Abstract
Suicide gene therapy is an attractive strategy to selectively destroy cancer cells while minimizing unnecessary toxicity to normal cells. Since this idea was first introduced more than two decades ago, numerous studies have been conducted and significant developments have been made to further its application for mainstream cancer therapy. Major limitations of the suicide gene therapy strategy that have hindered its clinical application include inefficient directed delivery to cancer cells and the poor prodrug activation capacity of suicide enzymes. This review is focused on efforts that have been and are currently being pursued to improve the activity of individual suicide enzymes towards their respective prodrugs with particular attention to the application of nucleotide metabolizing enzymes in suicide cancer gene therapy. A number of protein engineering strategies have been employed and our discussion here will center on the use of mutagenesis approaches to create and evaluate nucleotide metabolizing enzymes with enhanced prodrug activation capacity and increased thermostability. Several of these studies have yielded clinically important enzyme variants that are relevant for cancer gene therapy applications because their utilization can serve to maximize cancer cell killing while minimizing the prodrug dose, thereby limiting undesirable side effects.
Keywords: Bystander effect, cancer, enzyme engineering, mutagenesis, prodrug, suicide gene therapy
Current Gene Therapy
Title:Enzymes To Die For: Exploiting Nucleotide Metabolizing Enzymes for Cancer Gene Therapy
Volume: 12 Issue: 2
Author(s): Andressa Ardiani, Adam J. Johnson, Hongmei Ruan, Marilyn Sanchez-Bonilla, Kinta Serve and Margaret E. Black
Affiliation:
Keywords: Bystander effect, cancer, enzyme engineering, mutagenesis, prodrug, suicide gene therapy
Abstract: Suicide gene therapy is an attractive strategy to selectively destroy cancer cells while minimizing unnecessary toxicity to normal cells. Since this idea was first introduced more than two decades ago, numerous studies have been conducted and significant developments have been made to further its application for mainstream cancer therapy. Major limitations of the suicide gene therapy strategy that have hindered its clinical application include inefficient directed delivery to cancer cells and the poor prodrug activation capacity of suicide enzymes. This review is focused on efforts that have been and are currently being pursued to improve the activity of individual suicide enzymes towards their respective prodrugs with particular attention to the application of nucleotide metabolizing enzymes in suicide cancer gene therapy. A number of protein engineering strategies have been employed and our discussion here will center on the use of mutagenesis approaches to create and evaluate nucleotide metabolizing enzymes with enhanced prodrug activation capacity and increased thermostability. Several of these studies have yielded clinically important enzyme variants that are relevant for cancer gene therapy applications because their utilization can serve to maximize cancer cell killing while minimizing the prodrug dose, thereby limiting undesirable side effects.
Export Options
About this article
Cite this article as:
Ardiani Andressa, J. Johnson Adam, Ruan Hongmei, Sanchez-Bonilla Marilyn, Serve Kinta and E. Black Margaret, Enzymes To Die For: Exploiting Nucleotide Metabolizing Enzymes for Cancer Gene Therapy, Current Gene Therapy 2012; 12 (2) . https://dx.doi.org/10.2174/156652312800099571
DOI https://dx.doi.org/10.2174/156652312800099571 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Myocardial Structure and Matrix Metalloproteinases
Current Topics in Medicinal Chemistry Beta-Blockers: Effects on Bone Mineral Density and Fracture Risk
Current Rheumatology Reviews Matrix Metalloproteinases and their Tissue Inhibitors in Diabetes, Atherosclerosis and Prediction of the Cardiovascular Risk
Current Enzyme Inhibition Comprehensive in silico Study of GLUT10: Prediction of Possible Substrate Binding Sites and Interacting Molecules
Current Pharmaceutical Biotechnology Humans Entrain to Sunlight - Impact of Social Jet Lag on Disease and Implications for Critical Illness
Current Pharmaceutical Design Synthetic Genomics and Synthetic Biology Applications Between Hopes and Concerns
Current Genomics The Role of Beta-Blocker in Heart Failure in Adults with Congenital Heart Disease
Reviews on Recent Clinical Trials Seeking Novel Targets for Improving In Vivo Macrophage-Specific Reverse Cholesterol Transport: Translating Basic Science into New Therapies for the Prevention and Treatment of Atherosclerosis
Current Vascular Pharmacology MicroRNA in Aging: From Discovery to Biology
Current Genomics Resistance to Aspirin and Thienopyridines in Diabetes Mellitus and Metabolic Syndrome
Current Vascular Pharmacology Sol Gel Method Performed for Biomedical Products Implementation
Mini-Reviews in Medicinal Chemistry Editorial [ Hot Topic:The Medicinal Chemistry of New Agents to Treat Diabetes and Obesity (Guest Editor: Jie-Fei Cheng)]
Current Topics in Medicinal Chemistry Intensive Glucose Control in Diabetics with an Acute Myocardial Infarction Does not Improve Mortality and Increases Risk of Hypoglycemia-A Meta-Regression Analysis
Current Vascular Pharmacology The Coronin Family and Human Disease
Current Protein & Peptide Science Effective Agents Targeting the Mitochondria and Apoptosis to Protect the Heart
Current Pharmaceutical Design Modulation of Neutrophil Function by Hormones
Current Immunology Reviews (Discontinued) Red Wine Consumption and Prevention of Atherosclerosis: An In Vitro Model Using Human Peripheral Blood Mononuclear Cells
Current Pharmaceutical Design Role of Thrombin Activatable Fibrinolysis Inhibitor in Endocrine and Cardiovascular Disorders: An Update
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Treatment Strategies Against Diabetic Foot Ulcer: Success so Far and the Road Ahead
Current Diabetes Reviews Foreword: The Year in Review: Comments on Plants, Cyclodextrins, Microbiota, and Diabetes
Current Pharmaceutical Design