Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Research Article

Diltiazem Hydrochloride Floating Matrix Tablet: Formulation and in vitro-in vivo Evaluation

Author(s): Krishna D. Koradia*, Bhavin K. Jotaniya and Hiral D. Koradia

Volume 24, Issue 2, 2024

Published on: 18 July, 2024

Page: [110 - 124] Pages: 15

DOI: 10.2174/011871529X304157240712072316

Price: $65

Abstract

Background: Diltiazem hydrochloride is a calcium channel-blocker with a plasma elimination half-life of 4.4 ± 1.3 h and has a narrow absorption window. So, this work aimed to prepare a gastro-retentive floating matrix tablet.

Methods: The direct compression method was used to manufacture tablets. 32 factorial design was applied for optimization, taking Hydroxypropyl Methylcellulose K100M (HPMC K 100M) and the amount of sodium bicarbonate as independent factors and cumulative percentage release at 1 h, at 6 h, and at 12 h and floating lag time as dependent variables.

Results: The high amount of HPMC K100M and sodium bicarbonate shows good results. The optimized preparation was evaluated for differential scanning calorimetry, in-vivo gastric retention in male albino rabbits, kinetic modeling, and stability study. An in vivo study revealed gastric retention of tablets up to 6 h in healthy male Albino rabbits. The stability study indicated no significant change in the buoyancy and release profiles of the drug.

Conclusion: From this study, it can be concluded that the gastro-retentive diltiazem hydrochloride floating matrix tablet was successfully prepared and retained inside the rabbit stomach for up to 6 h and was stable under accelerated stability study..

Next »
[1]
Nayak, A.; Maji, R.; Das, B. Gastroretentive drug delivery systems: A review. Asian J. Pharm. Clin. Res., 2010, 1(3), 1-10.
[2]
Sen, O.; Manna, S.; Nandi, G.; Jana, S.; Jana, S. Recent advances in alginate based gastroretentive technologies for drug delivery applications. Med. Novel Technol. Devices, 2023, 18, 100236.
[http://dx.doi.org/10.1016/j.medntd.2023.100236]
[3]
Kumar, M.; Kaushik, D. An overview on various approaches and recent patents on gastroretentive drug delivery systems. Recent Pat. Drug Deliv. Formul., 2018, 12(2), 84-92.
[http://dx.doi.org/10.2174/1872211312666180308150218] [PMID: 29521255]
[4]
Hirtz, J. The gastrointestinal absorption of drugs in man: A review of current concepts and methods of investigation. Br. J. Clin. Pharmacol., 1985, 19(S2), 77-83.
[http://dx.doi.org/10.1111/j.1365-2125.1985.tb02746.x]
[5]
Arora, S.; Ali, J.; Ahuja, A.; Khar, R.K.; Baboota, S. Floating drug delivery systems: A review. AAPS PharmSciTech, 2005, 6(3), E372-E390.
[http://dx.doi.org/10.1208/pt060347] [PMID: 16353995]
[6]
Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol., 2020, 11, 524.
[http://dx.doi.org/10.3389/fphar.2020.00524] [PMID: 32425781]
[7]
Rang, H.; Dale, M.M. Pharmacology; Churchill Livingstone: London, United Kingdom, 1999.
[8]
Gilman, A.; Goodman, L., Eds. The pharmacological basis of therapeutics; Mc Graw Hill: New York City, New York, 2005.
[9]
Gambhire, M.N.; Ambade, K.W.; Kurmi, S.D.; Kadam, V.J.; Jadhav, K.R. Development and in vitro evaluation of an oral floating matrix tablet formulation of diltiazem hydrochloride. AAPS PharmSciTech, 2007, 8(3), E166-E174.
[http://dx.doi.org/10.1208/pt0803073] [PMID: 17915823]
[10]
Mirani, A.G.; Patankar, S.P.; Kadam, V.J. Risk-based approach for systematic development of gastroretentive drug delivery system. Drug Deliv. Transl. Res., 2016, 6(5), 579-596.
[http://dx.doi.org/10.1007/s13346-016-0315-x] [PMID: 27468861]
[11]
Jagdale, S.; Patil, S.A.; Kuchekar, B.S. Design, development and evaluation of floating tablets of tapentadol hydrochloride using chitosan. Asian J. Pharm. Clin. Res., 2012, 5(4), 163-168. https://www.researchgate.net/publication/287166306_Design_development_and_evaluation_of_floating_tablets_of_tapentadol_hydro chloride_using_Chitosan
[12]
Bagherwal, A.; Patidar, D.; Sharma, P. Studies on formulation and evaluation of floating tablets of ciprofloaxacin HCL. Int. J. Comprehen. Pharm., 2012, 5(2), 1-4. https://www.researchgate.net/publication/49596195_Research_STUDIES_ON_FORMULATION_AND_EVALUATION_OF_FLOATING_TABLETS_OF_CIPROFLOXACIN_HCl
[13]
Liang, Y.K.; Cheng, W.T.; Chen, L.C.; Sheu, M.T.; Lin, H.L. Development of a swellable and floating gastroretentive drug delivery system (sfGRDDS) of ciprofloxacin hydrochloride. Pharmaceutics, 2023, 15(5), 1428.
[http://dx.doi.org/10.3390/pharmaceutics15051428] [PMID: 37242670]
[14]
Remington, J.; Lee, T.W., Eds. Controlled release drug delivery system; Lippincott Williams and Wilkins: Philadelphia, 2001.
[15]
Krishnarajan, D.; Manivannan, R.; Chandroth, N.; Natesan, S. Design and characterization of floating tablets of ranolazine. Int. Res. J. Pharm., 2012, 3(24), 268-272. https://www.amazon.com/Design-Characterization-Floating-Tablets-Ranolazine/dp/3659192198
[16]
Ahmad, S. Preparation, characterization and evaluation of flavonolignan silymarin effervescent floating matrix tablets for enhanced oral bioavailability. Molecules, 2023, 28(6), 2606.
[http://dx.doi.org/10.3390/molecules28062606]
[17]
Maddiboyina, B.; Hanumanaik, M.; Nakkala, R.K.; Jhawat, V.; Rawat, P.; Alam, A.; Foudah, A.I.; Alrobaian, M.M.; Shukla, R.; Singh, S.; Kesharwani, P. Formulation and evaluation of gastro-retentive floating bilayer tablet for the treatment of hypertension. Heliyon, 2020, 6(11), e05459.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05459] [PMID: 33241144]
[18]
Lachmann, L.; Liebermann, H.A.; Kanig, J.L., Eds. The theory and practice of industrial pharmacy; Philadelphia: Lippincott Williams & Wilkins, 1990.
[19]
INDIAN PHARMACOPOEIA. The Indian Pharmacopoeia Commission, Ghaziabad. 2007. Available From: https://www.pharmaresearchlibrary.com/wp-content/uploads/2013/03/IP2007-Vol-1.pdf
[20]
IndianPharmacopoeia. Uniformity of weight of single-dose preparations., 2007. Available From: https://dl1.cuni.cz/pluginfile.php/1089713/mod_resource/content/3/uniformity%20of%20mass.pdf
[21]
Bhaskaran, S.R.M. Novel approach to zero order drug delivery via hydrogel for diltiazem hydrochloride. Indian J. Pharm. Sci., 2002, 64(4), 357-361. https://www.researchgate.net/publication/287553194_Novel_approach_to_zero_order_drug_delivery_via_hydrogel_for_diltiazem_hydrochloride
[22]
Li, Q.; Guan, X.; Cui, M.; Zhu, Z.; Chen, K.; Wen, H.; Jia, D.; Hou, J.; Xu, W.; Yang, X.; Pan, W. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int. J. Pharm., 2018, 535(1-2), 325-332.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.037] [PMID: 29051121]
[23]
Gohel, M.; Mehta, P.R.; Dave, P.K.; Bariya, N.H. More relevant dissolution method for evaluation of FDDS. Dissolution Technologies. Int. J. Pharm. Med., 2005, 22-25.
[24]
Nanjwade, B.K.; Veerendra, K.; Nanjwade, S.A.A.; Nanjwade, V.K.; Gaikwad, K.R. Development and evaluation of gastroretentive floating tablets of glipizide based on effervescent technology. J. Drug Metab. Toxicol., 2012, 3(3), 1-6.
[http://dx.doi.org/10.4172/2157-7609.1000121]
[25]
Rahamathulla, M.; Saisivam, S.; Alshetaili, A.; Hani, U.; Gangadharappa, H.V.; Alshehri, S.; Ghoneim, M.M.; Shakeel, F. Design and evaluation of losartan potassium effervescent floating matrix tablets: In vivo x-ray imaging and pharmacokinetic studies in albino rabbits. Polymers, 2021, 13(20), 3476.
[http://dx.doi.org/10.3390/polym13203476] [PMID: 34685235]
[26]
Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm., 2010, 67(3), 217-223.
[PMID: 20524422]
[27]
Shinde, A.; Patil, M.S.; More, H.N. Formulation and evaluation of an oral floating tablet of cephalexin. Indian J. Pharm. Educ. Res., 2010, 44(3) https://www.researchgate.net/publication/230917433_Formulation_and_Evaluation_of_an_Oral_Floating_Tablet_of_Cephalexin
[28]
Shinde, S.; Magdum, S.S.; Waikar, S.B.; Mishra, M.R.; Chandak, K.K. Development and evaluation of floating tablets of salbutamol sulphate. Int. J. Pharm. Res. Devel., 2010, 2(5), 1-7.
[29]
Dhiman, B. Psyllium: A potential carrier to control the drug delivery. Int Res J Pharma, 2012, 3, 39-44.
[30]
Rahamathulla, M.; Alshahrani, S.M.; Al Saqr, A.; Alshetaili, A.; Shakeel, F. Effervescent floating matrix tablets of a novel anti-cancer drug neratinib for breast cancer treatment. J. Drug Deliv. Sci. Technol., 2021, 66, 102788.
[http://dx.doi.org/10.1016/j.jddst.2021.102788]
[31]
Hirun, N.; Kraisit, P. Drug-Polymers composite matrix tablets: Effect of Hydroxypropyl Methylcellulose (HPMC) K-Series on porosity, compatibility, and release behavior of the tablet containing a BCS class I drug. Polymers, 2022, 14(16), 3406. https://www.mdpi.com/2073-4360/14/16/3406
[32]
El Gamal, S.S.; Naggar, V.F.; Allam, A.N. Optimization of acyclovir oral tablets based on gastroretention technology: Factorial design analysis and physicochemical characterization studies. Drug Dev. Ind. Pharm., 2011, 37(7), 855-867.
[http://dx.doi.org/10.3109/03639045.2010.546404] [PMID: 21401342]
[33]
Tadros, M.I. Controlled-release effervescent floating matrix tablets of ciprofloxacin hydrochloride: Development, optimization and in vitroin vivo evaluation in healthy human volunteers. Eur. J. Pharm. Biopharm., 2010, 74(2), 332-339.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.010] [PMID: 19932750]
[34]
Garg, S.; Sharma, S. Gastro retentive drug delivery systems. Drug Deliv Oral, 2003, 2003, 160-166.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy