Generic placeholder image

The International Journal of Gastroenterology and Hepatology Diseases

Editor-in-Chief

ISSN (Print): 2666-2906
ISSN (Online): 2666-2914

Research Article

Targeting To Overexpressed Receptor in Colon Cancer: A Review

In Press, (this is not the final "Version of Record"). Available online 08 July, 2024
Author(s): Tarun Sharma, Md. Moidul Islam, Akshay Kumar Lunawat and Sarjana Raikwar*
Published on: 08 July, 2024

Article ID: e080724231732

DOI: 10.2174/0126662906299154240613083710

Price: $95

Abstract

Colon cancer is a major global health concern characterized by complex interactions of genetic, environmental, and lifestyle factors. The "hallmarks of cancer" encompass various distinctions between cancerous and normal tissues, including vascular characteristics, making it a possible target for medication administration with specificity. The tumor microenviron-ment in colon cancer is a dynamic ecosystem comprising various cell types like cancer-asso-ciated fibroblasts, immune cells, and endothelial cells, influencing tumor progression and re-sponse to therapy. Various overexpressed receptors in colon cancer, like G-protein-coupled receptors (GPCRs), integrins, folate receptors, transferrin receptors, epidermal growth factor receptors (EGFRs), and CD-44 receptors, offer opportunities for targeted drug delivery. These receptors play vital roles in cancer cell growth, proliferation, and metastasis, making them important targets for therapeutic intervention.

[1]
Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5(1): 22.
[http://dx.doi.org/10.1038/s41392-020-0116-z] [PMID: 32296018]
[2]
Boyle P, Levin B. World Cancer Report 2008. 2008. Available From: https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2008
[3]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[4]
AK I. Exploiting EPR-effect for tumor targeting: Principle, mechanism and examples. Drug Discov Today 2007; 11: 812-8.
[5]
Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug Chem 2010; 21(5): 797-802.
[http://dx.doi.org/10.1021/bc100070g] [PMID: 20397686]
[6]
Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release 2008; 132(3): 164-70.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.003] [PMID: 18571265]
[7]
Schroeder A, Heller DA, Winslow MM, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer 2012; 12(1): 39-50.
[http://dx.doi.org/10.1038/nrc3180] [PMID: 22193407]
[8]
Arneth B. Tumor microenvironment. Medicina (Kaunas) 2019; 56(1): 15.
[http://dx.doi.org/10.3390/medicina56010015] [PMID: 31906017]
[9]
Zhong X, Zhang Y, Wang L, Zhang H, Liu H, Liu Y. Cellular components in tumor microenvironment of neuroblastoma and the prognostic value. PeerJ 2019; 7: e8017.
[http://dx.doi.org/10.7717/peerj.8017] [PMID: 31844563]
[10]
Nanoparticles for drug delivery in cancer treatment.Haley, B.; Frenkel, E., Eds.; Urologic Oncology: Seminars and original investigations. Amsterdam: Elsevier 2008.
[11]
Mocellin S, Wang E, Marincola FM. Cytokines and immune response in the tumor microenvironment. J Immunother 2001; 24(5): 392-407.
[http://dx.doi.org/10.1097/00002371-200109000-00002]
[12]
Henke E, Nandigama R, Ergün S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci 2020; 6: 160.
[http://dx.doi.org/10.3389/fmolb.2019.00160] [PMID: 32118030]
[13]
Jiang X, Wang J, Deng X, et al. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res 2020; 39(1): 204.
[http://dx.doi.org/10.1186/s13046-020-01709-5] [PMID: 32993787]
[14]
Vaupel P, Multhoff G. Accomplices of the hypoxic tumor microenvironment compromising antitumor immunity: Adenosine, lactate, acidosis, vascular endothelial growth factor, potassium ions, and phosphatidylserine. Front Immunol 2017; 8: 1887.
[http://dx.doi.org/10.3389/fimmu.2017.01887] [PMID: 29312351]
[15]
Akhtar MJ, Ahamed M, Alhadlaq HA, Alrokayan SA, Kumar S. Targeted anticancer therapy: Overexpressed receptors and nanotechnology. Clin Chim Acta 2014; 436: 78-92.
[http://dx.doi.org/10.1016/j.cca.2014.05.004] [PMID: 24836529]
[16]
Yang D, Zhou Q, Labroska V, et al. G protein-coupled receptors: Structure- and function-based drug discovery. Signal Transduct Target Ther 2021; 6(1): 7.
[http://dx.doi.org/10.1038/s41392-020-00435-w] [PMID: 33414387]
[17]
Pang X, He X, Qiu Z, et al. Targeting integrin pathways: Mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8(1): 1.
[http://dx.doi.org/10.1038/s41392-022-01259-6] [PMID: 36588107]
[18]
Frigerio B, Bizzoni C, Jansen G, Leamon CP, Peters GJ, Low PS. Folate receptors and transporters: Biological role and diagnostic/therapeutic targets in cancer and other diseases. J Exp Clin Cancer Res 2019; 38(1): 125.
[19]
Giannetti AM, Snow PM, Zak O, Björkman PJ. Mechanism for multiple ligand recognition by the human transferrin receptor. PLoS Biol 2003; 1(3): e51.
[http://dx.doi.org/10.1371/journal.pbio.0000051] [PMID: 14691533]
[20]
Song S, Liu D, Peng J, et al. Novel peptide ligand directs liposomes toward EGFR high‐expressing cancer cells in vitro and in vivo. FASEB J 2009; 23(5): 1396-404.
[http://dx.doi.org/10.1096/fj.08-117002] [PMID: 19124558]
[21]
Guo Q, Yang C, Gao F. The state of CD44 activation in cancer progression and therapeutic targeting. FEBS J 2022; 289(24): 7970-86.
[http://dx.doi.org/10.1111/febs.16179] [PMID: 34478583]
[22]
Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev 2005; 85(4): 1159-204.
[http://dx.doi.org/10.1152/physrev.00003.2005] [PMID: 16183910]
[23]
Zwanziger D, Beck-Sickinger A. Radiometal targeted tumor diagnosis and therapy with peptide hormones. Curr Pharm Des 2008; 14(24): 2385-400.
[http://dx.doi.org/10.2174/138161208785777397] [PMID: 18781989]
[24]
Oldham WM, Hamm HE. How do receptors activate G proteins? Adv Protein Chem 2007; 74: 67-93.
[http://dx.doi.org/10.1016/S0065-3233(07)74002-0] [PMID: 17854655]
[25]
Jensen RT, Battey JF, Spindel ER, Benya RV. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: Nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 2008; 60(1): 1-42.
[http://dx.doi.org/10.1124/pr.107.07108] [PMID: 18055507]
[26]
Fathi Z, Corjay MH, Shapira H, et al. BRS-3: A novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells. J Biol Chem 1993; 268(8): 5979-84.
[http://dx.doi.org/10.1016/S0021-9258(18)53415-3] [PMID: 8383682]
[27]
Majumdar ID, Weber HC. Biology of mammalian bombesin-like peptides and their receptors. Curr Opin Endocrinol Diabetes Obes 2011; 18(1): 68-74.
[http://dx.doi.org/10.1097/MED.0b013e328340ff93] [PMID: 21042212]
[28]
Safavy A, Raisch KP, Matusiak D, Bhatnagar S, Helson L. Single-drug multiligand conjugates: Synthesis and preliminary cytotoxicity evaluation of a paclitaxel-dipeptide “scorpion” molecule. Bioconjug Chem 2006; 17(3): 565-70.
[http://dx.doi.org/10.1021/bc050224c] [PMID: 16704191]
[29]
Narayanan SM. Growth inhibition of pancreatic cancer by PTF1Amediated differentiation., The University of Utah ProQuest Dissertation & Theses 2023.
[30]
He SW, Shen K-Q, He Y-J, Xie B, Zhao Y-M. Regulatory effect and mechanism of gastrin and its antagonists on colorectal carcinoma. World J Gastroenterol 1999; 5(5): 408-16.
[http://dx.doi.org/10.3748/wjg.v5.i5.408] [PMID: 11819478]
[31]
Khan M, Huang T, Lin CY, Wu J, Fan BM, Bian ZX. Exploiting cancer’s phenotypic guise against itself: Targeting ectopically expressed peptide G-protein coupled receptors for lung cancer therapy. Oncotarget 2017; 8(61): 104615-37.
[http://dx.doi.org/10.18632/oncotarget.18403] [PMID: 29262666]
[32]
Horiguchi K, Yamada M, Umezawa R, et al. Somatostatin receptor subtypes mRNA in TSH-secreting pituitary adenomas: A case showing a dramatic reduction in tumor size during short octreotide treatment. Endocr J 2007; 54(3): 371-8.
[http://dx.doi.org/10.1507/endocrj.K06-177] [PMID: 17420609]
[33]
Sun L-C, Coy DH. Somatostatin receptor-targeted anti-cancer therapy. Curr Drug Deliv 2011; 8(1): 2-10.
[http://dx.doi.org/10.2174/156720111793663633] [PMID: 21034425]
[34]
Masaki T. The endothelin family: An overview. J Cardiovasc Pharmacol 2000; 35(4) (Suppl. 2): S3-5.
[http://dx.doi.org/10.1097/00005344-200000002-00002] [PMID: 10976772]
[35]
Nelson J, Bagnato A, Battistini B, Nisen P. The endothelin axis: Emerging role in cancer. Nat Rev Cancer 2003; 3(2): 110-6.
[http://dx.doi.org/10.1038/nrc990] [PMID: 12563310]
[36]
Raymond MN, Robin P, De Zen F, Vilain G, Tanfin Z. Differential endothelin receptor expression and function in rat myometrial cells and leiomyoma ELT3 cells. Endocrinology 2009; 150(10): 4766-76.
[http://dx.doi.org/10.1210/en.2009-0118] [PMID: 19628575]
[37]
Asundi J, Reed C, Arca J, et al. An antibody-drug conjugate targeting the endothelin B receptor for the treatment of melanoma. Clin Cancer Res 2011; 17(5): 965-75.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2340] [PMID: 21245091]
[38]
Chen X, Plasencia C, Hou Y, Neamati N. Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J Med Chem 2005; 48(4): 1098-106.
[http://dx.doi.org/10.1021/jm049165z] [PMID: 15715477]
[39]
Cai W, Niu G, Chen X. Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des 2008; 14(28): 2943-73.
[http://dx.doi.org/10.2174/138161208786404308] [PMID: 18991712]
[40]
Humphries JD, Byron A, Humphries MJ. Integrin ligands at a glance. J Cell Sci 2006; 119(19): 3901-3.
[http://dx.doi.org/10.1242/jcs.03098] [PMID: 16988024]
[41]
Berrier AL, Yamada KM. Cell–matrix adhesion. J Cell Physiol 2007; 213(3): 565-73.
[http://dx.doi.org/10.1002/jcp.21237] [PMID: 17680633]
[42]
Yoo HS, Park TG. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin–PEG–folate conjugate. J Control Release 2004; 100(2): 247-56.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.017] [PMID: 15544872]
[43]
Shia J, Klimstra DS, Nitzkorski JR, et al. Immunohistochemical expression of folate receptor α in colorectal carcinoma: Patterns and biological significance. Hum Pathol 2008; 39(4): 498-505.
[http://dx.doi.org/10.1016/j.humpath.2007.09.013] [PMID: 18342661]
[44]
Kelemen LE. The role of folate receptor α in cancer development, progression and treatment: Cause, consequence or innocent bystander? Int J Cancer 2006; 119(2): 243-50.
[http://dx.doi.org/10.1002/ijc.21712] [PMID: 16453285]
[45]
Deng Y, Zhou X, Kugel Desmoulin S, et al. Synthesis and biological activity of a novel series of 6-substituted thieno[2,3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry. J Med Chem 2009; 52(9): 2940-51.
[http://dx.doi.org/10.1021/jm8011323] [PMID: 19371039]
[46]
Reddy JA, Dorton R, Westrick E, et al. Preclinical evaluation of EC145, a folate-vinca alkaloid conjugate. Cancer Res 2007; 67(9): 4434-42.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0033] [PMID: 17483358]
[47]
Müller C, Schibli R. Folic acid conjugates for nuclear imaging of folate receptor-positive cancer. J Nucl Med 2011; 52(1): 1-4.
[http://dx.doi.org/10.2967/jnumed.110.076018] [PMID: 21149477]
[48]
Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 2008; 41(1): 120-9.
[http://dx.doi.org/10.1021/ar7000815] [PMID: 17655275]
[49]
Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 2008; 5(3): 309-19.
[http://dx.doi.org/10.1517/17425247.5.3.309] [PMID: 18318652]
[50]
Mansoori GA, Brandenburg KS, Shakeri-Zadeh A. A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers (Basel) 2010; 2(4): 1911-28.
[http://dx.doi.org/10.3390/cancers2041911] [PMID: 24281209]
[51]
Kircheis R, Wightman L, Kursa M, Ostermann E, Wagner E. Tumor-targeted gene delivery: An attractive strategy to use highly active effector molecules in cancer treatment. Gene Ther 2002; 9(11): 731-5.
[http://dx.doi.org/10.1038/sj.gt.3301748] [PMID: 12032698]
[52]
Yoon DJ, Kwan BH, Chao FC, et al. Intratumoral therapy of glioblastoma multiforme using genetically engineered transferrin for drug delivery. Cancer Res 2010; 70(11): 4520-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4311] [PMID: 20460527]
[53]
Daniels TR, Bernabeu E, Rodríguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta, Gen Subj 2012; 1820(3): 291-317.
[http://dx.doi.org/10.1016/j.bbagen.2011.07.016] [PMID: 21851850]
[54]
Yang DC, Wang F, Elliott RL, Head JF. Expression of transferrin receptor and ferritin H-chain mRNA are associated with clinical and histopathological prognostic indicators in breast cancer. Anticancer Res 2001; 21(1B): 541-9.
[PMID: 11299801]
[55]
Dufès C, Al Robaian M, Somani S. Transferrin and the transferrin receptor for the targeted delivery of therapeutic agents to the brain and cancer cells. Ther Deliv 2013; 4(5): 629-40.
[http://dx.doi.org/10.4155/tde.13.21] [PMID: 23647279]
[56]
Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm 2009; 71(2): 251-6.
[http://dx.doi.org/10.1016/j.ejpb.2008.08.021] [PMID: 18805484]
[57]
Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19(3): 183-232.
[http://dx.doi.org/10.1016/1040-8428(94)00144-I] [PMID: 7612182]
[58]
Blessing T, Kursa M, Holzhauser R, Kircheis R, Wagner E. Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconjug Chem 2001; 12(4): 529-37.
[http://dx.doi.org/10.1021/bc0001488] [PMID: 11459457]
[59]
Linggi B, Carpenter G. ErbB receptors: New insights on mechanisms and biology. Trends Cell Biol 2006; 16(12): 649-56.
[http://dx.doi.org/10.1016/j.tcb.2006.10.008] [PMID: 17085050]
[60]
Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: A model for targeted therapy. Clin Cancer Res 2006; 12(18): 5268-72.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1554] [PMID: 17000658]
[61]
Citri A, Skaria KB, Yarden Y. The deaf and the dumb: The biology of ErbB-2 and ErbB-3. Exp Cell Res 2003; 284(1): 54-65.
[http://dx.doi.org/10.1016/B978-012160281-9/50005-0]
[62]
Schlessinger J, Lemmon MA. Nuclear signaling by receptor tyrosine kinases: The first robin of spring. Cell 2006; 127(1): 45-8.
[http://dx.doi.org/10.1016/j.cell.2006.09.013] [PMID: 17018275]
[63]
Master AM, Sen Gupta A. EGF receptor-targeted nanocarriers for enhanced cancer treatment. Nanomedicine (Lond) 2012; 7(12): 1895-906.
[http://dx.doi.org/10.2217/nnm.12.160] [PMID: 23249333]
[64]
Negi LM, Talegaonkar S, Jaggi M, Ahmad FJ, Iqbal Z, Khar RK. Role of CD44 in tumour progression and strategies for targeting. J Drug Target 2012; 20(7): 561-73.
[http://dx.doi.org/10.3109/1061186X.2012.702767] [PMID: 22758394]
[65]
Negi LM, Jaggi M, Joshi V, Ronodip K, Talegaonkar S. Hyaluronic acid decorated lipid nanocarrier for MDR modulation and CD-44 targeting in colon adenocarcinoma. Int J Biol Macromol 2015; 72: 569-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.005] [PMID: 25220787]
[66]
Liu Y, Han Z, Zhang S, et al. Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. J Biol Chem 2011; 286(28): 25007-15.
[http://dx.doi.org/10.1074/jbc.M110.213108] [PMID: 21592963]
[67]
Lee SD, Yu D, Lee DY, Shin HS, Jo JH, Lee YC. Upregulated microRNA‐193a‐3p is responsible for cisplatin resistance in CD 44(+) gastric cancer cells. Cancer Sci 2019; 110(2): 662-73.
[http://dx.doi.org/10.1111/cas.13894] [PMID: 30485589]
[68]
Morath I, Hartmann TN, Orian-Rousseau V. CD44: More than a mere stem cell marker. Int J Biochem Cell Biol 2016; 81(Pt A): 166-73.
[http://dx.doi.org/10.1016/j.biocel.2016.09.009] [PMID: 27640754]
[69]
Hu K, Zhou H, Liu Y, et al. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscale 2015; 7(18): 8607-18.
[http://dx.doi.org/10.1039/C5NR01084E] [PMID: 25898852]
[70]
Ni J, Cozzi PJ, Hao JL, et al. CD44 variant 6 is associated with prostate cancer metastasis and chemo‐/radioresistance. Prostate 2014; 74(6): 602-17.
[http://dx.doi.org/10.1002/pros.22775] [PMID: 24615685]
[71]
Chandra J, Molugulu N, Annadurai S, et al. Hyaluronic acid-functionalized lipoplexes and polyplexes as emerging nanocarriers for receptor-targeted cancer therapy. Environ Res 2023; 233: 116506.
[http://dx.doi.org/10.1016/j.envres.2023.116506] [PMID: 37369307]
[72]
Bhaskaran NA, Jitta SR, Salwa, , et al. Folic acid-chitosan functionalized polymeric nanocarriers to treat colon cancer. Int J Biol Macromol 2023; 253(Pt 5): 127142.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127142] [PMID: 37797853]
[73]
Baião A, Sousa F, Oliveira AV, Oliveira C, Sarmento B. Effective intracellular delivery of bevacizumab via PEGylated polymeric nanoparticles targeting the CD44v6 receptor in colon cancer cells. Biomater Sci 2020; 8(13): 3720-9.
[http://dx.doi.org/10.1039/D0BM00556H] [PMID: 32500879]
[74]
Abdellatif AAH, Ibrahim MA, Amin MA, et al. Cetuximab conjugated with octreotide and entrapped calcium alginate-beads for targeting somatostatin receptors. Sci Rep 2020; 10(1): 4736.
[http://dx.doi.org/10.1038/s41598-020-61605-y] [PMID: 32170176]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy