Abstract
The last few years have seen the transfer of two decades of research into Chimeric Antigen Receptors (CARs) into clinical trials. Despite this extensive research, there is still a great deal of debate into the optimal design strategy for these, primarily, anti-cancer entities. The archetypal CAR consists of a single-chain antibody fragment, specific to a tumour- associated antigen, fused to a component of the T-cell receptor complex (typically CD3ζ) which on antigen binding primes the engrafted T-cell for anti-tumour activity. The modular nature of these artificial receptors has enabled researchers to modify aspects of their structure, including the extracellular spacer, transmembrane and cytoplasmic domain, to achieve laboratory defined optimal activity. Despite this there is no consensus on the optimal structure, a problem exacerbated by conflicting results using identical receptors. In this review, we provide a structural overview of CAR development and highlight areas that require further refinement. We also attempt to identify possible reasons for conflicting results in the hope that this information will inspire future rational design strategies for optimal tumour targeting using CARs.
Keywords: CD3ζ, T-cell Receptor, immunotherapy, gene-transfer, T-cell, costimulation, cancer, scFv
Current Gene Therapy
Title: Building Better Chimeric Antigen Receptors for Adoptive T Cell Therapy
Volume: 10 Issue: 2
Author(s): John S. Bridgeman, Robert E. Hawkins, Andreas A. Hombach, Hinrich Abken and David E. Gilham
Affiliation:
Keywords: CD3ζ, T-cell Receptor, immunotherapy, gene-transfer, T-cell, costimulation, cancer, scFv
Abstract: The last few years have seen the transfer of two decades of research into Chimeric Antigen Receptors (CARs) into clinical trials. Despite this extensive research, there is still a great deal of debate into the optimal design strategy for these, primarily, anti-cancer entities. The archetypal CAR consists of a single-chain antibody fragment, specific to a tumour- associated antigen, fused to a component of the T-cell receptor complex (typically CD3ζ) which on antigen binding primes the engrafted T-cell for anti-tumour activity. The modular nature of these artificial receptors has enabled researchers to modify aspects of their structure, including the extracellular spacer, transmembrane and cytoplasmic domain, to achieve laboratory defined optimal activity. Despite this there is no consensus on the optimal structure, a problem exacerbated by conflicting results using identical receptors. In this review, we provide a structural overview of CAR development and highlight areas that require further refinement. We also attempt to identify possible reasons for conflicting results in the hope that this information will inspire future rational design strategies for optimal tumour targeting using CARs.
Export Options
About this article
Cite this article as:
S. Bridgeman John, E. Hawkins Robert, A. Hombach Andreas, Abken Hinrich and E. Gilham David, Building Better Chimeric Antigen Receptors for Adoptive T Cell Therapy, Current Gene Therapy 2010; 10 (2) . https://dx.doi.org/10.2174/156652310791111001
DOI https://dx.doi.org/10.2174/156652310791111001 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
DNA Damage-inducing Compounds: Unraveling their Pleiotropic Effects Using High Throughput Sequencing
Current Medicinal Chemistry Drug Resistance and Apoptosis in Cancer Treatment: Development of New Apoptosis-Inducing Agents Active in Drug Resistant Malignancies
Current Medicinal Chemistry - Anti-Cancer Agents Carbon Nanotubes: An Emerging Drug Delivery Carrier in Cancer Therapeutics
Current Drug Delivery Nanoparticle Based Delivery of Protease Inhibitors to Cancer Cells
Current Medicinal Chemistry Radiation and Gene Therapy: Rays of Hope for the New Millennium?
Current Gene Therapy Allosteric Inhibition of G-Protein Coupled Receptor Oligomerization: Strategies and Challenges for Drug Development
Current Topics in Medicinal Chemistry Synthetic and Natural Coumarins as Cytotoxic Agents
Current Medicinal Chemistry - Anti-Cancer Agents Class II Phosphoinositide 3-Kinases as Potential Novel Drug Targets
Current Signal Transduction Therapy The Potential Role of Pharmacogenomic and Genomic in the Adjuvant Treatment of Early Stage Non Small Cell Lung Cancer
Current Genomics Mucoadhesive Polymeric Platform for Drug Delivery; A Comprehensive Review
Current Drug Delivery Resveratrol Regulates Nrf2-Mediated Expression of Antioxidant and Xenobiotic Metabolizing Enzymes in Pesticides-Induced Parkinsonism
Protein & Peptide Letters A Review on Epigenetic Effects of Environmental Factors Causing and Inhibiting Cancer
Current Molecular Medicine Melatonin and Melatoninergic Drugs as Therapeutic Agents: Ramelteon and Agomelatine, the Two Most Promising Melatonin Receptor Agonists
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Targeting IAPs as An Approach to Anti-Cancer Therapy
Current Topics in Medicinal Chemistry Fluorescent Molecular Imaging: Technical Progress and Current Preclinical and Clinical Applications in Urogynecologic Diseases
Current Molecular Medicine LRP/LR as an Alternative Promising Target in Therapy of Prion Diseases, Alzheimers Disease and Cancer
Infectious Disorders - Drug Targets Insights into the Role of Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Health and Disease
Current Chemical Biology Microglial Activation with Reduction in Autophagy Limits White Matter Lesions and Improves Cognitive Defects During Cerebral Hypoperfusion
Current Neurovascular Research Role of Poly(ADP-ribose) Polymerase (PARP1) in Viral Infection and its Implication in SARS-CoV-2 Pathogenesis
Current Drug Targets Image-Guided Photonic Energy Deposition for Cancer Ablation and Drug Delivery
Current Medical Imaging