Abstract
To develop drugs to kill cancer cells, we chemically synthesized a number of anti-cancer agents by adding different side chains to the core backbone of saponin. With the use of bioassay-guided methods, we found one agent that possessed a high cytotoxicity to a number of cancer cell lines. Interestingly, this compound was later found to be an active component of a tradition Chinese herb Paris polyphylla known as Polyphyllin D (PD) (diosgenyl α-L-rhamnopyranosyl- (1→2)-(β-L-ara-binofuranosyl-(1→4)-β-D-glucopyranoside). In China, the rhizome of Paris polyphylla (Chong Lou) has been used as a traditional Chinese medicine to treat a number of cancers including pancreas and liver cancers for a long time. Results from our laboratory demonstrate that PD is a potent anti-cancer agent that bypasses multi-drug resistance (MDR) and induces programmed cell death in R-HepG2 cells over-expressing P-glycoprotein (P-gp). In this paper, we reviewed the mechanisms how PD overcomes the MDR and exhibits a stronger cytotoxicity in the R-HepG2 than its parent line without P-gp through mitochondrial injury.
Keywords: Polyphyllin D, apoptosis, multi-drug resistance, mitochondria, R-HepG2
Current Chemical Biology
Title: Polyphyllin D - A Potential Anti-Cancer Agent to Kill Hepatocarcinoma Cells with Multi-Drug Resistance
Volume: 3 Issue: 1
Author(s): Tim T. Kwok, Siu K. Kong, Ming Li, Ho P. Ho, Bao Yu, Kwok P. Fung, Yick K. Suen, Judy Y.W. Chan, Macey M.S. Lee, Yan C. Li, Rebecca K.Y. Lee, Rose C.Y. Ong and Jenny Y.N. Cheung
Affiliation:
Keywords: Polyphyllin D, apoptosis, multi-drug resistance, mitochondria, R-HepG2
Abstract: To develop drugs to kill cancer cells, we chemically synthesized a number of anti-cancer agents by adding different side chains to the core backbone of saponin. With the use of bioassay-guided methods, we found one agent that possessed a high cytotoxicity to a number of cancer cell lines. Interestingly, this compound was later found to be an active component of a tradition Chinese herb Paris polyphylla known as Polyphyllin D (PD) (diosgenyl α-L-rhamnopyranosyl- (1→2)-(β-L-ara-binofuranosyl-(1→4)-β-D-glucopyranoside). In China, the rhizome of Paris polyphylla (Chong Lou) has been used as a traditional Chinese medicine to treat a number of cancers including pancreas and liver cancers for a long time. Results from our laboratory demonstrate that PD is a potent anti-cancer agent that bypasses multi-drug resistance (MDR) and induces programmed cell death in R-HepG2 cells over-expressing P-glycoprotein (P-gp). In this paper, we reviewed the mechanisms how PD overcomes the MDR and exhibits a stronger cytotoxicity in the R-HepG2 than its parent line without P-gp through mitochondrial injury.
Export Options
About this article
Cite this article as:
Kwok T. Tim, Kong K. Siu, Li Ming, Ho P. Ho, Yu Bao, Fung P. Kwok, Suen K. Yick, Chan Y.W. Judy, Lee M.S. Macey, Li C. Yan, Lee K.Y. Rebecca, Ong C.Y. Rose and Cheung Y.N. Jenny, Polyphyllin D - A Potential Anti-Cancer Agent to Kill Hepatocarcinoma Cells with Multi-Drug Resistance, Current Chemical Biology 2009; 3 (1) . https://dx.doi.org/10.2174/2212796810903010089
DOI https://dx.doi.org/10.2174/2212796810903010089 |
Print ISSN 2212-7968 |
Publisher Name Bentham Science Publisher |
Online ISSN 1872-3136 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Delivery Systems for Applications in siRNA Technology
Drug Delivery Letters Natural Products as Anticancer Agents
Current Drug Targets The Coordinated Role of CYP450 Enzymes and P-gp in Determining Cancer Resistance to Chemotherapy
Current Drug Metabolism Targeting CSC-Related miRNAs for Cancer Therapy by Natural Agents
Current Drug Targets miR-203 Suppresses the Proliferation and Metastasis of Hepatocellular Carcinoma by Targeting Oncogene ADAM9 and Oncogenic Long Non-coding RNA HULC
Anti-Cancer Agents in Medicinal Chemistry The Need for Diagnostic Criteria in Systemic Vasculitis
Current Immunology Reviews (Discontinued) Alpha-Terpineol as Antitumor Candidate in Pre-Clinical Studies
Anti-Cancer Agents in Medicinal Chemistry Multiple Target-Specific Molecular Imaging Agents Detect Liver Cancer in a Preclinical Model
Current Molecular Medicine Some Implications of Receptor Kinase Signaling Pathway for Development of Multitargeted Kinase Inhibitors
Current Radiopharmaceuticals Copper Compounds in Cancer Chemotherapy
Current Medicinal Chemistry Nuclear Factor-κB: A Holy Grail in Cancer Prevention and Therapy
Current Signal Transduction Therapy Liposomes and Lipid Envelope-Type Systems for Systemic siRNA Delivery
Current Pharmaceutical Design Novel Immunotherapies for Hematological Malignancies
Current Molecular Pharmacology Current Approaches in Antiviral Drug Discovery Against the Flaviviridae Family
Current Pharmaceutical Design Cancer Stem Cells in Solid and Liquid Tissues of Breast Cancer Patients: Characterization and Therapeutic Perspectives
Current Cancer Drug Targets Signaling Mechanism(S) of Reactive Oxygen Species in Epithelial-Mesenchymal Transition Reminiscent of Cancer Stem Cells in Tumor Progression
Current Stem Cell Research & Therapy Illuminating microRNA Transcription from the Epigenome
Current Genomics Triggered Activation and Release of Liposomal Prodrugs and Drugs in Cancer Tissue by Secretory Phospholipase A2
Current Drug Delivery A Solvent-free Method for Synthesis of Dihydroangelicins using Microwaves
Current Green Chemistry Anti-Aging Property of G2013 Molecule as a Novel Immunosuppressive Agent on Enzymatic and Non-Enzymatic Oxidative Stress Determinants in Rat Model
Current Drug Discovery Technologies