Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Review Article

Circumventing Cardiovascular Calamities: The Dawn of ANGPTL3 Blockade in Severe Dyslipidemia Management

Author(s): Alim Namitokov* and Karina Karabakhtsieva

Volume 24, Issue 2, 2024

Published on: 19 July, 2024

Page: [59 - 64] Pages: 6

DOI: 10.2174/011871529X305291240715112812

Price: $65

Abstract

The landscape of severe dyslipidemia treatment is undergoing a remarkable transformation with the advent of angiopoietin-like 3 (ANGPTL3) inhibitors. ANGPTL3, a pivotal regulator of lipoprotein lipase and endothelial lipase, orchestrates the catabolism of triglyceride-rich and high-density lipoproteins, thus playing a critical role in lipid homeostasis. This review article examines the therapeutic potential of ANGPTL3 blockade and its implications for patients with severe dyslipidemias, particularly those unresponsive to traditional lipid-lowering regimens. We delve into the molecular mechanisms by which ANGPTL3 influences lipid metabolism and appraise the clinical utility of emerging therapeutics, such as monoclonal antibodies and antisense oligonucleotides. Moreover, we discuss the impact of ANGPTL3 inhibition on cardiovascular risk factors and project its promising role in reducing cardiovascular morbidity and mortality. The narrative synthesizes data from recent clinical trials, including the efficacy and safety profiles of ANGPTL3 inhibitors, and forecasts the potential of these agents to revolutionize the management of dyslipidemic conditions. The advent of ANGPTL3-targeted therapies signifies a potential breakthrough in the therapeutic armamentarium against complex lipid disorders, heralding a new era of precision medicine in cardiovascular risk mitigation.

[1]
Shimamura, M.; Matsuda, M.; Kobayashi, S.; Ando, Y.; Ono, M.; Koishi, R.; Furukawa, H.; Makishima, M.; Shimomura, I. Angiopoietin-like protein 3, a hepatic secretory factor, activates lipolysis in adipocytes. Biochem. Biophys. Res. Commun., 2003, 301(2), 604-609.
[http://dx.doi.org/10.1016/S0006-291X(02)03058-9] [PMID: 12565906]
[2]
Dewey, F.E.; Gusarova, V.; Dunbar, R.L.; O’Dushlaine, C.; Schurmann, C.; Gottesman, O.; McCarthy, S.; Van Hout, C.V.; Bruse, S.; Dansky, H.M.; Leader, J.B.; Murray, M.F.; Ritchie, M.D.; Kirchner, H.L.; Habegger, L.; Lopez, A.; Penn, J.; Zhao, A.; Shao, W.; Stahl, N.; Murphy, A.J.; Hamon, S.; Bouzelmat, A.; Zhang, R.; Shumel, B.; Pordy, R.; Gipe, D.; Herman, G.A.; Sheu, W.H.H.; Lee, I.T.; Liang, K.W.; Guo, X.; Rotter, J.I.; Chen, Y.D.I.; Kraus, W.E.; Shah, S.H.; Damrauer, S.; Small, A.; Rader, D.J.; Wulff, A.B.; Nordestgaard, B.G.; Tybjærg-Hansen, A.; van den Hoek, A.M.; Princen, H.M.G.; Ledbetter, D.H.; Carey, D.J.; Overton, J.D.; Reid, J.G.; Sasiela, W.J.; Banerjee, P.; Shuldiner, A.R.; Borecki, I.B.; Teslovich, T.M.; Yancopoulos, G.D.; Mellis, S.J.; Gromada, J.; Baras, A. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N. Engl. J. Med., 2017, 377(3), 211-221.
[http://dx.doi.org/10.1056/NEJMoa1612790] [PMID: 28538136]
[3]
Chen, P.Y.; Gao, W.Y.; Liou, J.W.; Lin, C.Y.; Wu, M.J.; Yen, J.H. Angiopoietin-like protein 3 (ANGPTL3) modulates lipoprotein metabolism and dyslipidemia. Int. J. Mol. Sci., 2021, 22(14), 7310.
[http://dx.doi.org/10.3390/ijms22147310] [PMID: 34298929]
[4]
Wang, X.; Musunuru, K. Angiopoietin-like 3: from discovery to therapeutic gene editing. JACC Basic Transl. Sci., 2019, 4(6), 755-762.
[http://dx.doi.org/10.1016/j.jacbts.2019.05.008] [PMID: 31709322]
[5]
Luo, F.; Das, A.; Khetarpal, S.A. ANGPTL3 inhibition dyslipidemia and cardiovascular diseases. Trends Cardiovasc. Med., 2023, 34(4), 215-222.
[http://dx.doi.org/10.1016/j.tcm.2023.01.008] [PMID: 36746257]
[6]
Koishi, R.; Ando, Y.; Ono, M.; Shimamura, M.; Yasumo, H.; Fujiwara, T.; Horikoshi, H.; Furukawa, H. Angptl3 regulates lipid metabolism in mice. Nat. Genet., 2002, 30(2), 151-157.
[http://dx.doi.org/10.1038/ng814] [PMID: 11788823]
[7]
Kersten, S. Angiopoietin-like 3 in lipoprotein metabolism. Nat. Rev. Endocrinol., 2017, 13(12), 731-739.
[http://dx.doi.org/10.1038/nrendo.2017.119] [PMID: 28984319]
[8]
Hassan, M. ANGPLT3: A novel modulator of lipid metabolism. Glob. Cardiol. Sci. Pract., 2017, 2017(1), e201706.
[http://dx.doi.org/10.21542/gcsp.2017.6] [PMID: 28971105]
[9]
Fujimoto, K.; Koishi, R.; Shimizugawa, T.; Ando, Y. Angptl3-null mice show low plasma lipid concentrations by enhanced lipoprotein lipase activity. Exp. Anim., 2006, 55(1), 27-34.
[http://dx.doi.org/10.1538/expanim.55.27] [PMID: 16508209]
[10]
Adam, R.C.; Mintah, I.J.; Alexa-Braun, C.A.; Shihanian, L.M.; Lee, J.S.; Banerjee, P.; Hamon, S.C.; Kim, H.I.; Cohen, J.C.; Hobbs, H.H.; Van Hout, C.; Gromada, J.; Murphy, A.J.; Yancopoulos, G.D.; Sleeman, M.W.; Gusarova, V. Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance. J. Lipid Res., 2020, 61(9), 1271-1286.
[http://dx.doi.org/10.1194/jlr.RA120000888] [PMID: 32646941]
[11]
Stitziel, N.O.; Khera, A.V.; Wang, X.; Bierhals, A.J.; Vourakis, A.C.; Sperry, A.E.; Natarajan, P.; Klarin, D.; Emdin, C.A.; Zekavat, S.M.; Nomura, A.; Erdmann, J.; Schunkert, H.; Samani, N.J.; Kraus, W.E.; Shah, S.H.; Yu, B.; Boerwinkle, E.; Rader, D.J.; Gupta, N.; Frossard, P.M.; Rasheed, A.; Danesh, J.; Lander, E.S.; Gabriel, S.; Saleheen, D.; Musunuru, K.; Kathiresan, S. ANGPTL3 deficiency and protection against coronary artery disease. J. Am. Coll. Cardiol., 2017, 69(16), 2054-2063.
[http://dx.doi.org/10.1016/j.jacc.2017.02.030] [PMID: 28385496]
[12]
Tikka, A.; Jauhiainen, M. The role of ANGPTL3 in controlling lipoprotein metabolism. Endocrine, 2016, 52(2), 187-193.
[http://dx.doi.org/10.1007/s12020-015-0838-9] [PMID: 26754661]
[13]
Graham, M.J.; Lee, R.G.; Brandt, T.A.; Tai, L.J.; Fu, W.; Peralta, R.; Yu, R.; Hurh, E.; Paz, E.; McEvoy, B.W.; Baker, B.F.; Pham, N.C.; Digenio, A.; Hughes, S.G.; Geary, R.S.; Witztum, J.L.; Crooke, R.M.; Tsimikas, S. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N. Engl. J. Med., 2017, 377(3), 222-232.
[http://dx.doi.org/10.1056/NEJMoa1701329] [PMID: 28538111]
[14]
Zheng, Z.; Lyu, W.; Hong, Q.; Yang, H.; Li, Y.; Zhao, S.; Ren, Y.; Xiao, Y. Phylogenetic and expression analysis of the angiopoietin-like gene family and their role in lipid metabolism in pigs. Anim Biosci., 2023, 36(10), 1517-1529.
[http://dx.doi.org/10.5713/ab.23.0057] [PMID: 37170504]
[15]
Chen, P.Y.; Chao, T.Y.; Hsu, H.J.; Wang, C.Y.; Lin, C.Y.; Gao, W.Y.; Wu, M.J.; Yen, J.H. The lipid-modulating effect of tangeretin on the inhibition of angiopoietin-like 3 (ANGPTL3) gene expression through regulation of LXRα activation in hepatic cells. Int. J. Mol. Sci., 2021, 22(18), 9853.
[http://dx.doi.org/10.3390/ijms22189853] [PMID: 34576019]
[16]
Zhang, R. The potential of ANGPTL8 antagonism to simultaneously reduce triglyceride and increase HDL-cholesterol plasma levels. Front. Cardiovasc. Med., 2021, 8, 795370.
[http://dx.doi.org/10.3389/fcvm.2021.795370] [PMID: 34869703]
[17]
Chi, X.; Britt, E.C.; Shows, H.W.; Hjelmaas, A.J.; Shetty, S.K.; Cushing, E.M.; Li, W.; Dou, A.; Zhang, R.; Davies, B.S.J. ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase. Mol. Metab., 2017, 6(10), 1137-1149.
[http://dx.doi.org/10.1016/j.molmet.2017.06.014] [PMID: 29031715]
[18]
Haller, J.F.; Mintah, I.J.; Shihanian, L.M.; Stevis, P.; Buckler, D.; Alexa-Braun, C.A.; Kleiner, S.; Banfi, S.; Cohen, J.C.; Hobbs, H.H.; Yancopoulos, G.D.; Murphy, A.J.; Gusarova, V.; Gromada, J. ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance. J. Lipid Res., 2017, 58(6), 1166-1173.
[http://dx.doi.org/10.1194/jlr.M075689] [PMID: 28413163]
[19]
Gusarova, V.; Alexa, C.A.; Wang, Y.; Rafique, A.; Kim, J.H.; Buckler, D.; Mintah, I.J.; Shihanian, L.M.; Cohen, J.C.; Hobbs, H.H.; Xin, Y.; Valenzuela, D.M.; Murphy, A.J.; Yancopoulos, G.D.; Gromada, J. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J. Lipid Res., 2015, 56(7), 1308-1317.
[http://dx.doi.org/10.1194/jlr.M054890] [PMID: 25964512]
[20]
Yang, B.; Shen, F.; Zhu, Y.; Cai, H. Downregulating ANGPTL3 by miR-144-3p promoted TGF-β1-induced renal interstitial fibrosis via activating PI3K/AKT signaling pathway. Heliyon, 2024, 10(3), e24204.
[http://dx.doi.org/10.1016/j.heliyon.2024.e24204] [PMID: 38322878]
[21]
Nagai, T.H.; Hartigan, C.; Mizoguchi, T.; Yu, H.; Deik, A.; Bullock, K.; Wang, Y.; Cromley, D.; Schenone, M.; Cowan, C.A.; Rader, D.J.; Clish, C.B.; Carr, S.A.; Xu, Y.X. Chromatin regulator SMARCAL1 modulates cellular lipid metabolism. Commun. Biol., 2023, 6(1), 1298.
[http://dx.doi.org/10.1038/s42003-023-05665-6] [PMID: 38129665]
[22]
Zhang, Y.; Zhang, Z.T.; Wan, S.Y. ANGPTL3 negatively regulates IL-1β-induced NF-κB activation by inhibiting the IL1R1-associated signaling complex assembly. J. Mol. Cell Biol., 2023, 15(8)
[http://dx.doi.org/10.1093/jmcb/mjad053] [PMID: 37634084]
[23]
Otarod, J.K.; Goldberg, I.J. Lipoprotein lipase and its role in regulation of plasma lipoproteins and cardiac risk. Curr. Atheroscler. Rep., 2004, 6(5), 335-342.
[http://dx.doi.org/10.1007/s11883-004-0043-4] [PMID: 15296698]
[24]
Shimizugawa, T.; Ono, M.; Shimamura, M.; Yoshida, K.; Ando, Y.; Koishi, R.; Ueda, K.; Inaba, T.; Minekura, H.; Kohama, T.; Furukawa, H. ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J. Biol. Chem., 2002, 277(37), 33742-33748.
[http://dx.doi.org/10.1074/jbc.M203215200] [PMID: 12097324]
[25]
Camenisch, G.; Pisabarro, M.T.; Sherman, D.; Kowalski, J.; Nagel, M.; Hass, P.; Xie, M.H.; Gurney, A.; Bodary, S.; Liang, X.H.; Clark, K.; Beresini, M.; Ferrara, N.; Gerber, H.P. ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha vbeta 3 and induces blood vessel formation in vivo. J. Biol. Chem., 2002, 277(19), 17281-17290.
[http://dx.doi.org/10.1074/jbc.M109768200] [PMID: 11877390]
[26]
Pisciotta, L.; Favari, E.; Magnolo, L.; Simonelli, S.; Adorni, M.P.; Sallo, R.; Fancello, T.; Zavaroni, I.; Ardigò, D.; Bernini, F.; Calabresi, L.; Franceschini, G.; Tarugi, P.; Calandra, S.; Bertolini, S. Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3. Circ. Cardiovasc. Genet., 2012, 5(1), 42-50.
[http://dx.doi.org/10.1161/CIRCGENETICS.111.960674] [PMID: 22062970]
[27]
Hu, B.; Huang, Y. siRNA targeting ANGPTL3 stands in the spotlight for lipid-lowering therapy. Mol. Ther. Nucleic Acids, 2023, 32, 369-370.
[http://dx.doi.org/10.1016/j.omtn.2023.03.020] [PMID: 37128279]
[28]
Brandts, J.; Ray, K.K. Novel and future lipid-modulating therapies for the prevention of cardiovascular disease. Nat. Rev. Cardiol., 2023, 20(9), 600-616.
[http://dx.doi.org/10.1038/s41569-023-00860-8] [PMID: 37055535]
[29]
Su, X.; Peng, D. New insights into ANGPLT3 in controlling lipoprotein metabolism and risk of cardiovascular diseases. Lipids Health Dis., 2018, 17(1), 12.
[http://dx.doi.org/10.1186/s12944-018-0659-y] [PMID: 29334984]
[30]
Fukami, H.; Morinaga, J.; Nakagami, H.; Hayashi, H.; Okadome, Y.; Matsunaga, E.; Kadomatsu, T.; Horiguchi, H.; Sato, M.; Sugizaki, T.; Kuwabara, T.; Miyata, K.; Mukoyama, M.; Morishita, R.; Oike, Y. Vaccine targeting ANGPTL3 ameliorates dyslipidemia and associated diseases in mouse models of obese dyslipidemia and familial hypercholesterolemia. Cell Rep. Med., 2021, 2(11), 100446.
[http://dx.doi.org/10.1016/j.xcrm.2021.100446] [PMID: 34841293]
[31]
Gaudet, D.; Gipe, D.A.; Pordy, R.; Ahmad, Z.; Cuchel, M.; Shah, P.K.; Chyu, K.Y.; Sasiela, W.J.; Chan, K.C.; Brisson, D.; Khoury, E.; Banerjee, P.; Gusarova, V.; Gromada, J.; Stahl, N.; Yancopoulos, G.D.; Hovingh, G.K. ANGPTL3 inhibition in homozygous familial hypercholesterolemia. N. Engl. J. Med., 2017, 377(3), 296-297.
[http://dx.doi.org/10.1056/NEJMc1705994] [PMID: 28723334]
[32]
Kosmas, C.E.; Bousvarou, M.D.; Sourlas, A.; Papakonstantinou, E.J.; Peña Genao, E.; Echavarria Uceta, R.; Guzman, E. Angiopoietin-like protein 3 (ANGPTL3) inhibitors in the management of refractory hypercholesterolemia. Clin. Pharmacol., 2022, 14, 49-59.
[http://dx.doi.org/10.2147/CPAA.S345072] [PMID: 35873366]
[33]
Gaudet, D.; Karwatowska-Prokopczuk, E.; Baum, S.J.; Hurh, E.; Kingsbury, J.; Bartlett, V.J.; Figueroa, A.L.; Piscitelli, P.; Singleton, W.; Witztum, J.L.; Geary, R.S.; Tsimikas, S.; O’Dea, L.S.L. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur. Heart J., 2020, 41(40), 3936-3945.
[http://dx.doi.org/10.1093/eurheartj/ehaa689] [PMID: 32860031]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy