Abstract
Recent advances in proteomic and transcriptomic technologies resulted in the accumulation of vast amount of high-throughput data that span multiple biological processes and characteristics in different organisms. Much of the data come in the form of interaction networks and mRNA expression arrays. An important task in systems biology is functional modules discovery where the goal is to uncover well-connected sub-networks (modules). These discovered modules help to unravel the underlying mechanisms of the observed biological processes. While most of the existing module discovery methods use only the interaction data, in this work we propose, CLARM, which discovers biological modules by incorporating gene profiles data with protein-protein interaction networks. We demonstrate the effectiveness of CLARM on Yeast and Human interaction datasets, and gene expression and molecular function profiles. Experiments on these real datasets show that the CLARM approach is competitive to well established functional module discovery methods.
Keywords: Biological processes, CLARM, expression arrays, functional modules, interaction proteomic, sub-networks.
Current Bioinformatics
Title:Improving Functional Modules Discovery by Enriching Interaction Networks with Gene Profiles
Volume: 8 Issue: 3
Author(s): Saeed Salem, Rami Alroobi, Shadi Banitaan, Loqmane Seridi, Ibrahim Aljarah and James Brewer
Affiliation:
Keywords: Biological processes, CLARM, expression arrays, functional modules, interaction proteomic, sub-networks.
Abstract: Recent advances in proteomic and transcriptomic technologies resulted in the accumulation of vast amount of high-throughput data that span multiple biological processes and characteristics in different organisms. Much of the data come in the form of interaction networks and mRNA expression arrays. An important task in systems biology is functional modules discovery where the goal is to uncover well-connected sub-networks (modules). These discovered modules help to unravel the underlying mechanisms of the observed biological processes. While most of the existing module discovery methods use only the interaction data, in this work we propose, CLARM, which discovers biological modules by incorporating gene profiles data with protein-protein interaction networks. We demonstrate the effectiveness of CLARM on Yeast and Human interaction datasets, and gene expression and molecular function profiles. Experiments on these real datasets show that the CLARM approach is competitive to well established functional module discovery methods.
Export Options
About this article
Cite this article as:
Salem Saeed, Alroobi Rami, Banitaan Shadi, Seridi Loqmane, Aljarah Ibrahim and Brewer James, Improving Functional Modules Discovery by Enriching Interaction Networks with Gene Profiles, Current Bioinformatics 2013; 8 (3) . https://dx.doi.org/10.2174/1574893611308030008
DOI https://dx.doi.org/10.2174/1574893611308030008 |
Print ISSN 1574-8936 |
Publisher Name Bentham Science Publisher |
Online ISSN 2212-392X |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
The Immune System in Space, Including Earth-Based Benefits of Space- Based Research
Current Pharmaceutical Biotechnology Inhibitor at the Gates, Inhibitor in the Chamber: Allosteric and Competitive Inhibitors of the Proteasome as Prospective Drugs
Current Medicinal Chemistry - Immunology, Endocrine & Metabolic Agents Small Molecule Inhibitors of Protein Kinases in Cancer- How to Overcome Resistance
Mini-Reviews in Medicinal Chemistry Targeted Taxane Delivery Systems: Recent Advances
Drug Delivery Letters Peptide-based Radiopharmaceuticals for Targeted Tumor Therapy
Current Medicinal Chemistry Glycolipid Stimulators for NKT Cells Bearing Invariant Vα19-Jα33 TCR α Chains
Mini-Reviews in Medicinal Chemistry The Ubiquitin-Proteasome System and Proteasome Inhibitors in Central Nervous System Diseases
Cardiovascular & Hematological Disorders-Drug Targets On the Nature of the Tumor-Initiating Cell
Current Stem Cell Research & Therapy Phytometabolites Targeting the Warburg Effect in Cancer Cells: A Mechanistic Review
Current Drug Targets Application of Olefin Cross-Metathesis to the Synthesis of Biologically Active Natural Products
Current Topics in Medicinal Chemistry Embryonic Stem Cell MicroRNAs: Defining Factors in Induced Pluripotent (iPS) and Cancer (CSC) Stem Cells?
Current Stem Cell Research & Therapy The Potential for Genetically Altered Microglia to Influence Glioma Treatment
CNS & Neurological Disorders - Drug Targets Therapeutic Potential of Peptide Toxins that Target Ion Channels
Inflammation & Allergy - Drug Targets (Discontinued) Current Targets for Anticancer Drug Discovery
Current Drug Targets SAR, QSAR and Docking of Anticancer Flavonoids and Variants: A Review
Current Topics in Medicinal Chemistry Carbohydrates: Potential Sweet Tools Against Cancer
Current Medicinal Chemistry Are Circulating Monocytes as Microglia Orthologues Appropriate Biomarker Targets for Neuronal Diseases? (Supplementry Table)
Central Nervous System Agents in Medicinal Chemistry It is All About Proteases: From Drug Delivery to In Vivo Imaging and Photomedicine
Current Medicinal Chemistry Targeting of NF-kappaB Signaling Pathway, other Signaling Pathways and Epigenetics in Therapy of Multiple Myeloma
Cardiovascular & Hematological Disorders-Drug Targets OX40 and OX40L Interaction in Cancer
Current Medicinal Chemistry