Abstract
Background: Excessive intake of benzoic acid may cause serious diseases, including disordered metabolism, abdominal pain, and diarrhea. Hence, it is important to explore a reliable method to determine the quantity of benzoic acid for protecting human health. In this regard, polythiophene/copper vanadate nanoribbon composites act as electrode materials for the detection of benzoic acid.
Objective: The objective of this research was to synthesize polythiophene/copper vanadate nanoribbons via an in-situ polymerization approach and evaluate their electrochemical performance for the detection of benzoic acid.
Methods: Polythiophene/copper vanadate nanoribbons were obtained via an in-situ polymerization approach. The obtained composite nanoribbons were analyzed using X-ray diffraction, electron microscopy, Fourier Transform Infrared Spectroscopy, and electrochemical method.
Results: Amorphous polythiophene nanoparticles with a size of less than 100 nm were homogeneously attached to the copper vanadate nanoribbons. Electrochemical sensing properties of the polythiophene/copper vanadate nanoribbons modified electrode for detecting benzoic acid were analyzed using the Cyclic Voltammetry (CV) method. An irreversible CV peak was observed at +0.36 V in 0.1 M KCl solution with 2 mM benzoic acid. The polythiophene/copper vanadate nanoribbons modified electrode indicated a linear range of 0.001-2 mM with the limit of detection (LOD) of 0.29 µM.
Conclusion: Polythiophene greatly enhanced the electrochemical sensing properties of copper vanadate nanoribbons. Polythiophene/copper vanadate nanoribbons modified electrode was found to be stable and repeatable owing to the synergistic effect of various components.
[http://dx.doi.org/10.1016/j.talanta.2017.09.040] [PMID: 29136821]
[http://dx.doi.org/10.1016/j.scienta.2020.109867]
[http://dx.doi.org/10.1016/j.chemosphere.2022.133663] [PMID: 35063559]
[http://dx.doi.org/10.1016/j.foodchem.2015.03.025] [PMID: 25863605]
[http://dx.doi.org/10.1007/s11694-021-01083-6]
[http://dx.doi.org/10.1016/j.foodchem.2018.06.103] [PMID: 30064777]
[http://dx.doi.org/10.1016/j.lwt.2020.110841]
[http://dx.doi.org/10.1016/j.saa.2020.119253] [PMID: 33302215]
[http://dx.doi.org/10.1016/S0013-4686(02)00318-3]
[http://dx.doi.org/10.1016/j.talanta.2007.02.007] [PMID: 19071830]
[http://dx.doi.org/10.2174/1573412914666181017145307]
[http://dx.doi.org/10.1080/10408347.2019.1664281] [PMID: 31559831]
[http://dx.doi.org/10.1007/978-3-031-14955-9_48-1]
[http://dx.doi.org/10.22037/ijpr.2019.1100645] [PMID: 31531049]
[http://dx.doi.org/10.1016/j.jece.2024.111985]
[http://dx.doi.org/10.1149/1945-7111/aca837]
[http://dx.doi.org/10.1016/j.envres.2023.116355] [PMID: 37329944]
[http://dx.doi.org/10.1007/s10854-017-7209-7]
[http://dx.doi.org/10.1016/S1003-6326(17)60129-8]
[http://dx.doi.org/10.1016/j.electacta.2021.139623]
[http://dx.doi.org/10.1039/C4TA05946H]
[http://dx.doi.org/10.1049/iet-smt.2015.0089]
[http://dx.doi.org/10.1016/j.msec.2010.11.022]
[http://dx.doi.org/10.20964/2020.02.55]
[http://dx.doi.org/10.20964/2020.10.29]
[http://dx.doi.org/10.3390/electrochem2040042]
[http://dx.doi.org/10.1021/acs.chemrev.8b00773] [PMID: 31580649]
[http://dx.doi.org/10.1021/acs.chemmater.7b03035]
[http://dx.doi.org/10.1007/s11144-010-0222-y]
[http://dx.doi.org/10.1016/j.mseb.2008.01.003]
[http://dx.doi.org/10.1016/j.materresbull.2019.03.021]
[http://dx.doi.org/10.1007/s11669-009-9503-4]
[http://dx.doi.org/10.1007/s10973-012-2210-0]
[http://dx.doi.org/10.1016/0038-1098(85)91068-3]
[http://dx.doi.org/10.1016/0379-6779(94)90211-9]
[http://dx.doi.org/10.1002/ceat.200500342]
[http://dx.doi.org/10.1088/2053-1591/aae96e]
[http://dx.doi.org/10.1016/S0039-9140(02)00236-9] [PMID: 18968725]
[http://dx.doi.org/10.1088/0957-0233/24/9/095701]
[http://dx.doi.org/10.1007/s40820-014-0028-y]
[http://dx.doi.org/10.1149/2.0041602jes]
[http://dx.doi.org/10.1016/S0021-9673(01)01434-0] [PMID: 11820277]
[http://dx.doi.org/10.1016/j.chroma.2004.10.105] [PMID: 15909546]
[http://dx.doi.org/10.1016/j.measurement.2014.03.032]