Abstract
FTY720 is a recently approved first line therapy for relapsing forms of multiple sclerosis. In this context, FTY720 is a pro-drug, with its anti-multiple sclerosis, immunosuppressive effects largely elicited following its phosphorylation by sphingosine kinase 2 and subsequent modulation of G protein-coupled sphingosine 1-phosphate (S1P) receptor 1 that induces lymphopenia by altering lymphocyte trafficking. A number of other biological effects of FTY720 have, however, been described, including considerable evidence that this drug also has anti-cancer properties. These other effects of FTY720 are independent of S1P receptors, and appear facilitated by modulation of a range of other recently described protein targets by nonphosphorylated FTY720. Here, we review the direct targets of FTY720 that contribute to its anti-cancer properties. We also discuss other recently described protein effectors that, in combination with S1P receptors, appear to contribute to its immunosuppressive effects.
Keywords: Apoptosis, cancer, FTY720, fingolimod, lymphopenia, lysophospholipid, sphingosine, sphingosine 1-phosphate, therapeutic drug, Gilenya™, myriocin, immunosuppressive activity, immuno-suppressants, toxicity, multiple sclerosis
Current Molecular Medicine
Title:Molecular Targets of FTY720 (Fingolimod)
Volume: 12 Issue: 10
Author(s): M.R. Pitman, J.M. Woodcock, A.F. Lopez and S.M. Pitson
Affiliation:
Keywords: Apoptosis, cancer, FTY720, fingolimod, lymphopenia, lysophospholipid, sphingosine, sphingosine 1-phosphate, therapeutic drug, Gilenya™, myriocin, immunosuppressive activity, immuno-suppressants, toxicity, multiple sclerosis
Abstract: FTY720 is a recently approved first line therapy for relapsing forms of multiple sclerosis. In this context, FTY720 is a pro-drug, with its anti-multiple sclerosis, immunosuppressive effects largely elicited following its phosphorylation by sphingosine kinase 2 and subsequent modulation of G protein-coupled sphingosine 1-phosphate (S1P) receptor 1 that induces lymphopenia by altering lymphocyte trafficking. A number of other biological effects of FTY720 have, however, been described, including considerable evidence that this drug also has anti-cancer properties. These other effects of FTY720 are independent of S1P receptors, and appear facilitated by modulation of a range of other recently described protein targets by nonphosphorylated FTY720. Here, we review the direct targets of FTY720 that contribute to its anti-cancer properties. We also discuss other recently described protein effectors that, in combination with S1P receptors, appear to contribute to its immunosuppressive effects.
Export Options
About this article
Cite this article as:
Pitman M.R., Woodcock J.M., Lopez A.F. and Pitson S.M., Molecular Targets of FTY720 (Fingolimod), Current Molecular Medicine 2012; 12 (10) . https://dx.doi.org/10.2174/156652412803833599
DOI https://dx.doi.org/10.2174/156652412803833599 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Anticancer Antifolates: Current Status and Future Directions
Current Pharmaceutical Design Preface
Anti-Cancer Agents in Medicinal Chemistry Bioavailability of Quercetin: Problems and Promises
Current Medicinal Chemistry The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein
Current Medicinal Chemistry ABC Transporters and Drug Resistance in Patients with Epilepsy
Current Pharmaceutical Design Cancer Chemoprevention by Dietary Phytochemicals: Promises and Pitfalls
Current Pharmaceutical Biotechnology Recent Patents Review in Three Dimensional Ultrasound Imaging
Recent Patents on Biomedical Engineering (Discontinued) Endocannabinoid System in Neurological Disorders
Recent Patents on CNS Drug Discovery (Discontinued) Role of Biotransformation in Conceptal Toxicity of Drugs and Other Chemicals
Current Pharmaceutical Design Juglone Exerts Cytotoxic, Anti-proliferative and Anti-invasive Effects on Glioblastoma Multiforme in a Cell Culture Model
Anti-Cancer Agents in Medicinal Chemistry Transactivation of EGFR by G Protein-Coupled Receptor in the Pathophysiology of Intimal Hyperplasia
Current Vascular Pharmacology Regulation of Expression and Function of IDO in Human Dendritic Cells
Current Medicinal Chemistry Mutations of Chromatin Structure Regulating Genes in Human Malignancies
Current Protein & Peptide Science Anticancer Drugs Discovery and Development from Marine Organisms
Current Topics in Medicinal Chemistry Current and Potential Treatments for Cervical Cancer
Current Cancer Drug Targets Chemically Functionalized Carbon Nanotubes: Emerging Vectors for Cell Therapy
Mini-Reviews in Medicinal Chemistry Fetal Mesenchymal Stem Cells in Cancer Therapy
Current Stem Cell Research & Therapy The Urokinase-type Plasminogen Activator and the Generation of Inhibitors of Urokinase Activity and Signaling
Current Pharmaceutical Design Voltage-Gated Sodium Channels as Therapeutic Targets for Treatment of Painful Diabetic Neuropathy
Mini-Reviews in Medicinal Chemistry Vascular Endothelial Growth Factor as an Anti-Angiogenic Target for Cancer Therapy
Current Drug Targets