Abstract
Betulinic acid (BA), a natural compound with a lupan skeleton, has been highly investigated in the past decade for a plethora of beneficial properties, including anti-cancer, anti-inflammatory, anti-angiogenic, immune-modulatory, and anti-HIV effects. In particular, BA has been reported to be effective in vitro against tumor cell lines of different origins, and also in vivo, in animal models of cancer. The best characterized mechanism of its antitumor effect consists of triggering apoptosis via the mitochondrial pathway. BA has also an anti-metastatic effect via the prevention of the epithelial-to-mesencymal transition in highly aggressive melanoma cells. Furthermore, in the same model, BA is able to counteract the pro-invasive potential of the pro-tumoral protein neutrophil gelatinaseassociated lipocalin. The present review addresses the current state of knowledge regarding the anti-tumor effects of betulinic acid, a potent chemotherapeutic agent.
Keywords: Angiogenesis, anti-tumor, betulinic acid, melanoma, mitochondria.
Anti-Cancer Agents in Medicinal Chemistry
Title:Betulinic Acid as a Potent and Complex Antitumor Phytochemical: A Minireview
Volume: 14 Issue: 7
Author(s): Dorina Gheorgheosu, Oana Duicu, Cristina Dehelean, Codruta Soica and Danina Muntean
Affiliation:
Keywords: Angiogenesis, anti-tumor, betulinic acid, melanoma, mitochondria.
Abstract: Betulinic acid (BA), a natural compound with a lupan skeleton, has been highly investigated in the past decade for a plethora of beneficial properties, including anti-cancer, anti-inflammatory, anti-angiogenic, immune-modulatory, and anti-HIV effects. In particular, BA has been reported to be effective in vitro against tumor cell lines of different origins, and also in vivo, in animal models of cancer. The best characterized mechanism of its antitumor effect consists of triggering apoptosis via the mitochondrial pathway. BA has also an anti-metastatic effect via the prevention of the epithelial-to-mesencymal transition in highly aggressive melanoma cells. Furthermore, in the same model, BA is able to counteract the pro-invasive potential of the pro-tumoral protein neutrophil gelatinaseassociated lipocalin. The present review addresses the current state of knowledge regarding the anti-tumor effects of betulinic acid, a potent chemotherapeutic agent.
Export Options
About this article
Cite this article as:
Gheorgheosu Dorina, Duicu Oana, Dehelean Cristina, Soica Codruta and Muntean Danina, Betulinic Acid as a Potent and Complex Antitumor Phytochemical: A Minireview, Anti-Cancer Agents in Medicinal Chemistry 2014; 14 (7) . https://dx.doi.org/10.2174/1871520614666140223192148
DOI https://dx.doi.org/10.2174/1871520614666140223192148 |
Print ISSN 1871-5206 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5992 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Doxorubicin-Induced In Vivo Nephrotoxicity Involves Oxidative Stress- Mediated Multiple Pro- and Anti-Apoptotic Signaling Pathways
Current Neurovascular Research Thiopurine Immunomodulators in Ulcerative Colitis: Moving Forward with Current Evidence
Current Drug Targets Calcium as a Molecular Target in Angiogenesis
Current Pharmaceutical Design Cellular Uptake of Neutral Phosphorodiamidate Morpholino Oligomers
Current Pharmaceutical Biotechnology Prostate Cancer Gene Regulatory Network Inferred from RNA-Seq Data
Current Genomics Specific Active Immunotherapy of Cancer: Potential and Perspectives
Reviews on Recent Clinical Trials Xanthone Derivatives: New Insights in Biological Activities
Current Medicinal Chemistry The ‘Other’ Telomerase Inhibitors: Non-G-Quadruplex Interactive Agent, Non-Antisense, Non-Reverse Transcriptase Telomerase Inhibitors
Current Medicinal Chemistry - Anti-Cancer Agents Pharmacological Modulation of Nitric Oxide Release: New Pharmacological Perspectives, Potential Benefits and Risks
Current Medicinal Chemistry Potential Cancer Gene Therapy by Baculoviral Transduction
Current Gene Therapy Boronated Compounds for Imaging Guided BNCT Applications
Anti-Cancer Agents in Medicinal Chemistry Novel Antimicrobial Agents for the Management of Maxillofacial and Neck Infections
Recent Patents on Anti-Infective Drug Discovery Gut Microbiota and Cardiovascular Disease: Symbiosis Versus Dysbiosis
Current Medicinal Chemistry Target Identification Strategies in Chemical Genetics
Combinatorial Chemistry & High Throughput Screening Perspectives of Fullerenes, Dendrimers, and Heterocyclic Compounds Application in Tumor Treatment
Recent Patents on Nanomedicine Inflammasome in Dendritic Cells Immunobiology: Implications to Diseases and Therapeutic Strategies
Current Drug Targets Targeting the HIF-1α/Cav-1 Pathway with a Chicory Extract/Daidzein Combination Plays a Potential Role in Retarding Hepatocellular Carcinoma
Current Cancer Drug Targets Development of Liposomes and Pseudovirions with Fusion Activity for Efficient Gene Delivery
Current Gene Therapy Topical Lipid Based Drug Delivery Systems for Skin Diseases: A Review
Current Drug Therapy Potential Prognostic Predictors and Molecular Targets for Skin Melanoma Screened by Weighted Gene Co-expression Network Analysis
Current Gene Therapy