Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Bilastine-Loaded Transethosome Based Nanogel for the Treatment of Allergic Reactions: An In vitro Characterization

In Press, (this is not the final "Version of Record"). Available online 01 August, 2024
Author(s): Nandini R. Mhatre, Bhushan R. Rane*, Aditi P. Padave and Ashish S. Jain
Published on: 01 August, 2024

DOI: 10.2174/0118764029327886240724103121

Price: $95

Abstract

Objective: The goal of the current study was to formulate and evaluate bilastine-loaded transethosomal nanogel. Bilastine has 60% oral bioavailability, which restricts the rate of absorption and dissolution and classifies it under BCS class II drugs, which can be overcome by incorporating bilastine in transethosomal nanogel formulation in the treatment of urticaria.

Method: Bilastine-loaded transethosomes were prepared using a thin film hydration method with different proportions of Tween 80 and ethanol by using a rotary evaporator and incorporated into a transethosomal gel using Carbopol 934 as a polymer by dispersion method.

Results: The bilastine-loaded transethosomal formulation was optimized by using the “Box Behnken design” and evaluated for various parameters. The optimized formulation was found to be stable, as determined by the zeta potential of −27.0 mV and polydispersity index (PDI) of 0.167, and vesicle size was found to be 183nm and exhibiting the maximum entrapment efficiency of up to 80.23%. The drug content of the transethosomal gel was found to be 81.56%. The best results were obtained with a transethosomal gel prepared with 1% Carbopol 934 (TF7G2). The optimized batch showed prolonged in-vitro release of bilastine for 8hrs. Ex vivo skin permeation studies showed 76.23 ± 2.63% permeation in comparison with plain gel.

Conclusion: Transethosomal nanogel batches were optimized based on drug content, viscosity, uniformity of drug content, zeta potential, spreadability, pH, drug release, and stability testing, exhibiting good results. The results of this investigation showed that the transethosomal nanogel loaded with bilastine might be used to improve bilastine delivery through the skin with greater bioavailability.

[1]
Sharma, A. Role of nasal carriage of Staphylococcus aureus in chronic urticaria. Indian J. Dermatol., 2012, 57(3), 233-236.
[http://dx.doi.org/10.4103/0019-5154.96211] [PMID: 22707782]
[2]
Aslan Kayıran, M.; Akdeniz, N. Diagnosis and treatment of urticaria in primary care. North. Clin. Istanb., 2018, 6(1), 93-99.
[http://dx.doi.org/10.14744/nci.2018.75010] [PMID: 31180381]
[3]
Antia, C.; Baquerizo, K.; Korman, A.; Bernstein, J.A.; Alikhan, A. Urticaria: A comprehensive review. J. Am. Acad. Dermatol., 2018, 79(4), 599-614.
[http://dx.doi.org/10.1016/j.jaad.2018.01.020] [PMID: 30241623]
[4]
Kolkhir, P.; Giménez-Arnau, A.M.; Kulthanan, K.; Peter, J.; Metz, M.; Maurer, M. Urticaria. Nat. Rev. Dis. Primers, 2022, 8(1), 61.
[http://dx.doi.org/10.1038/s41572-022-00389-z] [PMID: 36109590]
[5]
Treudler, R.; Zarnowski, J.; Wagner, N. Acute urticaria—what to do? Allergo J. Int., 2023, 32(8), 303-308.
[http://dx.doi.org/10.1007/s40629-023-00266-5]
[6]
Zuberbier, T.; Bernstein, J.A.; Maurer, M. Chronic spontaneous urticaria guidelines: What is new? J. Allergy Clin. Immunol., 2022, 150(6), 1249-1255.
[http://dx.doi.org/10.1016/j.jaci.2022.10.004] [PMID: 36481045]
[7]
Kaplan, A.; Lebwohl, M.; Giménez‐Arnau, A.M.; Hide, M.; Armstrong, A.W.; Maurer, M. Chronic spontaneous urticaria: Focus on pathophysiology to unlock treatment advances. Allergy, 2022.
[http://dx.doi.org/10.1111/all.15603] [PMID: 36448493]
[8]
Pier, J.; Bingemann, T.A. Urticaria, angioedema, and anaphylaxis. Pediatr. Rev., 2020, 41(6), 283-292.
[http://dx.doi.org/10.1542/pir.2019-0056] [PMID: 32482691]
[9]
Salman, A.; Porras, N.M.; Gimenez-Arnau, A.M. Acute and chronic urticaria diagnosis and management taking into account their differences. Curr. Treat. Options Allergy, 2023, 10(2), 130-147.
[http://dx.doi.org/10.1007/s40521-023-00333-w]
[10]
Monroe, E.W. The role of antihistamines in the treatment of chronic Urticaria. J. Allergy Clin. Immunol., 1990, 86(4), 662-665.
[http://dx.doi.org/10.1016/S0091-6749(05)80236-2]
[11]
Bajaj, A.K.; Yadav, S. Management of difficult urticaria. Indian J. Dermatol., 2009, 54(3), 275-279.
[http://dx.doi.org/10.4103/0019-5154.55641] [PMID: 20161863]
[12]
Kendziora, B.; Frey, J.; Reinholz, M.; Ruëff, F.; Oppel, E.; Zuberbier, T.; Hartmann, D.; Schlager, J.G.; French, L.E. Efficacy and safety of medications for antihistamine-refractory chronic spontaneous urticaria: A systematic review and network meta-analysis. Allergo J. Int., 2022, 32(3), 83-92.
[http://dx.doi.org/10.1007/s40629-022-00235-4]
[13]
Bernstein, J.; Balp, M.; McCarthy, J.; Kuruvilla, M.; Saraswat, P.; Raftery, T.; Winders, T.; Weller, K. The urticaria voices study: Antihistamine treatment patterns and patient reported control in chronic spontaneous urticaria. Ann. Allergy Asthma Immunol., 2023, 131(5), S10-S11.
[http://dx.doi.org/10.1016/j.anai.2023.08.046]
[14]
Weller, K.; Ziege, C.; Staubach, P.; Brockow, K.; Siebenhaar, F.; Krause, K.; Altrichter, S.; Church, M.K.; Maurer, M. H1-antihistamine up-dosing in chronic spontaneous urticaria: Patients’ perspective of effectiveness and side effects-a retrospective survey study. PLoS One, 2011, 6(9), e23931.
[http://dx.doi.org/10.1371/journal.pone.0023931] [PMID: 21909407]
[15]
Lee, H.Y.; Jeon, H.S.; Jang, J.H.; Lee, Y.; Shin, Y.S.; Nahm, D.H.; Park, H.S.; Ye, Y.M. Predicting responses to omalizumab in antihistamine-refractory chronic urticaria: A real-world longitudinal study. JACI: Global, 2024, 3(2), 100245-100245.
[http://dx.doi.org/10.1016/j.jacig.2024.100245] [PMID: 38577481]
[16]
Lee, G.M.; Chu, S.Y.; Kang, S.Y.; Kim, H.B.; Park, J.S.; Kim, J.K. Drug eruption by antihistamine mistaken for chronic urticaria in a child. Korean J. Pediatr., 2019, 62(2), 75-78.
[http://dx.doi.org/10.3345/kjp.2018.06695] [PMID: 30376706]
[17]
Sánchez, J.; Jaimes, F.; García, E.; Zakzuk, J.; Cardona, R.; Velasquez, M. Risk calculator of the clinical response to antihistamines in chronic urticaria: Development and internal validation. PLoS One, 2024, 19(2), e0295791-e0295791.
[http://dx.doi.org/10.1371/journal.pone.0295791] [PMID: 38394074]
[18]
Bhatia, D.; Mehta, H.; Bishnoi, A.; Srivastava, N.; Vinay, K.; Parsad, D.; Kumaran, M.S. A prospective observational study correlating possible novel biomarkers with disease severity and antihistamine response in chronic spontaneous urticaria. Asia Pac. Allergy, 2024, 14(1), 5-11.
[http://dx.doi.org/10.5415/apallergy.0000000000000132] [PMID: 38482455]
[19]
Baek, H.; Han, M.Y.; Shin, J. Investigation of serum total IgE levels in pediatric patients with antihistamine-refractory chronic Spontaneous urticaria: A retrospective multi-center cohort study using data from eleven hospital databases. J. Allergy Clin. Immunol., 2024, 153(2), AB361-AB361.
[http://dx.doi.org/10.1016/j.jaci.2023.11.857]
[20]
Maurer, M.; Casale, T.B.; Beck, L.A.; Saini, S.; Ben-Shoshan, M.; Yosipovitch, G.; Msihid, J.; Sugerman, P.; Cyr, S.; Thomas, R.; Chuang, C-C. Dupilumab improves dermatology-specific quality of life in patients with chronic spontaneous urticaria inadequately controlled with H1 antihistamines. J. Allergy Clin. Immunol., 2024, 153(2), AB3-AB3.
[http://dx.doi.org/10.1016/j.jaci.2023.11.033]
[21]
Maurer, M.; Albuquerque, M.; Boursiquot, J.N.; Dery, E.; Giménez-Arnau, A.; Godse, K.; Guitiérrez, G.; Kanani, A.; Lacuesta, G.; McCarthy, J.; Nigen, S.; Winders, T. A patient charter for chronic urticaria. Adv. Ther., 2024, 41(1), 14-33.
[http://dx.doi.org/10.1007/s12325-023-02724-6] [PMID: 37991694]
[22]
Pesqué, D.; Ciudad, A.; Andrades, E.; Soto, D.; Gimeno, R.; Pujol, R.M.; Giménez-Arnau, A.M. Solar urticaria: An ambispective study in a long-term follow-up cohort with emphasis on therapeutic predictors and outcomes. Acta Derm. Venereol., 2024, 104, adv25576-adv25576.
[http://dx.doi.org/10.2340/actadv.v104.25576] [PMID: 38189220]
[23]
Church, M.K.; Tiongco-Recto, M.; Ridolo, E.; Novák, Z. Bilastine: A lifetime companion for the treatment of allergies. Curr. Med. Res. Opin., 2020, 36(3), 445-454.
[http://dx.doi.org/10.1080/03007995.2019.1681134] [PMID: 31612732]
[24]
Chen, X.; Han, X.; Cheng, B.; Li, H.; Liu, L.; Geng, S.; Li, L.; Li, J.; Guo, Q.; Zhang, G.; Fang, H.; Zhang, J. Efficacy and safety of bilastine vs. levocetirizine for the treatment of chronic idiopathic urticaria: A multicenter, double-blind, double-dummy, phase III, non-inferiority, randomized clinical trial. Chin. Med. J., 2024, 137(12), 1480-1482.
[http://dx.doi.org/10.1097/CM9.0000000000003071] [PMID: 38557589]
[25]
Rey, E.A.; Cortes, T.S.; Gonzalo, A.; Victoriano, N.A.; Prat, I.T.; Zazpe, A.; Hernández, G. In vitro compatibility study of a new preservative‐ free multidose 0.6% bilastine eye drop formulation containing sodium hyaluronate with soft and gas rigid permeable contact lenses. Acta Ophthalmol., 2024, 102(S279), aos.16026.
[http://dx.doi.org/10.1111/aos.16026]
[26]
Derayea, S.M.; Badr El-Din, K.M.; Ahmed, A.S.; Khorshed, A.A.; Oraby, M. Development of a green synchronous spectrofluorimetric technique for simultaneous determination of Montelukast sodium and Bilastine in pharmaceutical formulations. BMC Chem., 2024, 18(1), 18.
[http://dx.doi.org/10.1186/s13065-024-01116-3] [PMID: 38268023]
[27]
Bodapati, A.T.S.; Reddy, R.S.; Lavanya, K.; Madku, S.R.; Sahoo, B.K. Minor groove binding of antihistamine drug bilastine with calf thymus DNA: A molecular perspective with thermodynamics using experimental and theoretical methods. J. Mol. Struct., 2024, 1301, 137385-137385.
[http://dx.doi.org/10.1016/j.molstruc.2023.137385]
[28]
Cañas, C.A.; Tobón, G.J.; Bonilla-Abadía, F.; Posso-Osorio, I. Relapsing-remitting form of arthropathy occurs in patients with mast cell activation syndrome. J. Clin. Rheumatol., 2024, 30(1), 32-35.
[http://dx.doi.org/10.1097/RHU.0000000000002007] [PMID: 37496120]
[29]
Reinhart, J.P.; Kumar, A.B.; Casanegra, A.I.; Rooke, T.W.; Sartori-Valinotti, J.C.; Tollefson, M.M.; Klaas, K.M.; Davis, D.M. Bridging the gap in BASCULE syndrome: A retrospective case series of a recently described clinical entity. Pediatr. Dermatol., 2024, 41(1), 46-50.
[http://dx.doi.org/10.1111/pde.15470] [PMID: 38014569]
[30]
Guimarães, M.J.; Lopes, A.G.; Vieira, A.P. Morbihan disease: A diagnostic and therapeutic challenge. Acta Med. Port., 2023, 37(2), 145-146.
[http://dx.doi.org/10.20344/amp.19904] [PMID: 37381776]
[31]
Mazzotta, E.; Romeo, M.; Muzzalupo, R. Vesicular Drug Delivery Systems: A Novel Approach in Current Nanomedicine; Elsevier eBooks, 2024, pp. 135-159.
[http://dx.doi.org/10.1016/B978-0-323-91924-1.00002-2]
[32]
Bi, Y.; Chen, J.; Li, Q.; Li, Y.; Zhang, L.; Zhida, L.; Yuan, F.; Zhang, R. Tumor-derived extracellular vesicle drug delivery system for chemo-photothermal-immune combination cancer treatment. iScience, 2024, 27(2), 108833-108833.
[http://dx.doi.org/10.1016/j.isci.2024.108833] [PMID: 38333709]
[33]
Rakshit, T. Extracellular vesicles for drug delivery and theranostics in vivo. JACS Au, 2024, 4(2), 318.
[http://dx.doi.org/10.1021/jacsau.3c00611]
[34]
Alenzi, A.M.; Albalawi, S.A.; Alghamdi, S.G.; Albalawi, R.F.; Albalawi, H.S.; Qushawy, M. Review on different vesicular drug delivery systems (VDDSs) and their applications. Recent Pat. Nanotechnol., 2023, 17(1), 18-32.
[http://dx.doi.org/10.2174/1872210516666220228150624] [PMID: 35227188]
[35]
Spiers, H.V.M.; Stadler, L.K.J.; Smith, H.; Kosmoliaptsis, V. Extracellular vesicles as drug delivery systems in organ transplantation: The next frontier. Pharmaceutics, 2023, 15(3), 891.
[http://dx.doi.org/10.3390/pharmaceutics15030891] [PMID: 36986753]
[36]
Pan, R.; Chen, D.; Hou, L.; Hu, R.; Jiao, Z. Small extracellular vesicles: A novel drug delivery system for neurodegenerative disorders. Front. Aging Neurosci., 2023, 15, 1184435.
[http://dx.doi.org/10.3389/fnagi.2023.1184435] [PMID: 37404690]
[37]
Jafari, A.; Daneshamouz, S.; Ghasemiyeh, P.; Mohammadi-Samani, S. Ethosomes as dermal/transdermal drug delivery systems: Applications, preparation and characterization. J. Liposome Res., 2022, 1-19.
[http://dx.doi.org/10.1080/08982104.2022.2085742] [PMID: 35695714]
[38]
Syed, M.H.; Zahari, M.A.K.M.; Khan, M.M.R.; Beg, M.D.H.; Abdullah, N. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. J. Drug Deliv. Sci. Technol., 2023, 80, 104121.
[http://dx.doi.org/10.1016/j.jddst.2022.104121]
[39]
Van der Koog, L.; Gandek, T.B.; Nagelkerke, A. Liposomes and extracellular vesicles as drug delivery systems: A comparison of composition, pharmacokinetics, and functionalization. Adv. Healthc. Mater., 2022, 11(5), 2100639.
[http://dx.doi.org/10.1002/adhm.202100639] [PMID: 34165909]
[40]
De Jong, B.; Barros, E.R.; Hoenderop, J.G.J.; Rigalli, J.P. Recent advances in extracellular vesicles as drug delivery systems and their potential in precision medicine. Pharmaceutics, 2020, 12(11), 1006.
[http://dx.doi.org/10.3390/pharmaceutics12111006] [PMID: 33105857]
[41]
Rajizadeh, M.A.; Motamedy, S.; Mir, Y.; Akhgarandouz, F.; Nematollahi, M.H.; Nezhadi, A. A comprehensive and updated review on the applications of vesicular drug delivery systems in treatment of brain disorders: A shelter against storms. J. Drug Deliv. Sci. Technol., 2023, 89, 105011-105011.
[http://dx.doi.org/10.1016/j.jddst.2023.105011]
[42]
Malviya, N. Comparative study on ethosomes and transethosomes for enhancing skin permeability of sinapic acid. J. Mol. Liq., 2023, 383, 122098-122098.
[http://dx.doi.org/10.1016/j.molliq.2023.122098]
[43]
Kumar Mishra, K.; Deep Kaur, C.; Verma, S.; Kumar Sahu, A.; Kumar Dash, D.; Kashyap, P.; Prasad Mishra, S. Transethosomes and nanoethosomes: Recent approach on transdermal drug delivery system. Nanomedicine , 2019, 2, 33-54.
[http://dx.doi.org/10.5772/intechopen.81152]
[44]
Chowdary, P.; Padmakumar, A.; Rengan, A.K. Exploring the potential of transethosomes in therapeutic delivery: A comprehensive review. MedComm, 2023, 2(4), e59.
[http://dx.doi.org/10.1002/mba2.59]
[45]
Xiao, Y.; Zhou, L.; Tao, W.; Yang, X.; Li, J.; Wang, R.; Zhao, Y.; Peng, C.; Zhang, C. Preparation of paeoniflorin-glycyrrhizic acid complex transethosome gel and its preventive and therapeutic effects on melasma. Eur. J. Pharm. Sci., 2024, 192, 106664-106664.
[http://dx.doi.org/10.1016/j.ejps.2023.106664] [PMID: 38061662]
[46]
Adnan, M.; Afzal, O.; S.A., Altamimi A.; Alamri, M.A.; Haider, T.; Faheem Haider, M. Development and optimization of transethosomal gel of apigenin for topical delivery: In-vitro, ex-vivo and cell line assessment. Int. J. Pharm., 2023, 631, 122506.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122506] [PMID: 36535455]
[47]
Zaki, R.M.; Seshadri, V.D.; Mutayran, A.S.; Elsawaf, L.A.; Hamad, A.M.; Almurshedi, A.S.; Yusif, R.M.; Said, M. Wound healing efficacy of rosuvastatin transethosomal gel, I optimal optimization, histological and in vivo evaluation. Pharmaceutics, 2022, 14(11), 2521.
[http://dx.doi.org/10.3390/pharmaceutics14112521] [PMID: 36432712]
[48]
Shamma, R.N.; Elsayed, I. Transfersomal lyophilized gel of buspirone HCl: Formulation, evaluation and statistical optimization. J. Liposome Res., 2013, 23(3), 244-254.
[http://dx.doi.org/10.3109/08982104.2013.801489] [PMID: 23713516]
[49]
Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes — novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release, 2000, 65(3), 403-418.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[50]
Abdulbaqi, I.M.; Darwis, Y.; Abou Assi, R.; Abdul Karim Khan, N. Transethosomal gels as carriers for the transdermal delivery of colchicine: Statistical optimization, characterization, and ex vivo evaluation. Drug Des. Devel. Ther., 2018, 12, 795-813.
[http://dx.doi.org/10.2147/DDDT.S158018] [PMID: 29670336]
[51]
Jayachandran, P.; Ilango, S.; Suseela, V.; Nirmaladevi, R.; Shaik, M.R.; Khan, M.; Khan, M.; Shaik, B. Green synthesized silver nanoparticle-loaded liposome-based nanoarchitectonics for cancer management: In vitro drug release analysis. Biomedicines, 2023, 11(1), 217.
[http://dx.doi.org/10.3390/biomedicines11010217] [PMID: 36672725]
[52]
Gupta, D.K. Tailoring of berberine loaded transniosomes for the management of skin cancer in mice. J. Drug Deliv. Sci. Technol., 2020, 60, 102051-102051.
[http://dx.doi.org/10.1016/j.jddst.2020.102051]
[53]
Kalam, M.A. Quercetin-loaded transliposomal gel for effective management of skin cancer: In vitro and cell line efficacy studies. J. Drug Deliv. Sci. Technol., 2024, 105659-105659.
[http://dx.doi.org/10.1016/j.jddst.2024.105659]
[54]
Raut, S.S.; Rane, B.R.; Jain, A.S. Development and evaluation of ebastine-loaded transfersomal nanogel for the treatment of urticaria. Autoimmune Dis., 2023, 101.
[http://dx.doi.org/10.3390/ASEC2023-15286]
[55]
Rahangdale, M.; Pandey, P. Development and characterization of apremilast transethosomal gel for transdermal delivery. Int. J. Pharm. Sci. Nanotechnol., 2021, 14(3), 5508-5518.
[http://dx.doi.org/10.37285/ijpsn.2021.14.3.8]
[56]
Naga Sravan Kumar Varma, V.; Maheshwari, P.V.; Navya, M.; Reddy, S.C.; Shivakumar, H.G.; Gowda, D.V. Calcipotriol delivery into the skin as emulgel for effective permeation. Saudi Pharm. J., 2014, 22(6), 591-599.
[http://dx.doi.org/10.1016/j.jsps.2014.02.007] [PMID: 25561873]
[57]
Adin, S.N.; Gupta, I.; Rashid, M.A.; Alhamhoom, Y.; Aqil, M.; Mujeeb, M. Nanotransethosomes for enhanced transdermal delivery of mangiferin against rheumatoid arthritis: Formulation, characterization, in vivo pharmacokinetic and pharmacodynamic evaluation. Drug Deliv., 2023, 30(1), 2173338.
[http://dx.doi.org/10.1080/10717544.2023.2173338]
[58]
Gupta, V.; Joshi, N.K. Formulation, development and evaluation of ketoprofen loaded transethosomes gel. J. Drug Deliv. Ther., 2022, 12(1), 86-90.
[http://dx.doi.org/10.22270/jddt.v12i1.5177]
[59]
Farooq, M.; Usman, F.; Zaib, S.; Shah, H.S.; Jamil, Q.A.; Akbar Sheikh, F.; Khan, A.; Rabea, S.; Hagras, S.A.A.; El-Saber Batiha, G.; Khan, I. Fabrication and evaluation of voriconazole loaded transethosomal gel for enhanced antifungal and antileishmanial activity. Molecules, 2022, 27(10), 3347.
[http://dx.doi.org/10.3390/molecules27103347] [PMID: 35630825]
[60]
Panchaxari Gadad, A.; Patil, A.S.; Singh, Y.; Mallappa Dandagi, P.; Bolmal, U.B.; Basu, A. Development and evaluation of flurbiprofen loaded transethosomes to improve transdermal delivery. Indian J. Pharm. Educ. Res., 2020, 54(4), 954-962.
[http://dx.doi.org/10.5530/ijper.54.4.189]
[61]
Kumar, L.; Utreja, P. Formulation and characterization of transethosomes for enhanced transdermal delivery of propranolol hydrochloride. Micro Nanosyst., 2020, 12(1), 38-47.
[http://dx.doi.org/10.2174/1876402911666190603093550]
[62]
Abdellatif, A.A.H.; Aldosari, B.N.; Al-Subaiyel, A.; Alhaddad, A.; Samman, W.A.; Eleraky, N.E.; Elnaggar, M.G.; Barakat, H.; Tawfeek, H.M. Transethosomal gel for the topical delivery of celecoxib: Formulation and estimation of skin cancer progression. Pharmaceutics, 2022, 15(1), 22.
[http://dx.doi.org/10.3390/pharmaceutics15010022] [PMID: 36678651]
[63]
Khalid, H.; Batool, S.; Din, F.; Khan, S.; Khan, G.M. Macrophage targeting of nitazoxanide-loaded transethosomal gel in cutaneous leishmaniasis. R. Soc. Open Sci., 2022, 9(10), 220428.
[http://dx.doi.org/10.1098/rsos.220428] [PMID: 36249328]
[64]
Hassan, A.S., II; Hofni, A.; Abourehab, M.A.S.; Abdel-Rahman, I.A.M. Ginger extract–loaded transethosomes for effective transdermal permeation and anti-inflammation in rat model. Int. J. Nanomedicine, 2023, 18, 1259-1280.
[http://dx.doi.org/10.2147/IJN.S400604] [PMID: 36945254]
[65]
Alam, P.; Imran, M.; Jahan, S.; Akhtar, A.; Hasan, Z. Formulation and characterization of hesperidin-loaded transethosomal gel for dermal delivery to enhance antibacterial activity: Comprehension of in vitro, ex vivo, and dermatokinetic analysis. Gels, 2023, 9(10), 791-791.
[http://dx.doi.org/10.3390/gels9100791] [PMID: 37888364]
[66]
Arora, D.; Khurana, B.; Nanda, S. Statistical development and in vivo evaluation of resveratrol-loaded topical gel containing deformable vesicles for a significant reduction in photo-induced skin aging and oxidative stress. Drug Dev. Ind. Pharm., 2020, 46(11), 1898-1910.
[http://dx.doi.org/10.1080/03639045.2020.1826507] [PMID: 32962434]
[67]
Akhtar, N.; Akhtar, N.; Menaa, F.; Alharbi, W.; Alaryani, F.; Alqahtani, A.; Ahmad, F. Fabrication of ethosomes containing tocopherol acetate to enhance transdermal permeation: In vitro and ex vivo characterizations. Gels, 2022, 8(6), 335.
[http://dx.doi.org/10.3390/gels8060335] [PMID: 35735679]
[68]
Alfadhel, M.M.; Zaki, R.M.; Aldosari, B.N.; Sayed, O.M. Numerical optimization of prednisolone–tacrolimus loaded ultraflexible transethosomes for transdermal delivery enhancement; Box–behnken design, evaluation, optimization, and pharmacokinetic study. Gels, 2023, 9(5), 400-400.
[http://dx.doi.org/10.3390/gels9050400] [PMID: 37232992]
[69]
Sundar, V.D.; Divya, P.; Dhanaraju, M.D. Design development and characterisation of tramadol hydrochloride loaded transethosomal gel formulation for effective pain management. Indian J. Pharm. Educ. Res, 2020, 54(2s), s88-s97.
[http://dx.doi.org/10.5530/ijper.54.2s.65]
[70]
Valsalan Soba, S.; Babu, M.; Panonnummal, R. Ethosomal gel formulation of alpha phellandrene for the transdermal delivery in gout. Adv. Pharm. Bull., 2020, 11(1), 137-149.
[http://dx.doi.org/10.34172/apb.2021.015] [PMID: 33747861]
[71]
Moideen Muthu Mohamed, J.; Khan, B.A.; Rajendran, V.; El-Sherbiny, M.; Othman, G.; Bashir Ahmed Hussamuldin, A.; Hamed Al-Serwi, R. Polymeric ethosomal gel loaded with nimodipine: Optimisation, pharmacokinetic and histopathological analysis. Saudi Pharm. J., 2022, 30(11), 1603-1611.
[http://dx.doi.org/10.1016/j.jsps.2022.09.003] [PMID: 36465850]
[72]
Mishra, K.K.; Kaur, C.D.; Gupta, A. Development of itraconazole loaded ultra-deformable transethosomes containing oleic-acid for effective treatment of dermatophytosis: Box-Behnken design, ex-vivo and in-vivo studies. J. Drug Deliv. Sci. Technol., 2022, 67, 102998.
[http://dx.doi.org/10.1016/j.jddst.2021.102998]
[73]
Mahmoud, D.B.; ElMeshad, A.N.; Fadel, M.; Tawfik, A.; Ramez, S.A. Photodynamic therapy fortified with topical oleyl alcohol-based transethosomal 8-methoxypsoralen for ameliorating vitiligo: Optimization and clinical study. Int. J. Pharm., 2022, 614, 121459-121459.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121459] [PMID: 35026313]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy