Abstract
Nanobiology is a fast-emerging discipline that brings the tools of nanotechnology to the biological sciences. The introduction of new techniques may accelerate the development of highly specific biomedical treatments, increase their efficiency, and minimize their side effects. Introducing foreign bodies into the complex machinery of the human body is, however, a great and humbling challenge, as past experience has shown. In order for nanobiology to reach its full potential, we must devise a means to alter the properties of nanoparticles, as expressed in the human body, in a predictable manner. Computer-aided methods are the natural option to speed up the development of these technologies. Yet, the procedures for annotation and simulation of nanoparticle properties must be developed and their limitations understood before computational methods can be fully exploited. In this review we will compare the state of development of nanoscale simulations in the biological sciences to that of the computer-aided drug design efforts in the past, tracing a historical parallel between both disciplines. From this comparison, lessons can be learned and bottlenecks identified, helping to speed up the development of computer-aided nanobiodevice design tools.
Keywords: structure, –, activity relationships, biomolecule, Computational Fluid Dynamics, Quantum mechanics, molecular mechanics, nanobioparticles
Current Topics in Medicinal Chemistry
Title: In-Silico Nanobio-Design. A New Frontier in Computational Biology
Volume: 7 Issue: 15
Author(s): Raul E. Cachau, Fernando D. Gonzalez-Nilo, Oscar N. Ventura and Martin J. Fritts
Affiliation:
Keywords: structure, –, activity relationships, biomolecule, Computational Fluid Dynamics, Quantum mechanics, molecular mechanics, nanobioparticles
Abstract: Nanobiology is a fast-emerging discipline that brings the tools of nanotechnology to the biological sciences. The introduction of new techniques may accelerate the development of highly specific biomedical treatments, increase their efficiency, and minimize their side effects. Introducing foreign bodies into the complex machinery of the human body is, however, a great and humbling challenge, as past experience has shown. In order for nanobiology to reach its full potential, we must devise a means to alter the properties of nanoparticles, as expressed in the human body, in a predictable manner. Computer-aided methods are the natural option to speed up the development of these technologies. Yet, the procedures for annotation and simulation of nanoparticle properties must be developed and their limitations understood before computational methods can be fully exploited. In this review we will compare the state of development of nanoscale simulations in the biological sciences to that of the computer-aided drug design efforts in the past, tracing a historical parallel between both disciplines. From this comparison, lessons can be learned and bottlenecks identified, helping to speed up the development of computer-aided nanobiodevice design tools.
Export Options
About this article
Cite this article as:
Cachau E. Raul, Gonzalez-Nilo D. Fernando, Ventura N. Oscar and Fritts J. Martin, In-Silico Nanobio-Design. A New Frontier in Computational Biology, Current Topics in Medicinal Chemistry 2007; 7 (15) . https://dx.doi.org/10.2174/156802607782194680
DOI https://dx.doi.org/10.2174/156802607782194680 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Small Peptide and Protein-based Molecular Probes for Imaging Neurological Diseases
Current Protein & Peptide Science Heterocyclic Scaffolds: Centrality in Anticancer Drug Development
Current Drug Targets The Effect of A Hexanoic Acid Linker Insertion on the Pharmacokinetics and Tumor Targeting Properties of the Melanoma Imaging Agent 99mTc-HYNIC-cycMSH
Anti-Cancer Agents in Medicinal Chemistry The Role of B-Lymphocyte Stimulator in Neuroendocrine Tumors: Correlation with Tumor Differentiation, Disease status and the Presence of Metastases
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) Biophysical Characterization of Antimicrobial Peptides Activity: From In Vitro to Ex Vivo Techniques
Current Protein & Peptide Science A Nuclear Receptor-Mediated Xenobiotic Response and Its Implication in Drug Metabolism and Host Protection
Current Drug Metabolism Pyrroles and Fused Pyrroles: Synthesis and Therapeutic Activities
Mini-Reviews in Organic Chemistry Antisense Technologies Targeting Fatty Acid Synthetic Enzymes
Recent Patents on Anti-Cancer Drug Discovery The Role of Quercetin, Flavonols and Flavones in Modulating Inflammatory Cell Function
Inflammation & Allergy - Drug Targets (Discontinued) Recent Developments and Applications of Derivative Spectrophotometry in Pharmaceutical Analysis
Current Pharmaceutical Analysis Cerenkov Luminescence Imaging at a Glance
Current Molecular Imaging (Discontinued) The Role of Microbiota and Intestinal Permeability in the Pathophysiology of Autoimmune and Neuroimmune Processes with an Emphasis on Inflammatory Bowel Disease Type 1 Diabetes and Chronic Fatigue Syndrome
Current Pharmaceutical Design Prevention of Cancer in the Upper Gastrointestinal Tract with COX-Inhibition. Still an Option?
Current Pharmaceutical Design Biopharmaceutics and Therapeutic Potential of Engineered Nanomaterials
Current Drug Metabolism Fluorescent Carbon Dots and Nanodiamonds for Biological Imaging: Preparation, Application, Pharmacokinetics and Toxicity
Current Drug Metabolism Combining PD-1 Inhibitor with VEGF/VEGFR2 Inhibitor in Chemotherapy: Report of a Patient with End-Stage Cholangiocarcinoma and Review of Literature
Recent Patents on Anti-Cancer Drug Discovery Biomarkers in the Evaluation and Management of Idiopathic Pulmonary Fibrosis
Current Topics in Medicinal Chemistry Assessment of Antioxidant Capacity of Natural Products
Current Pharmaceutical Biotechnology Probiotic Properties of a Spaceflight-induced Mutant Lactobacillus Plant- arum SS18-50 in Mice
Endocrine, Metabolic & Immune Disorders - Drug Targets Update on COX-2 Selective Inhibitors: Chemical Classification, Side Effects and their Use in Cancers and Neuronal Diseases
Current Topics in Medicinal Chemistry