Abstract
Regulation of gene expression is mediated by several mechanisms such as DNA methylation, ATP-dependent chromatin remodeling, and post-translational modifications of histones. The latter mechanism includes dynamic acetylation and deacetylation of η- amino groups of lysine residues present in the tail of the core histones. Enzymes responsible for the reversible acetylation/deacetylation processes are histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. There are three mammalian HDAC families, namely HDACs I, II and III based on their sequence homology. Inhibitors of HDACs induce hyperacetylation of histones that modulate chromatin structure and gene expression resulting in growth arrest, cell differentiation, and apoptosis of tumor cells. In addition, HDAC inhibitors enhance efficacy of anticancer agents that target DNA. Several formidable challenges associated with their development include non-specific toxicity and poor PK properties, including cell permeability. In this review, we comment on the current progress in design, discovery, in vitro/ex vivo activity and clinical potential of the synthetic modulators of HDACs.
Keywords: HDAC, Histone, inhibitors, cancer, QSAR, pharmacophore, docking, bioisoster
Anti-Cancer Agents in Medicinal Chemistry
Title: Histone Deacetylase Inhibitors in Cancer Therapy: Latest Developments, Trends and Medicinal Chemistry Perspective
Volume: 7 Issue: 5
Author(s): Konstantin V. Balakin, Yan A. Ivanenkov, Alex S. Kiselyov and Sergey E. Tkachenko
Affiliation:
Keywords: HDAC, Histone, inhibitors, cancer, QSAR, pharmacophore, docking, bioisoster
Abstract: Regulation of gene expression is mediated by several mechanisms such as DNA methylation, ATP-dependent chromatin remodeling, and post-translational modifications of histones. The latter mechanism includes dynamic acetylation and deacetylation of η- amino groups of lysine residues present in the tail of the core histones. Enzymes responsible for the reversible acetylation/deacetylation processes are histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. There are three mammalian HDAC families, namely HDACs I, II and III based on their sequence homology. Inhibitors of HDACs induce hyperacetylation of histones that modulate chromatin structure and gene expression resulting in growth arrest, cell differentiation, and apoptosis of tumor cells. In addition, HDAC inhibitors enhance efficacy of anticancer agents that target DNA. Several formidable challenges associated with their development include non-specific toxicity and poor PK properties, including cell permeability. In this review, we comment on the current progress in design, discovery, in vitro/ex vivo activity and clinical potential of the synthetic modulators of HDACs.
Export Options
About this article
Cite this article as:
Balakin V. Konstantin, Ivanenkov A. Yan, Kiselyov S. Alex and Tkachenko E. Sergey, Histone Deacetylase Inhibitors in Cancer Therapy: Latest Developments, Trends and Medicinal Chemistry Perspective, Anti-Cancer Agents in Medicinal Chemistry 2007; 7 (5) . https://dx.doi.org/10.2174/187152007781668698
DOI https://dx.doi.org/10.2174/187152007781668698 |
Print ISSN 1871-5206 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5992 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Multifaceted Mechanisms for Cell Survival and Drug Targeting in Chronic Myelogenous Leukemia
Current Cancer Drug Targets Natural Products as Aromatase Inhibitors
Anti-Cancer Agents in Medicinal Chemistry Editorial (Thematic Issue: Signalling Pathways in Anti-cancer Drug Resistance)
Current Medicinal Chemistry 3D-QSAR and Docking Simulation Studies of Some Benzopyrone Derivatives as Inhibitors for Breast Cancer Stem Cell Growth via PGlycoprotein Mediated Efflux
Current Bioinformatics Multifactorial Regulation of GPER Expression in Cancer Cells and Cardiomyocytes
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) Synthesis and Cytotoxicity of Amino-Pyrazole Derivatives with Preliminary SAR
Letters in Drug Design & Discovery Studies on the Biotransformations and Biodistributions of Metal-Containing Drugs Using X-Ray Absorption Spectroscopy
Current Topics in Medicinal Chemistry Chronic Myeloid Leukemia: Existing Therapeutic Options and Strategies to Overcome Drug Resistance
Mini-Reviews in Medicinal Chemistry 2-Deoxy-D-Ribose, a Downstream Mediator of Thymidine Phosphorylase, Regulates Tumor Angiogenesis and Progression
Anti-Cancer Agents in Medicinal Chemistry Editorial (Thematic Issue: Targeting Epithelial-to-Mesenchymal Transition for Cancer Therapy)
Current Pharmaceutical Design Nano-engineered Adsorbent for the Removal of Dyes from Water: A Review
Current Analytical Chemistry Transport Mechanisms at the Blood-Cerebrospinal-Fluid Barrier: Role of Megalin (LRP2)
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Anti-Cancer Natural Product Library from Traditional Chinese Medicine
Combinatorial Chemistry & High Throughput Screening Advancing Metabolomics Research and Biomarker Application with Nanotechnology
Current Metabolomics Ethical Implications of Pharmacogenetics: Shaping the Future of the Field
Current Pharmacogenomics Overcoming the Drug Resistance Problem with Second-Generation Tyrosine Kinase Inhibitors: From Enzymology to Structural Models
Current Medicinal Chemistry Metabolic Control Analysis and its Applications
Current Bioinformatics Perspectives in Engineered Mesenchymal Stem/Stromal Cells Based Anti- Cancer Drug Delivery Systems
Recent Patents on Anti-Cancer Drug Discovery Molecular Targets for the Treatment of Testicular Germ Cell Tumors
Mini-Reviews in Medicinal Chemistry Meet Our Regional Editor
Current Nutrition & Food Science