1016/j.cbi.2013.06.020] [PMID: 23850732]
[1013]
Subarnas A, Diantini A, Abdulah R, et al. Apoptosis induced in MCF-7 human breast cancer cells by 2′,4′-dihydroxy-6-methoxy-3,5-dimethylchalcone isolated from Eugenia aquea Burm f. leaves. Oncol Lett 2015; 9(5): 2303-6.
[http://dx.doi.org/10.3892/ol.2015.2981] [PMID: 26137061]
[1014]
Yoo CB, Han KT, Cho KS, et al. Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells. Cancer Lett 2005; 225(1): 41-52.
[http://dx.doi.org/10.1016/j.canlet.2004.11.018] [PMID: 15922856]
[1015]
Fallahian F, Ghanadian M, Aghaei M, Zarei SM. Induction of G2/M phase arrest and apoptosis by a new tetrahydroingenol diterpenoid from Euphorbia erythradenia Bioss. in melanoma cancer cells. Biomed Pharmacother 2017; 86: 334-42.
[http://dx.doi.org/10.1016/j.biopha.2016.12.029] [PMID: 28011381]
[1016]
Gao S, Sun D, Wang G, et al. Growth inhibitory effect of paratocarpin E, a prenylated chalcone isolated from Euphorbia humifusa Wild., by induction of autophagy and apoptosis in human breast cancer cells. Bioorg Chem 2016; 69: 121-8.
[http://dx.doi.org/10.1016/j.bioorg.2016.10.005] [PMID: 27814565]
[1017]
Cruz LS, de Oliveira TL, Kanunfre CC, et al. Pharmacokinetics and cytotoxic study of euphol from Euphorbia umbellata (Bruyns) Pax latex. Phytomedicine 2018; 47: 105-12.
[http://dx.doi.org/10.1016/j.phymed.2018.04.055] [PMID: 30166094]
[1018]
Khayam AU, Patel H, Faiola NA, et al. Quinovic acid purified from medicinal plant Fagonia indica mediates anticancer effects via death receptor 5. Mol Cell Biochem 2020; 474(1-2): 159-69.
[http://dx.doi.org/10.1007/s11010-020-03841-4] [PMID: 32734538]
[1019]
Jang H, Ko H, Song K, Kim YS. A sesquiterpenoid from Farfarae Flos induces apoptosis of MDA-MB-231 human breast cancer cells through inhibition of JAK–STAT3 signaling. Biomolecules 2019; 9(7): 278.
[http://dx.doi.org/10.3390/biom9070278] [PMID: 31337063]
[1020]
Aldaghi L, Rad A, Arab A, et al. In silico and In vitro evaluation of cytotoxic activities of farnesiferol c and microlobin on MCF-7, HeLa and KYSE cell lines. Drug Res (Stuttg) 2016; 66(10): 532-8.
[http://dx.doi.org/10.1055/s-0042-111200] [PMID: 27463028]
[1021]
Ogunlaja OO, Moodley R, Singh M, Baijnath H, Jonnalagadda SB. Cytotoxic activity of the bioactive principles from Ficus burtt-davyi. J Environ Sci Health B 2018; 53(4): 261-75.
[http://dx.doi.org/10.1080/03601234.2017.1410385] [PMID: 29278988]
[1022]
Sales L, Pezuk JA, Borges KS, et al. Anticancer activity of 7-epiclusianone, a benzophenone from Garcinia brasiliensis, in glioblastoma. BMC Complement Altern Med 2015; 15(1): 393.
[http://dx.doi.org/10.1186/s12906-015-0911-1] [PMID: 26518729]
[1023]
Ionta M, Ferreira-Silva GA, Niero EL, et al. 7-epiclusianone, a benzophenone extracted from garcinia brasiliensis (clusiaceae), induces cell cycle arrest in g1/s transition in a549 cells. Molecules 2015; 20(7): 12804-16.
[http://dx.doi.org/10.3390/molecules200712804] [PMID: 26184153]
[1024]
Li H, Meng XX, Zhang L, et al. Oblongifolin C and guttiferone K extracted from Garcinia yunnanensis fruit synergistically induce apoptosis in human colorectal cancer cells in vitro. Acta Pharmacol Sin 2017; 38(2): 252-63.
[http://dx.doi.org/10.1038/aps.2016.101] [PMID: 27840412]
[1025]
Shahat AA, Hidayathulla S, Khan AA, et al. Phytochemical profiling, antioxidant and anticancer activities of Gastrocotyle hispida growing in Saudi Arabia. Acta Trop 2019; 191: 243-7.
[http://dx.doi.org/10.1016/j.actatropica.2019.01.013] [PMID: 30659804]
[1026]
Zhou D, Jiang C, Fu C, et al. Antiproliferative effect of 2-Hydroxy-6-tridecylbenzoic acid from ginkgo biloba sarcotestas through the aryl hydrocarbon receptor pathway in triple-negative breast cancer cells. Nat Prod Res 2020; 34(6): 893-7.
[http://dx.doi.org/10.1080/14786419.2018.1508144] [PMID: 30445863]
[1027]
Kamatham S, Kumar N, Gudipalli P. Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. and their anti-proliferative effect on human epidermoid carcinoma A431 cells. Toxicol Rep 2015; 2: 520-9.
[http://dx.doi.org/10.1016/j.toxrep.2015.03.001] [PMID: 28962387]
[1028]
Piboonprai K, Khumkhrong P, Khongkow M, et al. Anticancer activity of arborinine from Glycosmis parva leaf extract in human cervical cancer cells. Biochem Biophys Res Commun 2018; 500(4): 866-72.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.175] [PMID: 29705700]
[1029]
Cho JJ, Chae JI, Yoon G, et al. Licochalcone A, a natural chalconoid isolated from Glycyrrhiza inflata root, induces apoptosis via Sp1 and Sp1 regulatory proteins in oral squamous cell carcinoma. Int J Oncol 2014; 45(2): 667-74.
[http://dx.doi.org/10.3892/ijo.2014.2461] [PMID: 24858379]
[1030]
Wang J, Zhang YS, Thakur K, et al. Licochalcone A from licorice root, an inhibitor of human hepatoma cell growth via induction of cell apoptosis and cell cycle arrest. Food Chem Toxicol 2018; 120: 407-17.
[http://dx.doi.org/10.1016/j.fct.2018.07.044] [PMID: 30055311]
[1031]
He J, Ye Y, Xu C. [Studies on the anticancer effect of howiinol A, a new compound isolated from Goniothalamus howii]. Yao Xue Xue Bao 1998; 33(7): 493-7.
[PMID: 12016881]
[1032]
Chimplee S, Graidist P, Srisawat T, Sukrong S, Bissanum R, Kanokwiroon K. Anti-breast cancer potential of frullanolide from Grangea maderaspatana plant by inducing apoptosis. Oncol Lett 2019; 17(6): 5283-91.
[http://dx.doi.org/10.3892/ol.2019.10209] [PMID: 31186745]
[1033]
Cole ER, de Andrade JP, Schmitt EF, et al. Cytotoxic and genotoxic activities of alkaloids from the bulbs of griffinia gardneriana and habranthus itaobinus (Amaryllidaceae). Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2019; 19(5): 707-17.
[1034]
Teoh WY, Tan HP, Ling SK, Abdul Wahab N, Sim KS. Phytochemical investigation of Gynura bicolor leaves and cytotoxicity evaluation of the chemical constituents against HCT 116 cells. Nat Prod Res 2016; 30(4): 448-51.
[http://dx.doi.org/10.1080/14786419.2015.1017726] [PMID: 25738869]
[1035]
Y Okubo M, D Torre A, P Paiva P, N Rosa M, O Silva VA, M Reis R, TG Ruiz AL, M Imamura P, de Carvalho JE, B Longato G. Coronarin D induces apoptotic cell death and cell cycle arrest in human glioblastoma cell line. Molecules 2019; 24(24): 4498.
[http://dx.doi.org/10.3390/molecules24244498]
[1036]
Shi LS, Wu CH, Yang TC, Yao CW, Lin HC, Chang WL. Cytotoxic effect of triterpenoids from the root bark of Hibiscus syriacus. Fitoterapia 2014; 97: 184-91.
[http://dx.doi.org/10.1016/j.fitote.2014.05.006] [PMID: 24862067]
[1037]
Amado NG, Cerqueira DM, Menezes FS, da Silva JF, Neto VM, Abreu JG. Isoquercitrin isolated from Hyptis fasciculata reduces glioblastoma cell proliferation and changes β-catenin cellular localization. Anticancer Drugs 2009; 20(7): 543-52.
[http://dx.doi.org/10.1097/CAD.0b013e32832d1149] [PMID: 19491660]
[1038]
White Y, Hamada T, Yoshimitsu M, et al. Novel cytotoxic isolated from Jamaican Hyptis verticillata jacq induces apoptosis and overcomes multidrug resistance. Anticancer Res 2011; 31(12): 4251-7.
[PMID: 22199288]
[1039]
Alam A, Jaiswal V, Akhtar S, Jayashree BS, Dhar KL. Isolation of isoflavones from Iris kashmiriana Baker as potential anti proliferative agents targeting NF-kappaB. Phytochemistry 2017; 136: 70-80.
[http://dx.doi.org/10.1016/j.phytochem.2017.01.002] [PMID: 28108024]
[1040]
Wei W, Hao EW, Zhang M, et al. Chemical constituents from Jasminum pentaneurum Hand.-Mazz and their cytotoxicity against human cancer cell lines. Nat Prod Res 2019; 1-9.
[http://dx.doi.org/10.1080/14786419.2019.1672688] [PMID: 31148468]
[1041]
Benzina S, Harquail J, Jean S, et al. Deoxypodophyllotoxin isolated from Juniperus communis induces apoptosis in breast cancer cells. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2015; 15(1): 79-88.
[1042]
Al Groshi A, Jasim HA, Evans AR, et al. Growth inhibitory activity of biflavonoids and diterpenoids from the leaves of the Libyan Juniperus phoenicea against human cancer cells. Phytother Res 2019; 33(8): 2075-82.
[http://dx.doi.org/10.1002/ptr.6397] [PMID: 31157484]
[1043]
Shamsee ZR, Al-Saffar AZ, Al-Shanon AF, Al-Obaidi JR. Cytotoxic and cell cycle arrest induction of pentacyclic triterpenoides separated from Lantana camara leaves against MCF-7 cell line in vitro. Mol Biol Rep 2019; 46(1): 381-90.
[http://dx.doi.org/10.1007/s11033-018-4482-3] [PMID: 30426385]
[1044]
Haggag EG, Kamal AM, Abdelhady MI, El-Sayed MM, El-Wakil EA, Abd-El-Hamed SS. Antioxidant and cytotoxic activity of polyphenolic compounds isolated from the leaves of Leucenia leucocephala. Pharm Biol 2011; 49(11): 1103-13.
[http://dx.doi.org/10.3109/13880209.2011.568623] [PMID: 21595573]
[1045]
Yoon JH, Shin JW, Pham TH, et al. Methyl lucidone induces apoptosis and G2/M phase arrest via the PI3K/Akt/NF-κB pathway in ovarian cancer cells. Pharm Biol 2020; 58(1): 51-9.
[http://dx.doi.org/10.1080/13880209.2019.1701044] [PMID: 31875458]
[1046]
Zou XG, Li J, Sun PL, Fan YW, Yang JY, Deng ZY. Orbitides isolated from flaxseed induce apoptosis against SGC-7901 adenocarcinoma cells. Int J Food Sci Nutr 2020; 71(8): 929-39.
[http://dx.doi.org/10.1080/09637486.2020.1750573] [PMID: 32281434]
[1047]
Kang YF, Liu CM, Kao CL, Chen CY. Antioxidant and anticancer constituents from the leaves of Liriodendron tulipifera. Molecules 2014; 19(4): 4234-45.
[http://dx.doi.org/10.3390/molecules19044234] [PMID: 24705566]
[1048]
Wang J, Zhao XZ, Qi Q, et al. Macranthoside B, a hederagenin saponin extracted from Lonicera macranthoides and its anti-tumor activities In vitro and in vivo. Food Chem Toxicol 2009; 47(7): 1716-21.
[http://dx.doi.org/10.1016/j.fct.2009.04.034] [PMID: 19406196]
[1049]
Ur Rehman N, Halim SA, Khan M, et al. Antiproliferative and carbonic anhydrase II inhibitory potential of chemical constituents from Lycium shawii and Aloe vera: evidence from in silico target fishing and In vitro testing. Pharmaceuticals (Basel) 2020; 13(5): 94.
[http://dx.doi.org/10.3390/ph13050094] [PMID: 32414030]
[1050]
Ham YM, Yoon WJ, Park SY, et al. Investigation of the component of Lycopodium serratum extract that inhibits proliferation and mediates apoptosis of human HL-60 leukemia cells. Food Chem Toxicol 2012; 50(8): 2629-34.
[http://dx.doi.org/10.1016/j.fct.2012.05.019] [PMID: 22613212]
[1051]
Yang DS, Li ZL, Peng WB, et al. Three new prenylated flavonoids from Macaranga denticulata and their anticancer effects. Fitoterapia 2015; 103: 165-70.
[http://dx.doi.org/10.1016/j.fitote.2015.04.001] [PMID: 25861748]
[1052]
Su YC, Ho CL. Composition, in-vitro anticancer, and antimicrobial activities of the leaf essential oil of Machilus mushaensis from Taiwan. Natural product communications 2013; 8(2): 1934578X1300800236.
[http://dx.doi.org/10.1177/1934578X1300800236]
[1053]
Costa PM, Ferreira PM, Bolzani VdaS, et al. Antiproliferative activity of pristimerin isolated from Maytenus ilicifolia (Celastraceae) in human HL-60 cells. Toxicol. In Vitro 2008; 22(4): 854-63.
[http://dx.doi.org/10.1016/j.tiv.2008.01.003] [PMID: 18296021]
[1054]
Zhou J, Feng JH, Fang L. A novel monoterpenoid indole alkaloid with anticancer activity from Melodinus khasianus. Bioorg Med Chem Lett 2017; 27(4): 893-6.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.005] [PMID: 28119023]
[1055]
Fang SC, Hsu CL, Lin HT, Yen GC. Anticancer effects of flavonoid derivatives isolated from Millettia reticulata Benth in SK-Hep-1 human hepatocellular carcinoma cells. J Agric Food Chem 2010; 58(2): 814-20.
[http://dx.doi.org/10.1021/jf903216r] [PMID: 19994890]
[1056]
Abu N, Zamberi NR, Yeap SK, et al. Subchronic toxicity, immunoregulation and anti-breast tumor effect of Nordamnacantal, an anthraquinone extracted from the stems of Morindacitrifolia L. BMC Complement Altern Med 2018; 18(1): 1-0.
[http://dx.doi.org/10.1186/s12906-018-2102-3] [PMID: 29295712]
[1057]
Cho E, Y, Chung E, Jang HY, et al. Anti-cancer effect of cyanidin-3-glucoside from mulberry via caspase-3 cleavage and DNA fragmentation In vitro and in vivo. Anti-Cancer Agents Med Chem 2017; 17(11): 1519-25.
[http://dx.doi.org/10.2174/1871520617666170327152026]
[1058]
Arun A, Patel OPS, Saini D, Yadav PP, Konwar R. Anti-colon cancer activity of Murraya koenigii leaves is due to constituent murrayazoline and O-methylmurrayamine A induced mTOR/AKT downregulation and mitochondrial apoptosis. Biomed Pharmacother 2017; 93: 510-21.
[http://dx.doi.org/10.1016/j.biopha.2017.06.065] [PMID: 28675857]
[1059]
Poornima P, Weng CF, Padma VV. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest. Biofactors 2014; 40(1): 121-31.
[http://dx.doi.org/10.1002/biof.1115] [PMID: 23983146]
[1060]
Yoon JS, Kim HM, Yadunandam AK, et al. Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: molecular mechanisms of cell cycle arrest, ER stress induced apoptosis and anti-angiogenic response. Phytomedicine 2013; 20(11): 1013-22.
[http://dx.doi.org/10.1016/j.phymed.2013.03.024] [PMID: 23746959]
[1061]
De U, Son JY, Jeon Y, et al. Plumbagin from a tropical pitcher plant (Nepenthes alata Blanco) induces apoptotic cell death via a p53-dependent pathway in MCF-7 human breast cancer cells. Food Chem Toxicol 2019; 123: 492-500.
[http://dx.doi.org/10.1016/j.fct.2018.11.040] [PMID: 30458268]
[1062]
Flegkas A, Milosević Ifantis T, Barda C, Samara P, Tsitsilonis O, Skaltsa H. Antiproliferative activity of (-)-rabdosiin isolated from Ocimum sanctum L. Medicines (Basel) 2019; 6(1): 37.
[http://dx.doi.org/10.3390/medicines6010037] [PMID: 30870993]
[1063]
Baskar AA, Ignacimuthu S, Michael GP, Al Numair KS. Cancer chemopreventive potential of luteolin-7-O-glucoside isolated from Ophiorrhiza mungos Linn. Nutr Cancer 2011; 63(1): 130-8.
[PMID: 21161823]
[1064]
Erenler R, Sen O, Aksit H, et al. Isolation and identification of chemical constituents from Origanum majorana and investigation of antiproliferative and antioxidant activities. J Sci Food Agric 2016; 96(3): 822-36.
[http://dx.doi.org/10.1002/jsfa.7155] [PMID: 25721137]
[1065]
Wang W, Zhao Y, Rayburn ER, Hill DL, Wang H, Zhang R. In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemother Pharmacol 2007; 59(5): 589-601.
[http://dx.doi.org/10.1007/s00280-006-0300-z] [PMID: 16924497]
[1066]
Ke JY, Zhang W, Gong RS, et al. A monomer purified from Paris polyphylla (PP-22) triggers S and G2/M phase arrest and apoptosis in human tongue squamous cell carcinoma SCC-15 by activating the p38/cdc25/cdc2 and caspase 8/caspase 3 pathways. Tumour Biol 2016; 37(11): 14863-72.
[http://dx.doi.org/10.1007/s13277-016-5376-4] [PMID: 27644244]
[1067]
Peng J, Fan G, Wu Y. Preparative isolation of four new and two known flavonoids from the leaf of Patrinia villosa Juss. by counter-current chromatography and evaluation of their anticancer activities in vitro. J Chromatogr A 2006; 1115(1-2): 103-11.
[http://dx.doi.org/10.1016/j.chroma.2006.02.079] [PMID: 16545824]
[1068]
Ding Y, He J, Huang J, et al. Harmine induces anticancer activity in breast cancer cells via targeting TAZ. Int J Oncol 2019; 54(6): 1995-2004.
[http://dx.doi.org/10.3892/ijo.2019.4777] [PMID: 31081045]
[1069]
Riviere C, Goossens L, Pommery N, Fourneau C, Delelis A, Henichart JP. Antiproliferative effects of isopentenylated coumarins isolated from Phellolophium madagascariense Baker. Nat Prod Res 2006; 20(10): 909-16.
[http://dx.doi.org/10.1080/14786410500277787] [PMID: 16854718]
[1070]
Ghosh S, Bishayee K, Khuda-Bukhsh AR. Oleanolic acid isolated from ethanolic extract of Phytolacca decandra induces apoptosis in A375 skin melanoma cells: drug-DNA interaction and signaling cascade. J Integr Med 2014; 12(2): 102-14.
[http://dx.doi.org/10.1016/S2095-4964(14)60015-7] [PMID: 24666676]
[1071]
Yue R, Li B, Shen Y, et al. 6-C-methyl flavonoids isolated from Pinus densata inhibit the proliferation and promote the apoptosis of the HL-60 human promyelocytic leukaemia cell line. Planta Med 2013; 79(12): 1024-30.
[http://dx.doi.org/10.1055/s-0033-1350617] [PMID: 23877923]
[1072]
Liu Q, Chen W, Jiao Y, et al. Pulsatilla saponin A, an active molecule from Pulsatilla chinensis, induces cancer cell death and inhibits tumor growth in mouse xenograft models. J Surg Res 2014; 188(2): 387-95.
[http://dx.doi.org/10.1016/j.jss.2014.01.026] [PMID: 24576780]
[1073]
Guha Majumdar A, Subramanian M. Hydroxychavicol from Piper betle induces apoptosis, cell cycle arrest, and inhibits epithelial-mesenchymal transition in pancreatic cancer cells. Biochem Pharmacol 2019; 166: 274-91.
[http://dx.doi.org/10.1016/j.bcp.2019.05.025] [PMID: 31154000]
[1074]
Longato GB, Rizzo LY, Sousa IM, et al. In vitro and in vivo anticancer activity of extracts, fractions, and eupomatenoid-5 obtained from Piper regnellii leaves. Planta Med 2011; 77(13): 1482-8.
[http://dx.doi.org/10.1055/s-0030-1270889] [PMID: 21391177]
[1075]
Seo YS, Kang OH, Kong R, et al. Polygalacin D induces apoptosis and cell cycle arrest via the PI3K/Akt pathway in non-small cell lung cancer. Oncol Rep 2018; 39(4): 1702-10.
[http://dx.doi.org/10.3892/or.2018.6230] [PMID: 29393481]
[1076]
Fawzy GA, Al-Taweel AM, Perveen S. Anticancer activity of flavane gallates isolated from Plicosepalus curviflorus. Pharmacogn Mag 2014; 10(Suppl. 3): S519-23.
[http://dx.doi.org/10.4103/0973-1296.139787] [PMID: 25298669]
[1077]
Zilla MK, Nayak D, Amin H, et al. 4′-Demethyl-deoxypodophyllotoxin glucoside isolated from Podophyllum hexandrum exhibits potential anticancer activities by altering Chk-2 signaling pathway in MCF-7 breast cancer cells. Chem Biol Interact 2014; 224: 100-7.
[http://dx.doi.org/10.1016/j.cbi.2014.09.022] [PMID: 25446499]
[1078]
Ma YL, Zhang YS, Zhang F, et al. Methyl protodioscin from Polygonatum sibiricum inhibits cervical cancer through cell cycle arrest and apoptosis induction. Food Chem Toxicol 2019; 132: 110655.
[http://dx.doi.org/10.1016/j.fct.2019.110655] [PMID: 31271762]
[1079]
Farooq U, Naz S, Zehra B, et al. Isolation and characterization of three new anti-proliferative Sesquiterpenes from Polygonum barbatum and their mechanism via apoptotic pathway. BMC Cancer 2017; 17(1): 694.
[http://dx.doi.org/10.1186/s12885-017-3667-9] [PMID: 29061136]
[1080]
Farooq U, Naz S, Shams A, et al. Isolation of dihydrobenzofuran derivatives from ethnomedicinal species Polygonum barbatum as anticancer compounds. Biol Res 2019; 52(1): 1.
[http://dx.doi.org/10.1186/s40659-018-0209-0] [PMID: 30612577]
[1081]
Li W, Zhang Q, Chen K, et al. 2-Ethoxystypandrone, a novel small-molecule STAT3 signaling inhibitor from Polygonum cuspidatum, inhibits cell growth and induces apoptosis of HCC cells and HCC Cancer stem cells. BMC Complement Altern Med 2019; 19(1): 38.
[http://dx.doi.org/10.1186/s12906-019-2440-9] [PMID: 30709346]
[1082]
v G M N, Atmakur H, Katragadda SB, et al. Antioxidant, hepatoprotective and cytotoxic effects of icetexanes isolated from stem-bark of Premna tomentosa. Phytomedicine 2014; 21(4): 497-505.
[http://dx.doi.org/10.1016/j.phymed.2013.09.025] [PMID: 24183951]
[1083]
Chakraborty A, Gupta N, Ghosh K, Roy P. In vitro evaluation of the cytotoxic, anti-proliferative and anti-oxidant properties of pterostilbene isolated from Pterocarpus marsupium. Toxicol In Vitro 2010; 24(4): 1215-28.
[http://dx.doi.org/10.1016/j.tiv.2010.02.007] [PMID: 20152895]
[1084]
Liu M, Zhao X, Xiao L, et al. Cytotoxicity of the compounds isolated from Pulsatilla chinensis saponins and apoptosis induced by 23-hydroxybetulinic acid. Pharm Biol 2015; 53(1): 1-9.
[http://dx.doi.org/10.3109/13880209.2014.907323] [PMID: 25026337]
[1085]
Ramamoorthy MD, Kumar A, Ayyavu M, Dhiraviam KN. Reserpine induces apoptosis and cell cycle arrest in hormone independent prostate cancer cells through mitochondrial membrane potential failure. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2018; 18(9): 1313-22.
[1086]
Liu Z, Tian Z, Lv J, et al. Mechanism in bradycardia induced by Trimethyltin chloride: Inhibition activity and expression of Na+/K+-ATPase and apoptosis in myocardia. J Toxicol Sci 2020; 45(9): 549-58.
[http://dx.doi.org/10.2131/jts.45.549] [PMID: 32879254]
[1087]
Chang HS, Lin CH, Hsiao PY, et al. Bioactive composition of Reevesiaformosana root and stem with cytotoxic activity potential. RSC Advances 2017; 7(43): 27040-7.
[http://dx.doi.org/10.1039/C7RA04255H]
[1088]
Venkatesan T, Jeong MJ, Choi YW, Park EJ, El-Desouky SK, Kim YK. Deoxyrhapontigenin, a natural stilbene derivative isolated from rheum undulatum L. Induces endoplasmic reticulum stress–mediated apoptosis in human breast cancer cells. Integr Cancer Ther 2016; 15(4): NP44-52.
[http://dx.doi.org/10.1177/1534735416636958] [PMID: 27151591]
[1089]
Ali S, Nisar M, Qaisar M, Khan A, Khan AA. Evaluation of the cytotoxic potential of a new pentacyclic triterpene from Rhododendron arboreum stem bark. Pharm Biol 2017; 55(1): 1927-30.
[http://dx.doi.org/10.1080/13880209.2017.1343359] [PMID: 28659001]
[1090]
Zhang X, Cheng J, He P, et al. Active monomer RTR-1 derived from the root of Rhodomyrtus tomentosa induces apoptosis in gastric carcinoma cells by inducing er stress and inhibiting the STAT3 signaling pathway. Cancer Manag Res 2020; 12: 3117-29.
[http://dx.doi.org/10.2147/CMAR.S237201] [PMID: 32440210]
[1091]
Chen X, Gao Z, Song M, et al. Identification of terpenoids from Rubus corchorifolius L. f. leaves and their anti-proliferative effects on human cancer cells. Food Funct 2017; 8(3): 1052-60.
[http://dx.doi.org/10.1039/C6FO01343K] [PMID: 28134947]
[1092]
Ghosh S, Bishayee K, Khuda-Bukhsh AR. Graveoline isolated from ethanolic extract of Ruta graveolens triggers apoptosis and autophagy in skin melanoma cells: a novel apoptosis-independent autophagic signaling pathway. Phytother Res 2014; 28(8): 1153-62.
[http://dx.doi.org/10.1002/ptr.5107] [PMID: 24343999]
[1093]
Richardson JS, Sethi G, Lee GS, Malek SN. Chalepin: isolated from Ruta angustifolia L. Pers induces mitochondrial mediated apoptosis in lung carcinoma cells. BMC Complement Altern Med 2016; 16(1): 389.
[http://dx.doi.org/10.1186/s12906-016-1368-6] [PMID: 27729078]
[1094]
Almeida I V, Fernandes L M, Biazi B I, Vicentini V EP. Evaluation of the anticancer activities of the plant alkaloids sanguinarine and chelerythrine in human breast adenocarcinoma cells. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2017; 17(11): 1586-92.
[1095]
Bommareddy A, Knapp K, Nemeth A, et al. Alpha-Santalol, a component of sandalwood oil inhibits migration of breast cancer cells by targeting the β-catenin pathway. Anticancer Res 2018; 38(8): 4475-80.
[http://dx.doi.org/10.21873/anticanres.12750] [PMID: 30061212]
[1096]
Chen Z, Liu YM, Yang S, et al. Studies on the chemical constituents and anticancer activity of Saxifraga stolonifera (L) Meeb. Bioorg Med Chem 2008; 16(3): 1337-44.
[http://dx.doi.org/10.1016/j.bmc.2007.10.072] [PMID: 17997321]
[1097]
Liang QP, Xu TQ, Liu BL, et al. Sasanquasaponin ΙΙΙ from Schima crenata Korth induces autophagy through Akt/mTOR/p70S6K pathway and promotes apoptosis in human melanoma A375 cells. Phytomedicine 2019; 58: 152769.
[http://dx.doi.org/10.1016/j.phymed.2018.11.029] [PMID: 31005714]
[1098]
Park C, Choi YW, Hyun SK, et al. Induction of G1 arrest and apoptosis by schisandrin C isolated from Schizandra chinensis Baill in human leukemia U937 cells. Int J Mol Med 2009; 24(4): 495-502.
[PMID: 19724890]
[1099]
Samarakoon SR, Ediriweera MK, Nwokwu CD, et al. A study on cytotoxic and apoptotic potential of a triterpenoid saponin (3-o-l-arabinosyl oleanolic acid) isolated from schumacheria castaneifolia Vahl in human non-small-cell lung cancer (NCI-H292) cells. BioMed Research International 2017; 2017.
[1100]
Moriyama H, Moriyama M, Ninomiya K, Morikawa T, Hayakawa T. Inhibitory effects of oligostilbenoids from the bark of Shorea roxburghii on malignant melanoma cell growth: Implications for novel topical anticancer candidates. Biol Pharm Bull 2016; 39(10): 1675-82.
[http://dx.doi.org/10.1248/bpb.b16-00420] [PMID: 27725445]
[1101]
Chen H, Ma Q, Xu W, et al. Anticancer effects of sinocrassulosides VI/VII from silene viscidula on hela cells. Evid-based Complement Altern Med 2017; 2017.
[1102]
Bektur Aykanat NE, Kacar S, Karakaya S, Sahinturk V. Silymarin suppresses HepG2 hepatocarcinoma cell progression through downregulation of Slit-2/Robo-1 pathway. Pharmacol Rep 2020; 72(1): 199-207.
[http://dx.doi.org/10.1007/s43440-019-00040-x] [PMID: 32016841]
[1103]
Mendez B, Reyes J, Conde I, et al. Simalikalactone D, a potential anticancer compound from Simarouba tulae, an endemic plant of puerto rico. Plants (Basel) 2020; 9(1): 93.
[http://dx.doi.org/10.3390/plants9010093] [PMID: 31940804]
[1104]
Wang O, Liu S, Zou J, et al. Anticancer activity of 2α, 3α, 19β, 23β-Tetrahydroxyurs-12-en-28-oic acid (THA), a novel triterpenoid isolated from Sinojackia sarcocarpa. PLoS One 2011; 6(6): e21130.
[http://dx.doi.org/10.1371/journal.pone.0021130] [PMID: 21695177]
[1105]
Kitai Y, Zhang X, Hayashida Y, Kakehi Y, Tamura H. Induction of G2/M arrest and apoptosis through mitochondria pathway by a dimer sesquiterpene lactone from Smallanthus sonchifolius in HeLa cells. Yao Wu Shi Pin Fen Xi 2017; 25(3): 619-27.
[http://dx.doi.org/10.1016/j.jfda.2016.10.005] [PMID: 28911648]
[1106]
Balachandran C, Emi N, Arun Y, et al. In vitro anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit. Chem Biol Interact 2015; 242: 81-90.
[http://dx.doi.org/10.1016/j.cbi.2015.09.023] [PMID: 26415618]
[1107]
Nath LR, Gorantla JN, Thulasidasan AK, et al. Evaluation of uttroside B, a saponin from Solanum nigrum Linn, as a promising chemotherapeutic agent against hepatocellular carcinoma. Sci Rep 2016; 6(1): 36318.
[http://dx.doi.org/10.1038/srep36318] [PMID: 27808117]
[1108]
Rasul A, Yu B, Yang LF, et al. Induction of mitochondria-mediated apoptosis in human gastric adenocarcinoma SGC-7901 cells by kuraridin and Nor-kurarinone isolated from Sophora flavescens. Asian Pac J Cancer Prev 2011; 12(10): 2499-504.
[PMID: 22320946]
[1109]
Pandey P, Singh D, Hasanain M, et al. 7-hydroxyfrullanolide, isolated from Sphaeranthus indicus, inhibits colorectal cancer cell growth by p53-dependent and -independent mechanism. Carcinogenesis 2019; 40(6): 791-804.
[http://dx.doi.org/10.1093/carcin/bgy176] [PMID: 30535334]
[1110]
Zhang C, Zhou SS, Feng LY, et al. In vitro anti-cancer activity of chamaejasmenin B and neochamaejasmin C isolated from the root of Stellera chamaejasme L. Acta Pharmacol Sin 2013; 34(2): 262-70.
[http://dx.doi.org/10.1038/aps.2012.158] [PMID: 23222270]
[1111]
Xu HD, Cho SC, Bang MA, et al. FK-3000 isolated from Stephania delavayi Diels. inhibits MDA-MB-231 cell proliferation by decreasing NF-κB phosphorylation and COX-2 expression. Int J Oncol 2015; 46(6): 2309-16.
[http://dx.doi.org/10.3892/ijo.2015.2940] [PMID: 25823424]
[1112]
Knockleby J, Pradines B, Gendrot M, et al. Cytotoxic and Anti-Plasmodial Activities of Stephania dielsiana Y.C. Wu Extracts and the Isolated Compounds. Molecules 2020; 25(16): 3755.
[http://dx.doi.org/10.3390/molecules25163755] [PMID: 32824689]
[1113]
Sathish Kumar P, Viswanathan MBG, Venkatesan M, Balakrishna K. Bauerenol, a triterpenoid from Indian Suregada angustifolia: Induces reactive oxygen species-mediated P38MAPK activation and apoptosis in human hepatocellular carcinoma (HepG2) cells. Tumour Biol 2017; 39(4): 1010428317698387.
[http://dx.doi.org/10.1177/1010428317698387] [PMID: 28443465]
[1114]
Ren Y, Anaya-Eugenio GD, Czarnecki AA, et al. Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives. Bioorg Med Chem 2018; 26(15): 4452-60.
[http://dx.doi.org/10.1016/j.bmc.2018.07.025] [PMID: 30057155]
[1115]
Paterna A, Gomes SE, Borralho PM, Mulhovo S, Rodrigues CM, Ferreira MU. (3'R)-hydroxytabernaelegantine C: A bisindole alkaloid with potent apoptosis inducing activity in colon (HCT116, SW620) and liver (HepG2) cancer cells. J Ethnopharmacol 2016; 194: 236-44.
[http://dx.doi.org/10.1016/j.jep.2016.09.020] [PMID: 27616029]
[1116]
Gansukh E, Mya KK, Jung M, Keum YS, Kim DH, Saini RK. Lutein derived from marigold (Tagetes erecta) petals triggers ROS generation and activates Bax and caspase-3 mediated apoptosis of human cervical carcinoma (HeLa) cells. Food Chem Toxicol 2019; 127: 11-8.
[http://dx.doi.org/10.1016/j.fct.2019.02.037] [PMID: 30826408]
[1117]
Wang Y, Wang J, Wang H, Ye W. Novel taxane derivatives from Taxus wallichiana with high anticancer potency on tumor cells. Chem Biol Drug Des 2016; 88(4): 556-61.
[http://dx.doi.org/10.1111/cbdd.12782] [PMID: 27153813]
[1118]
Bhukya B, Fatima K, Nagar A, et al. Brevifoliol ester induces apoptosis in prostate cancer cells by activation of caspase pathway. Chem Biol Drug Des 2020; 95(1): 150-61.
[http://dx.doi.org/10.1111/cbdd.13631] [PMID: 31585016]
[1119]
Hafezi K, Hemmati AA, Abbaszadeh H, Valizadeh A, Makvandi M. Anticancer activity and molecular mechanisms of α-conidendrin, a polyphenolic compound present in Taxus yunnanensis, on human breast cancer cell lines. Phytother Res 2020; 34(6): 1397-408.
[http://dx.doi.org/10.1002/ptr.6613] [PMID: 31971313]
[1120]
Mukherjee A, Sikdar S, Bishayee K, Boujedaini N, Khuda-Bukhsh AR. Flavonol isolated from ethanolic leaf extract of Thuja occidentalis arrests the cell cycle at G2-M and induces ROS-independent apoptosis in A549 cells, targeting nuclear DNA. Cell Prolif 2014; 47(1): 56-71.
[http://dx.doi.org/10.1111/cpr.12079] [PMID: 24267912]
[1121]
Mondal A. A novel extraction of trichosanthin from Trichosanthes kirilowii roots using three-phase partitioning and its In vitro anticancer activity. Pharm Biol 2014; 52(6): 677-80.
[http://dx.doi.org/10.3109/13880209.2013.864684] [PMID: 24824319]
[1122]
Thakur RS, Ahirwar B. A steroidal derivative from Trigonella foenum graecum L. that induces apoptosis In vitro and in vivo. journal of food and drug analysis 2019; 27(1): 231-9.
[1123]
Apaza Ticona L, Arnanz Sebastián J, Serban AM, Rumbero Sánchez Á. Alkaloids isolated from Tropaeolum tuberosum with cytotoxic activity and apoptotic capacity in tumour cell lines. Phytochemistry 2020; 177: 112435.
[http://dx.doi.org/10.1016/j.phytochem.2020.112435] [PMID: 32562919]
[1124]
Lai CS, Mas RH, Nair NK, Mansor SM, Navaratnam V. Chemical constituents and In vitro anticancer activity of Typhonium flagelliforme (Araceae). J Ethnopharmacol 2010; 127(2): 486-94.
[http://dx.doi.org/10.1016/j.jep.2009.10.009] [PMID: 19833183]
[1125]
Pragna Lakshmi T, Vajravijayan S, Moumita M, Sakthivel N, Gunasekaran K, Krishna R. A novel guaiane sesquiterpene derivative, guai-2-en-10α-ol, from Ulva fasciata Delile inhibits EGFR/PI3K/Akt signaling and induces cytotoxicity in triple-negative breast cancer cells. Mol Cell Biochem 2018; 438(1-2): 123-39.
[http://dx.doi.org/10.1007/s11010-017-3119-5] [PMID: 28766167]
[1126]
Pouyfung P, Choonate S, Wongnoppavich A, Rongnoparut P, Chairatvit K. Anti-proliferative effect of 8α-tigloyloxyhirsutinolide-13-O-acetate (8αTGH) isolated from Vernonia cinerea on oral squamous cell carcinoma through inhibition of STAT3 and STAT2 phosphorylation. Phytomedicine 2019; 52: 238-46.
[http://dx.doi.org/10.1016/j.phymed.2018.09.211] [PMID: 30599904]
[1127]
Klein JB, Nowill AE, Franchi GC Jr, Biavatti MW, Quintão NL, de Freitas RA. Cytotoxic, antitumour and antimetastatic activity of two new polyacetylenes isolated from Vernonia scorpioides (Lam.) Pers. Basic Clin Pharmacol Toxicol 2013; 113(5): 307-15.
[PMID: 23763911]
[1128]
Mendis AS, Thabrew I, Ediriweera MK, et al. Isolation of a new sesquiterpene lactone from Vernonia zeylanica (L) Less and its anti-proliferative effects in breast cancer cell lines. Anti-Cancer Agents in Med Chem 2019; 19(3): 410-24.
[1129]
Zakaria N, Mahdzir MA, Yusoff M, Mohd Arshad N, Awang K, Nagoor NH. Cytotoxic Effects of Pinnatane A Extracted from Walsura pinnata (Meliaceae) on Human Liver Cancer Cells. Molecules 2018; 23(11): 2733.
[http://dx.doi.org/10.3390/molecules23112733] [PMID: 30360475]
[1130]
Lee MS, Lee CM, Cha EY, et al. Activation of AMP-activated protein kinase on human gastric cancer cells by apoptosis induced by corosolic acid isolated from Weigela subsessilis. Phytother Res 2010; 24(12): 1857-61.
[http://dx.doi.org/10.1002/ptr.3210] [PMID: 20564492]
[1131]
Sahai R, Bhattacharjee A, Shukla VN, et al. Gedunin isolated from the mangrove plant Xylocarpus granatum exerts its anti-proliferative activity in ovarian cancer cells through G2/M-phase arrest and oxidative stress-mediated intrinsic apoptosis. Apoptosis 2020; 25(7-8): 481-99.
[http://dx.doi.org/10.1007/s10495-020-01605-5] [PMID: 32399945]
[1132]
Pachon G, Rasoanaivo H, Azqueta A, et al. Anticancer effect of a new benzophenanthridine isolated from Zanthoxylum madagascariense (Rutaceline). In Vivo 2007; 21(2): 417-22.
[PMID: 17436597]
[1133]
Ray SD, Dewanjee S. Isolation of a new triterpene derivative and In vitro and in vivo anticancer activity of ethanolic extract from root bark of Zizyphus nummularia Aubrev. Nat Prod Res 2015; 29(16): 1529-36.
[http://dx.doi.org/10.1080/14786419.2014.983921] [PMID: 25422165]
[1134]
Charron CS, Dawson HD, Albaugh GP, et al. A single meal containing raw, crushed garlic influences expression of immunity-and cancer-related genes in whole blood of humans. J Nutr 2015; 145(11): 2448-55.
[http://dx.doi.org/10.3945/jn.115.215392] [PMID: 26423732]
[1135]
Indrawati L, Bela B, Abdullah M, Surono IS. The effect of a Annona muricata leaf extract on nutrition status and cytotoxicity in colorectal cancer: a randomized controlled trial. Asia Pac J Clin Nutr 2016.
[PMID: 28582808]
[1136]
Shan GY, Zhang S, Li GW, Chen YS, Liu XA, Wang JK. Clinical evaluation of oral Fructus bruceae oil combined with radiotherapy for the treatment of esophageal cancer. Chin J Integr Med 2011; 17(12): 933-6.
[http://dx.doi.org/10.1007/s11655-011-0953-2] [PMID: 22139545]
[1137]
Hardman WE, Primerano DA, Legenza MT, Morgan J, Fan J, Denvir J. Dietary walnut altered gene expressions related to tumor growth, survival, and metastasis in breast cancer patients: a pilot clinical trial. Nutr Res 2019; 66: 82-94.
[http://dx.doi.org/10.1016/j.nutres.2019.03.004] [PMID: 30979659]
[1138]
Jiang SL, Liu HJ, Liu ZC, et al. Adjuvant effects of fermented red ginseng extract on advanced non-small cell lung cancer patients treated with chemotherapy. Chin J Integr Med 2017; 23(5): 331-7.
[http://dx.doi.org/10.1007/s11655-015-2146-x] [PMID: 26142337]
[1139]
González-Sarrías A, Núñez-Sánchez MA, Ávila-Gálvez MA, et al. Consumption of pomegranate decreases plasma lipopolysaccharide-binding protein levels, a marker of metabolic endotoxemia, in patients with newly diagnosed colorectal cancer: a randomized controlled clinical trial. Food Funct 2018; 9(5): 2617-22.
[http://dx.doi.org/10.1039/C8FO00264A] [PMID: 29770393]
[1140]
Perez AT, Arun B, Tripathy D, et al. A phase 1B dose escalation trial of Scutellaria barbata (BZL101) for patients with metastatic breast cancer. Breast Cancer Res Treat 2010; 120(1): 111-8.
[http://dx.doi.org/10.1007/s10549-009-0678-5] [PMID: 20054647]
[1141]
Tröger W, Galun D, Reif M, Schumann A, Stanković N, Milićević M. Viscum album [L.] extract therapy in patients with locally advanced or metastatic pancreatic cancer: a randomised clinical trial on overall survival. Eur J Cancer 2013; 49(18): 3788-97.
[http://dx.doi.org/10.1016/j.ejca.2013.06.043] [PMID: 23890767]
[1142]
Biswal BM, Sulaiman SA, Ismail HC, Zakaria H, Musa KI. Effect of Withania somnifera (Ashwagandha) on the development of chemotherapy-induced fatigue and quality of life in breast cancer patients. Integr Cancer Ther 2013; 12(4): 312-22.
[http://dx.doi.org/10.1177/1534735412464551] [PMID: 23142798]
[1143]
Kim S, Hwang BY, Su BN, et al. Silvestrol, a potential anticancer rocaglate derivative from Aglaia foveolata, induces apoptosis in LNCaP cells through the mitochondrial/apoptosome pathway without activation of executioner caspase-3 or -7. Anticancer Res 2007; 27(4B): 2175-83.
[PMID: 17695501]
[1144]
Tan AR, Swain SM. Review of flavopiridol, a cyclin-dependent kinase inhibitor, as breast cancer therapy.Seminars in oncology. WB Saunders 2002; 29: pp. (3)77-85.
[1145]
Raju U, Nakata E, Mason KA, Ang KK, Milas L. Flavopiridol, a cyclin-dependent kinase inhibitor, enhances radiosensitivity of ovarian carcinoma cells. Cancer Res 2003; 63(12): 3263-7.
[PMID: 12810657]
[1146]
Khazir J, Singh PP, Reddy DM, et al. Synthesis and anticancer activity of novel spiro-isoxazoline and spiro-isoxazolidine derivatives of α-santonin. Eur J Med Chem 2013; 63: 279-89.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.003] [PMID: 23501113]
[1147]
Kapoor S, Liang Y, Qiu X, Xu RZ, Zhao XY. Emerging role of berbamine as an anti-cancer agent in systemic malignancies besides chronic myeloid leukemia. J Zhejiang Univ Sci B 2012; 13(9): 761-2.
[http://dx.doi.org/10.1631/jzus.B1200110] [PMID: 22949368]
[1148]
Sun Y, Xun K, Wang Y, Chen X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs 2009; 20(9): 757-69.
[http://dx.doi.org/10.1097/CAD.0b013e328330d95b] [PMID: 19704371]
[1149]
Raza A, Aslam B, Naseer MU, Ali A, Majeed W, Hassan SU. Antitumor activity of berberine against breast cancer: a review. Int Res J Pharm 2015; 6(2): 81-5.
[http://dx.doi.org/10.7897/2230-8407.06219]
[1150]
da Rocha AB, Lopes RM, Schwartsmann G. Natural products in anticancer therapy. Curr Opin Pharmacol 2001; 1(4): 364-9.
[http://dx.doi.org/10.1016/S1471-4892(01)00063-7] [PMID: 11710734]
[1151]
Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 2006; 6(10): 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[1152]
Venditto VJ, Simanek EE. Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Mol Pharm 2010; 7(2): 307-49.
[http://dx.doi.org/10.1021/mp900243b] [PMID: 20108971]
[1153]
Wahid M, Bano Q. Camptothecin and its analogs antitumor activity by poisoning topoisomerase I, their structure activity relationship and clinical development perspective of analogs. J App Pharm 2014; 6: 286-95.
[1154]
Mukhtar E, Adhami VM, Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 2014; 13(2): 275-84.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791] [PMID: 24435445]
[1155]
Kaur RA, Arora SA. Alkaloids-important therapeutic secondary metabolites of plant origin. J Crit Rev 2015; 2(3): 1-8.
[1156]
Lü S, Wang J. Homoharringtonine and omacetaxine for myeloid hematological malignancies. J Hematol Oncol 2014; 7(1): 2.
[http://dx.doi.org/10.1186/1756-8722-7-2] [PMID: 24387717]
[1157]
Badgujar VB, Ansari MT, Abdullah MS, Badgujar SV. Homoharringtonine: a nascent phytochemical for cancer treatment (a review). World J Pharm Pharm Sci 2015; 4(12): 1380-91.
[1158]
Sun J. D-Limonene: safety and clinical applications. Altern Med Rev 2007; 12(3): 259-64.
[PMID: 18072821]
[1159]
Bayala B, Bassole IH, Scifo R, et al. Anticancer activity of essential oils and their chemical components - a review. Am J Cancer Res 2014; 4(6): 591-607.
[PMID: 25520854]
[1160]
Zhan YP, Huang XE, Cao J, et al. Clinical safety and efficacy of Kanglaite® (Coix Seed Oil) injection combined with chemotherapy in treating patients with gastric cancer. Asian Pac J Cancer Prev 2012; 13(10): 5319-21.
[http://dx.doi.org/10.7314/APJCP.2012.13.10.5319] [PMID: 23244156]
[1161]
Arora S, Gonzalez AF, Solanki K. Combretastatin A-4 and its analogs in cancer therapy. Int J Pharm Sci Rev Res 2013; 22(2): 168-74.
[1162]
Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 2011; 10(1): 12.
[http://dx.doi.org/10.1186/1476-4598-10-12] [PMID: 21299897]
[1163]
Rahmani AH, Al Zohairy MA, Aly SM, Khan MA. Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways. BioMed research international 2014; 2014
[http://dx.doi.org/10.1155/2014/761608]
[1164]
Lopez-Lazaro M. Digoxin, HIF-1, and cancer. Proc Natl Acad Sci USA 2009; 106(9): E26-7.
[http://dx.doi.org/10.1073/pnas.0813047106] [PMID: 19240208]
[1165]
Biggar RJ, Wohlfahrt J, Melbye M. Digoxin use and the risk of cancers of the corpus uteri, ovary and cervix. Int J Cancer 2012; 131(3): 716-21.
[http://dx.doi.org/10.1002/ijc.26424] [PMID: 21913187]
[1166]
Mi Q, Cui B, Lantvit D, et al. Pervilleine F, a new tropane alkaloid aromatic ester that reverses multidrug resistance. Anticancer Res 2003; 23(5A): 3607-15.
[PMID: 14666656]
[1167]
Pavese JM, Farmer RL, Bergan RC. Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev 2010; 29(3): 465-82.
[http://dx.doi.org/10.1007/s10555-010-9238-z] [PMID: 20730632]
[1168]
Spagnuolo C, Russo GL, Orhan IE, et al. Genistein and cancer: current status, challenges, and future directions. Adv Nutr 2015; 6(4): 408-19.
[http://dx.doi.org/10.3945/an.114.008052] [PMID: 26178025]
[1169]
Russo M, Russo GL, Daglia M, et al. Understanding genistein in cancer: The “good” and the “bad” effects: A review. Food Chem 2016; 196: 589-600.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.085] [PMID: 26593532]
[1170]
Lakhanpal S, Donehower RC, Rowinsky EK. Phase II study of 4-ipomeanol, a naturally occurring alkylating furan, in patients with advanced hepatocellular carcinoma. Invest New Drugs 2001; 19(1): 69-76.
[http://dx.doi.org/10.1023/A:1006408803734] [PMID: 11291834]
[1171]
Tu HY, Huang AM, Wei BL, et al. Ursolic acid derivatives induce cell cycle arrest and apoptosis in NTUB1 cells associated with reactive oxygen species. Bioorg Med Chem 2009; 17(20): 7265-74.
[http://dx.doi.org/10.1016/j.bmc.2009.08.046] [PMID: 19758808]
[1172]
Li Y, Lu X, Qi H, Li X, Xiao X, Gao J. Ursolic acid induces apoptosis through mitochondrial intrinsic pathway and suppression of ERK1/2 MAPK in HeLa cells. J Pharmacol Sci 2014; 125(2): 202-10.
[http://dx.doi.org/10.1254/jphs.14017FP] [PMID: 24881958]
[1173]
Woźniak Ł, Skąpska S, Marszałek K. Ursolic acid—a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules 2015; 20(11): 20614-41.
[http://dx.doi.org/10.3390/molecules201119721] [PMID: 26610440]
[1174]
Del Rio D, Stalmach A, Calani L, Crozier A. Bioavailability of coffee chlorogenic acids and green tea flavan-3-ols. Nutrients 2010; 2(8): 820-33.
[http://dx.doi.org/10.3390/nu2080820] [PMID: 22254058]
[1175]
Rocha LD, Monteiro MC, Teodoro AJ. Anticancer properties of hydroxycinnamic acids-A Review. Cancer Clin Oncol 2012; 1(2): 109.
[http://dx.doi.org/10.5539/cco.v1n2p109]
[1176]
Singh A, Duggal S. Piperine-review of advances in pharmacology. Int J Pharm Sci Nanotechnol 2009; 2(3): 615-20.
[1177]
Chinta G. B Syed S, Coumar MS, Periyasamy L. Piperine: a comprehensive review of pre-clinical and clinical investigations. Curr Bioact Compd 2015; 11(3): 156-69.
[http://dx.doi.org/10.2174/1573407211666150915214425]
[1178]
Gordaliza M, Castro MA, del Corral JM, Feliciano AS. Antitumor properties of podophyllotoxin and related compounds. Curr Pharm Des 2000; 6(18): 1811-39.
[http://dx.doi.org/10.2174/1381612003398582] [PMID: 11102564]
[1179]
Choi JY, Hong WG, Cho JH, et al. Podophyllotoxin acetate triggers anticancer effects against non-small cell lung cancer cells by promoting cell death via cell cycle arrest, ER stress and autophagy. Int J Oncol 2015; 47(4): 1257-65.
[http://dx.doi.org/10.3892/ijo.2015.3123] [PMID: 26314270]
[1180]
Slovackova J, Smarda J, Smardova J. Roscovitine-induced apoptosis of H1299 cells depends on functional status of p53. Neoplasma 2012; 59(6): 606-12.
[http://dx.doi.org/10.4149/neo_2012_077] [PMID: 22862161]
[1181]
Cai YJ, Lu JJ, Zhu H, et al. Salvicine triggers DNA double-strand breaks and apoptosis by GSH-depletion-driven H2O2 generation and topoisomerase II inhibition. Free Radic Biol Med 2008; 45(5): 627-35.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.017] [PMID: 18582559]
[1182]
Ramasamy K, Agarwal R. Multitargeted therapy of cancer by silymarin. Cancer Lett 2008; 269(2): 352-62.
[http://dx.doi.org/10.1016/j.canlet.2008.03.053] [PMID: 18472213]
[1183]
Mastron JK, Siveen KS, Sethi G, Bishayee A. Silymarin and hepatocellular carcinoma: a systematic, comprehensive, and critical review. Anticancer Drugs 2015; 26(5): 475-86.
[http://dx.doi.org/10.1097/CAD.0000000000000211] [PMID: 25603021]
[1184]
Bhuvaneswari V, Nagini S. Lycopene: a review of its potential as an anticancer agent. Curr Med Chem Anticancer Agents 2005; 5(6): 627-35.
[http://dx.doi.org/10.2174/156801105774574667] [PMID: 16305484]
[1185]
Wei MY, Giovannucci EL. Lycopene, tomato products, and prostate cancer incidence: a review and reassessment in the PSA screening era. J Oncol 2012; 2012.
[http://dx.doi.org/10.1155/2012/271063]
[1186]
Ganguly A, Yang H, Cabral F. Paclitaxel-dependent cell lines reveal a novel drug activity. Mol Cancer Ther 2010; 9(11): 2914-23.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0552] [PMID: 20978163]
[1187]
Priyadarshini K, Keerthi AU. Paclitaxel against cancer: a short review. Med Chem 2012; 2(7): 139-41.
[1188]
Baghel SS, Shrivastava N, Baghel RS, Agrawal P, Rajput S. A review of quercetin: antioxidant and anticancer properties. World J Pharm Pharm Sci 2012; 1(1): 146-60.
[1189]
Saklani A, Kutty SK. Plant-derived compounds in clinical trials. Drug Discov Today 2008; 13(3-4): 161-71.
[http://dx.doi.org/10.1016/j.drudis.2007.10.010] [PMID: 18275914]
[1195]
Chen X, Tang Y, Chen J, et al. Homoharringtonine is a safe and effective substitute for anthracyclines in children younger than 2 years old with acute myeloid leukemia. Front Med 2019; 13(3): 378-87.
[http://dx.doi.org/10.1007/s11684-018-0658-4] [PMID: 30635781]
[1198]
Zhang X, Xiong Y, Xia Q, et al. Efficacy and safety of apatinib plus vinorelbine in patients with wild-type advanced non-small cell lung cancer after second-line treatment failure: a nonrandomized clinical trial. JAMA Netw Open 2020; 3(3): e201226.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.1226] [PMID: 32191330]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy