Abstract
The Janus kinases (or Jak kinases) mediate cytokine and growth factor signal transduction. Acquired or inherited Jak mutations can result in dysregulation of Jak-mediated signal transduction and can be critical to disease acquisition in neoplasias including acute myeloid, acute lymphoblastic and acute megakaryoblastic leukemias, and in rare X-linked severe combined immunodeficiency. The discovery of an acquired Jak2 point mutation, V617F, in significant numbers of patients with classical myeloproliferative disorders has increased the interest in development of Jak2-specific tyrosine kinase inhibitors and consequently there are now over 20 publically available structures of Jak kinase domains that describe all four family members, Jak1, Jak2, Jak3, and Tyk2. Here we review the recent advances in understanding the druggable structure and function of the Jak family, with a focus on the structural biology of the Jak kinase domain. We will discuss how these advances impact the development of Jak-targeted therapeutics.
Keywords: Jak kinase, crystal structure, CP-690, 550, Jak2-V617F, kinase inhibitor, drug, cytokine signaling, mutation, translocation, STAT
Current Drug Targets
Title: The Use of Structural Biology in Janus Kinase Targeted Drug Discovery
Volume: 12 Issue: 4
Author(s): Nilda L. Alicea-Velazquez and Titus J. Boggon
Affiliation:
Keywords: Jak kinase, crystal structure, CP-690, 550, Jak2-V617F, kinase inhibitor, drug, cytokine signaling, mutation, translocation, STAT
Abstract: The Janus kinases (or Jak kinases) mediate cytokine and growth factor signal transduction. Acquired or inherited Jak mutations can result in dysregulation of Jak-mediated signal transduction and can be critical to disease acquisition in neoplasias including acute myeloid, acute lymphoblastic and acute megakaryoblastic leukemias, and in rare X-linked severe combined immunodeficiency. The discovery of an acquired Jak2 point mutation, V617F, in significant numbers of patients with classical myeloproliferative disorders has increased the interest in development of Jak2-specific tyrosine kinase inhibitors and consequently there are now over 20 publically available structures of Jak kinase domains that describe all four family members, Jak1, Jak2, Jak3, and Tyk2. Here we review the recent advances in understanding the druggable structure and function of the Jak family, with a focus on the structural biology of the Jak kinase domain. We will discuss how these advances impact the development of Jak-targeted therapeutics.
Export Options
About this article
Cite this article as:
L. Alicea-Velazquez Nilda and J. Boggon Titus, The Use of Structural Biology in Janus Kinase Targeted Drug Discovery, Current Drug Targets 2011; 12 (4) . https://dx.doi.org/10.2174/138945011794751528
DOI https://dx.doi.org/10.2174/138945011794751528 |
Print ISSN 1389-4501 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-5592 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Src Family Kinases as Potential Therapeutic Targets for Malignancies and Immunological Disorders
Current Medicinal Chemistry Angiotensin Peptides and Lung Cancer
Current Cancer Drug Targets A Role for Milk Proteins and their Peptides in Cancer Prevention
Current Pharmaceutical Design The Changing Face of HDAC Inhibitor Depsipeptide
Current Cancer Drug Targets Quercetin Promotes Cell Cycle Arrest and Apoptosis and Attenuates the Proliferation of Human Chronic Myeloid Leukemia Cell Line-K562 Through Interaction with HSPs (70 and 90), MAT2A and FOXM1
Anti-Cancer Agents in Medicinal Chemistry Leptin, Ciliary Neurotrophic Factor, Leukemia Inhibitory Factor and Interleukin- 6: Class-I Cytokines Involved in the Neuroendocrine Regulation of the Reproductive Function
Current Protein & Peptide Science Cells Under Pressure – Treatment of Eukaryotic Cells with High Hydrostatic Pressure, from Physiologic Aspects to Pressure Induced Cell Death
Current Medicinal Chemistry Reduction in Ischemic Cerebral Infarction is Mediated through Golgi Phosphoprotein 3 and Akt/mTOR Signaling Following Salvianolate Administration
Current Neurovascular Research Chemistry of Tumour Targeted T1 Based MRI Contrast Agents
Current Topics in Medicinal Chemistry Targeting Cancer Cells by an Oxidant-Based Therapy
Current Molecular Pharmacology Development of Anti-Atherosclerosis Therapy Based on the Inflammatory and Proliferative Aspects of the Disease
Current Pharmaceutical Design Cytotoxic, Apoptotic and DNA Synthesis Inhibitory Effects of Some Thiazole Derivatives
Letters in Drug Design & Discovery Signal Transduction Pathways and Transcription Factors as Therapeutic Targets in Inflammatory Disease: Towards Innovative Antirheumatic Therapy
Current Pharmaceutical Design Differential Involvement of Myosin II and VI in the Spontaneous and SDF- 1-induced Migration of Adult CD133+ Hematopoietic Stem/Progenitor Cells and Leukemic Cells
Current Cancer Therapy Reviews Targeting Tumors with Small Molecule Peptides
Current Cancer Drug Targets Application of Mesenchymal Stem Cells in Melanoma: A Potential Therapeutic Strategy for Delivery of Targeted Agents
Current Medicinal Chemistry Life and Death of Leukemic Cells Under Bcr-Abl Signaling Control
Current Cancer Therapy Reviews Novel Immunotherapeutic Strategies for Invasive Fungal Disease
Current Drug Targets - Cardiovascular & Hematological Disorders New Functions of the Inositol Polyphosphate 5-Phosphatases in Cancer
Current Pharmaceutical Design A Role for the Inflammatory Mediators Cox-2 and Metalloproteinases in Cancer Stemness
Anti-Cancer Agents in Medicinal Chemistry