Abstract
The immunosuppressive drugs Cyclosporine A (CSA) and prednisolone are widely used to prevent graftversus- host-disease (GVHD) after allogenetic stem cell transplantation (allo-SCT). However, it remains to be elucidated whether these drugs have an effect on the balance of effector cells and CD4+CD25+ regulatory T cells (Tregs) which determines the development of stable allograft tolerance. In the current study, we found that proliferation, activation and function of T cells especially for virus-specific CD8+ T cells and Tregs were inhibited by CSA and prednisolone in a dosedependent manner. These effects were associated with lower secretion of cytokines and arresting T cells in the G0/G1 phase of cell cycle. Moreover, CSA and prednisolone could reduce the expression of FOXP3 and suppressive function of Tregs. Our data indicated that CSA and prednisolone impaired the development and function of CD8+ T cells as well as Tregs in a similar way suggesting that CSA and prednisolone might increase the susceptibility to develop viral diseases and block the potential induction of immune tolerance in clinical settings.
Keywords: T cells, cyclosporine A, prednisolone
Current Signal Transduction Therapy
Title: The Inhibitory Effect of Cyclosporine A and Prednisolone on Both Cytotoxic CD8+ T Cells and CD4+CD25+ Regulatory T Cells
Volume: 4 Issue: 3
Author(s): Fei Fei, Yingzhe Yu, Anita Schmitt, Markus Thomas Rojewski, Baoan Chen, Marlies Gotz, Philippe Guillaume, Donald Bunjes and Michael Schmitt
Affiliation:
Keywords: T cells, cyclosporine A, prednisolone
Abstract: The immunosuppressive drugs Cyclosporine A (CSA) and prednisolone are widely used to prevent graftversus- host-disease (GVHD) after allogenetic stem cell transplantation (allo-SCT). However, it remains to be elucidated whether these drugs have an effect on the balance of effector cells and CD4+CD25+ regulatory T cells (Tregs) which determines the development of stable allograft tolerance. In the current study, we found that proliferation, activation and function of T cells especially for virus-specific CD8+ T cells and Tregs were inhibited by CSA and prednisolone in a dosedependent manner. These effects were associated with lower secretion of cytokines and arresting T cells in the G0/G1 phase of cell cycle. Moreover, CSA and prednisolone could reduce the expression of FOXP3 and suppressive function of Tregs. Our data indicated that CSA and prednisolone impaired the development and function of CD8+ T cells as well as Tregs in a similar way suggesting that CSA and prednisolone might increase the susceptibility to develop viral diseases and block the potential induction of immune tolerance in clinical settings.
Export Options
About this article
Cite this article as:
Fei Fei, Yu Yingzhe, Schmitt Anita, Rojewski Thomas Markus, Chen Baoan, Gotz Marlies, Guillaume Philippe, Bunjes Donald and Schmitt Michael, The Inhibitory Effect of Cyclosporine A and Prednisolone on Both Cytotoxic CD8+ T Cells and CD4+CD25+ Regulatory T Cells, Current Signal Transduction Therapy 2009; 4 (3) . https://dx.doi.org/10.2174/157436209789057502
DOI https://dx.doi.org/10.2174/157436209789057502 |
Print ISSN 1574-3624 |
Publisher Name Bentham Science Publisher |
Online ISSN 2212-389X |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Angiogenesis in Chronic Lymphocytic Leukemia
Current Angiogenesis (Discontinued) Of Man in Mouse: Modelling Human Cancer Genotype-Phenotype Correlations in Mice
Current Genomics Patent Analysis as a Tool for Research Planning: Study on Natural Based Therapeutics Against Cancer Stem Cells
Recent Patents on Anti-Cancer Drug Discovery Culture Supernatants from Lactobacillus plantarum Induce Necrosis on a Human Promyelocytic Leukemia Cell Line
Endocrine, Metabolic & Immune Disorders - Drug Targets L1 Retrotransposon and Retinoblastoma: Molecular Linkages Between Epigenetics and Cancer
Current Molecular Medicine Pediatric Health Effects of Chronic Exposure to Extremely Low Frequency Electromagnetic Fields
Current Pediatric Reviews Strategies for Overcoming Inherent and Acquired Resistance to EGFR Inhibitors by Targeting Downstream Effectors in the RAS/PI3K Pathway
Current Cancer Drug Targets Protein Interaction Domains: Structural Features and Drug Discovery Applications (Part 2)
Current Medicinal Chemistry Human Leukemia and Lymphoma Cell Lines as Models and Resources
Current Medicinal Chemistry Evaluating Intestinal Permeability by Measuring Plasma Endotoxin and Diamine Oxidase in Children with Acute Lymphoblastic Leukemia Treated with High-dose Methotrexate
Anti-Cancer Agents in Medicinal Chemistry Drug Conjugated Nanomedicine as Prodrug Carrier
Nanoscience & Nanotechnology-Asia High-Dose Linoleic Acid Activated JAK2-STAT3 Signaling Pathway Involved in Cytokine Production and Lipogenesis in Pancreatic Exocrine Cells
Current Molecular Medicine In Vitro and In Vivo Experimental Model-based Approaches for Investigating Anti-inflammatory Properties of Coumarins
Current Medicinal Chemistry Exploiting Novel Cell Cycle Targets in the Development of Anticancer Agents
Current Cancer Drug Targets Identifying Molecular Targets Mediating the Anticancer Activity of Histone Deacetylase Inhibitors: A Work in Progress
Current Cancer Drug Targets Inhibition of Hedgehog/Gli Signaling by Botanicals: A Review of Compounds with Potential Hedgehog Pathway Inhibitory Activities
Current Cancer Drug Targets Epigenetic Alterations of the Wnt/β -Catenin Pathway in Human Disease
Endocrine, Metabolic & Immune Disorders - Drug Targets The Effects of Caffeine on the Cholinergic System
Mini-Reviews in Medicinal Chemistry Cell Death Targeting Therapies in B Lymphoid Malignancies
Current Drug Targets Old and New Gasotransmitters in the Cardiovascular System: Focus on the Role of Nitric Oxide and Hydrogen Sulfide in Endothelial Cells and Cardiomyocytes
Current Pharmaceutical Biotechnology