Abstract
The role of A1 and A3 receptors is discussed based on data almost exclusively obtained in the hippocampus. This brain area, where A1 receptor expression predominates, has been a matter of intensive research in the adenosine field. Interestingly, in the last decade, the relevance of the much less expressed adenosine receptor in the hippocampus, the A2A receptor, has been put forward. These two high affinity receptors operate as effective regulators of a number of neurotransmitters and/or neuromodulators, through modulation of their release, action, or even inactivation. Therefore, A1 and A2A receptors constitute a must in the discussion about adenosine receptors in the hippocampus, and consequently, about the potential implications of their pharmacological manipulation and drug targeting.
Keywords: Adenosine receptors, brain-derived neurotrophic factor, cannabinoids, γ-aminobutyric acid, glutamate, hippocampus, neuroprotection, vasoactive intestinal peptide, Adenosine receptors, brain-derived neurotrophic factor, cannabinoids, aminobutyric acid, glutamate, hippocampus, neuroprotection, vasoactive intestinal peptide, ACh, AMPA
CNS & Neurological Disorders - Drug Targets
Title:From A1 to A3 en passant Through A2A Receptors in the Hippocampus: Pharmacological Implications
Volume: 11 Issue: 6
Author(s): Ana M. Sebastiao, Filipa F. Ribeiro and Joaquim A. Ribeiro
Affiliation:
Keywords: Adenosine receptors, brain-derived neurotrophic factor, cannabinoids, γ-aminobutyric acid, glutamate, hippocampus, neuroprotection, vasoactive intestinal peptide, Adenosine receptors, brain-derived neurotrophic factor, cannabinoids, aminobutyric acid, glutamate, hippocampus, neuroprotection, vasoactive intestinal peptide, ACh, AMPA
Abstract: The role of A1 and A3 receptors is discussed based on data almost exclusively obtained in the hippocampus. This brain area, where A1 receptor expression predominates, has been a matter of intensive research in the adenosine field. Interestingly, in the last decade, the relevance of the much less expressed adenosine receptor in the hippocampus, the A2A receptor, has been put forward. These two high affinity receptors operate as effective regulators of a number of neurotransmitters and/or neuromodulators, through modulation of their release, action, or even inactivation. Therefore, A1 and A2A receptors constitute a must in the discussion about adenosine receptors in the hippocampus, and consequently, about the potential implications of their pharmacological manipulation and drug targeting.
Export Options
About this article
Cite this article as:
M. Sebastiao Ana, F. Ribeiro Filipa and A. Ribeiro Joaquim, From A1 to A3 en passant Through A2A Receptors in the Hippocampus: Pharmacological Implications, CNS & Neurological Disorders - Drug Targets 2012; 11 (6) . https://dx.doi.org/10.2174/187152712803581074
DOI https://dx.doi.org/10.2174/187152712803581074 |
Print ISSN 1871-5273 |
Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
New Approaches With Natural Product Drugs for Overcoming Multidrug Resistance in Cancer
Current Pharmaceutical Design Opioid Transport by ATP-Binding Cassette Transporters at the Blood-Brain Barrier: Implications for Neuropsychopharmacology
Current Pharmaceutical Design Recent Approaches for Studying the Role of Glia
CNS & Neurological Disorders - Drug Targets Metabotropic Glutamate Receptors: A Review on Prospectives and Therapeutic Aspects
Mini-Reviews in Medicinal Chemistry Preface
Current Pharmaceutical Design Nanotechnology as Potential Strategy for the Treatment of Pharmacoresistant Epilepsy and Comorbid Psychiatric Disorders
Mini-Reviews in Medicinal Chemistry Editorial
Current Drug Safety Editorial [ Hot Topic: Recent Advances in Pediatric Epilepsy Surgery (Guest Editor: Batool F. Kirmani)]
Current Pediatric Reviews Maternal Exposure to Quetiapine: Effects on Structural Changes in Developing Brain and its Lasting Impact on Neurobehavioral Impairments in Rat Offspring
Current Psychopharmacology Hepatic Effects of Duloxetine-I: Non-Clinical and Clinical Trial Data
Current Drug Safety Benzimidazole Derivatives as Centerally Acting Agents
Current Drug Therapy Redox Processes in Neurodegenerative Disease Involving Reactive Oxygen Species
Current Neuropharmacology Neuroinflamm-Aging and Neurodegenerative Diseases: An Overview
CNS & Neurological Disorders - Drug Targets Biological Activities of Quinoline Derivatives
Mini-Reviews in Medicinal Chemistry Nanomedicines for Brain Targeting: A Patent Review
Recent Patents on Nanomedicine MicroRNA-542-3p Regulates P-glycoprotein Expression in Rat Epilepsy via the Toll-like Receptor 4/Nuclear Factor-kappaB Signaling Pathway
Current Neurovascular Research Nutraceuticals, A New Challenge for Medicinal Chemistry
Current Medicinal Chemistry Editorial (Thematic Issue: Mitochondrial Biogenesis: Pharmacological Approaches)
Current Pharmaceutical Design Clinical Uses of Melatonin in Neurological Diseases and Mental and Behavioural Disorders
Current Medicinal Chemistry FMRI of the Emotions: Towards an Improved Understanding of Amygdala Function
Current Medical Imaging