Abstract
The CD19 molecule is ubiquitously expressed throughout all stages of B-cell differentiation, but is not found on haemopoietic stem cells. Since most B-cell leukaemias and lymphomas retain CD19 expression, it represents an excellent target for immunotherapy of these malignant disorders. Over the past 10 years, compelling pre-clinical evidence has accrued to indicate that expression of a CD19-targeted chimeric antigen receptor (CAR) in peripheral blood T-cells exerts therapeutic efficacy in diverse models of B-cell malignancy. Building on this, clinical studies are ongoing in several centres in which autologous CD19-specific CAR T-cells are undergoing evaluation in patients with acute and chronic B-cell leukaemia and refractory lymphoma. Early data have generated considerable excitement, providing grounds to speculate that CAR-based immunotherapy will radically alter existing management paradigms in B-cell malignancy. The focus of this mini-review is to evaluate these emerging clinical data and to speculate on clinical prospects for this new therapeutic modality.
Keywords: Adoptive immunotherapy, CD19, chimeric antigen receptor, gene therapy, leukaemia, lymphoma.
Current Gene Therapy
Title:Clinical Immunotherapy of B-Cell Malignancy Using CD19-Targeted CAR T-Cells
Volume: 14 Issue: 1
Author(s): John Maher
Affiliation:
Keywords: Adoptive immunotherapy, CD19, chimeric antigen receptor, gene therapy, leukaemia, lymphoma.
Abstract: The CD19 molecule is ubiquitously expressed throughout all stages of B-cell differentiation, but is not found on haemopoietic stem cells. Since most B-cell leukaemias and lymphomas retain CD19 expression, it represents an excellent target for immunotherapy of these malignant disorders. Over the past 10 years, compelling pre-clinical evidence has accrued to indicate that expression of a CD19-targeted chimeric antigen receptor (CAR) in peripheral blood T-cells exerts therapeutic efficacy in diverse models of B-cell malignancy. Building on this, clinical studies are ongoing in several centres in which autologous CD19-specific CAR T-cells are undergoing evaluation in patients with acute and chronic B-cell leukaemia and refractory lymphoma. Early data have generated considerable excitement, providing grounds to speculate that CAR-based immunotherapy will radically alter existing management paradigms in B-cell malignancy. The focus of this mini-review is to evaluate these emerging clinical data and to speculate on clinical prospects for this new therapeutic modality.
Export Options
About this article
Cite this article as:
Maher John, Clinical Immunotherapy of B-Cell Malignancy Using CD19-Targeted CAR T-Cells, Current Gene Therapy 2014; 14 (1) . https://dx.doi.org/10.2174/1566523213666131223130554
DOI https://dx.doi.org/10.2174/1566523213666131223130554 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Biosafety Challenges for Use of Lentiviral Vectors in Gene Therapy
Current Gene Therapy Low Dose of Anisodine Hydrobromide Induced Neuroprotective Effects in Chronic Cerebral Hypoperfusion Rats
CNS & Neurological Disorders - Drug Targets Alkylating Agents, the Road Less Traversed, Changing Anticancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Strategy of Cancer Targeting Gene-Viro-Therapy (CTGVT) a Trend in Both Cancer Gene Therapy and Cancer Virotherapy
Current Pharmaceutical Biotechnology Modulation of Cell Death in Age-Related Diseases
Current Pharmaceutical Design Origins and Consequences of AID Expression in Lymphoid Neoplasms
Current Immunology Reviews (Discontinued) E2F1 and NF-κB: Key Mediators of Inflammation-associated Cancers and Potential Therapeutic Targets
Current Cancer Drug Targets Receptor Tyrosine Kinases Take a Direct Route to Mitochondria: An Overview
Current Protein & Peptide Science Novel Insights into Targeting ATP-Binding Cassette Transporters for Antitumor Therapy
Current Medicinal Chemistry Survey of Recent Literature Related to the Biologically Active 4(3H)-Quinazolinones Containing Fused Heterocycles
Current Medicinal Chemistry 5-Nitro-Thiophene-Thiosemicarbazone Derivatives Present Antitumor Activity Mediated by Apoptosis and DNA Intercalation
Current Topics in Medicinal Chemistry Reconceptualizing Adult Neurogenesis: Role for Sphingosine-1-Phosphate and Fibroblast Growth Factor-1 in Co-Ordinating Astrocyte-Neuronal Precursor Interactions
CNS & Neurological Disorders - Drug Targets Reduction of Hyperproduction of Thyroid Autoantibodies in Patients without Disturbance of the Thyroid Function: New Patents
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Immune Mechanism, Aging, Season and Diseases: Modulatory Role of Melatonin
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) Gene Modified Cell Transplantation for Vascular Regeneration
Current Gene Therapy Cyclopentenyl Cytosine (CPEC): An Overview of its in vitro and in vivo Activity
Current Cancer Drug Targets Retinoids as Differentiating Agents in Oncology: A Network of Interactions with Intracellular Pathways as the Basis for Rational Therapeutic Combinations
Current Pharmaceutical Design Implications of Somatic Mutations in the AML1/RUNX1 Gene in Myelodysplastic Syndrome (MDS): Future Molecular Therapeutic Directions for MDS
Current Cancer Drug Targets Synthesis and Anticancer Activity of Some 2-[3/4-(2-Substituted Phenyl-2- oxoethoxy)benzylidene]-6-substituted-2,3-dihydro-1H-inden-1-one Derivatives
Letters in Drug Design & Discovery Chromosomal Abnormalities, Cancer and Mouse Models The Critical Role of Translocation-Associated Genes in Human Cancer
Current Genomics