Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

The Neurovascular Protection Afforded by Delayed Local Hypothermia after Transient Middle Cerebral Artery Occlusion

Author(s): Jong-Heon Kim, Minchul Seo, Hyung Soo Han, Jaechan Park and Kyoungho Suk

Volume 10, Issue 2, 2013

Page: [134 - 143] Pages: 10

DOI: 10.2174/1567202611310020006

Price: $65

Abstract

Therapeutic hypothermia is a robust therapeutic tool in experimental stroke models but its clinical applications are limited. Furthermore, optimal conditions for therapeutic hypothermia, such as, temperature and the initiation and duration of cooling must be individualized. Here, we evaluated the therapeutic effects of delayed local hypothermia, administered for 44 hr after 4 hr of reperfusion in a rat model of transient middle cerebral artery occlusion (tMCAo), using a cooling device that allowed controlled local hypothermia (31°C) in brain. Histological data revealed that local hypothermia significantly reduced infarct volumes and glial hypertrophic activation. Brain water contents, IgG leakage, and Evans Blue extravasation were notably reduced by local hypothermia. Furthermore, local hypothermia had strong vasculoprotective effects, as determined by immunohistochemistry and Western blot analyses for endothelial barrier antigen (EBA), laminin, aquaporin-4, and tight junction proteins in brain. Our data indicate that delayed/prolonged local hypothermia confers neurovascular protection, reduces brain edema, and inhibits inflammatory glial activation, and suggest that hypothermic conservation of vascular structures and functions account for the therapeutic effects of local hypothermia observed in this model of experimental stroke.

Keywords: Blood-brain barrier, edema, glia, local hypothermia, stroke, vascular protection


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy