Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Targeted Regulation of PI3K/Akt/mTOR/NF-κB Signaling by Indole Compounds and their Derivatives: Mechanistic Details and Biological Implications for Cancer Therapy

Author(s): Aamir Ahmad, Bernhard Biersack, Yiwei Li, Dejuan Kong, Bin Bao, Rainer Schobert, Subhash B. Padhye and Fazlul H. Sarkar

Volume 13, Issue 7, 2013

Page: [1002 - 1013] Pages: 12

DOI: 10.2174/18715206113139990078

Price: $65

Abstract

Indole compounds, found in cruciferous vegetables, are potent anti-cancer agents. Studies with indole-3-carbinol (I3C) and its dimeric product, 3,3'-diindolylmethane (DIM) suggest that these compounds have the ability to deregulate multiple cellular signaling pathways, including PI3K/Akt/mTOR signaling pathway. These natural compounds are also effective modulators of downstream transcription factor NF-κB signaling which might help explain their ability to inhibit invasion and angiogenesis, and the reversal of epithelial-to-mesenchymal transition (EMT) phenotype and drug resistance. Signaling through PI3K/Akt/mTOR and NF-κB pathway is increasingly being realized to play important role in EMT through the regulation of novel miRNAs which further validates the importance of this signaling network and its regulations by indole compounds. Here we will review the available literature on the modulation of PI3K/Akt/mTOR/NF-κB signaling by both parental I3C and DIM, as well as their analogs/derivatives, in an attempt to catalog their anticancer activity.

Keywords: Indole compounds, PI3K, cancer therapy, NF-κB, Glucosinolates.

Next »

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy