Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

The Gut Microbiota-Brain Axis: A New Frontier in Alzheimer's Disease Pathology

In Press, (this is not the final "Version of Record"). Available online 04 July, 2024
Author(s): Meenakshi Dhanawat*, Garima Malik, Kashish Wilson, Sumeet Gupta, Nidhi Gupta and Satish Sardana
Published on: 04 July, 2024

DOI: 10.2174/0118715273302508240613114103

Price: $95

Abstract

Dr. Aloysius Alzheimer, a German neuropathologist and psychiatrist, recognized the primary instance of Alzheimer's disease (AD) for a millennium, and this ailment, along with its related dementias, remains a severe overall community issue related to health. Nearly fifty million individuals worldwide suffer from dementia, with Alzheimer's illness contributing to between 60 and 70% of the instances, estimated through the World Health Organization. In addition, 82 million individuals are anticipated to be affected by the global dementia epidemic by 2030 and 152 million by 2050. Furthermore, age, environmental circumstances, and inherited variables all increase the likelihood of acquiring neurodegenerative illnesses. Most recent pharmacological treatments are found in original hypotheses of disease, which include cholinergic (drugs that show affective cholinergic system availability) as well as amyloid-accumulation (a single drug is an antagonist receptor of Nmethyl D-aspartate). In 2020, the FDA provided approval on anti-amyloid drugs. According to mounting scientific data, this gut microbiota affects healthy physiological homeostasis and has a role in the etiology of conditions that range between obesity and neurodegenerative disorders like Alzheimer's. The microbiota-gut-brain axis might facilitate interconnection among gut microbes as well as the central nervous system (CNS). Interaction among the microbiota-gut system as well as the brain occurs through the “two-way” microbiota-gut-brain axis. Along this axis, the stomach as well as the brain develop physiologically and take on their final forms. This contact is constant and is mediated by numerous microbiota-derived products. The gut microbiota, for instance, can act as non-genetic markers to set a threshold for maintaining homeostasis or getting ill. The scientific community has conducted research and found that bowel dysbiosis and gastrointestinal tract dysregulation frequently occur in Alzheimer's disease (AD) patients. In this review, the effects of the microbiota- gut-brain axis on AD pathogenesis will be discussed.

[1]
2022 Alzheimer’s disease facts and figures. Alzheimers Dement 2022; 18(4): 700-89.
[http://dx.doi.org/10.1002/alz.12638] [PMID: 35289055]
[2]
Ferretti C, Sarti FM, Nitrini R, Ferreira FF, Brucki SMD. An assessment of direct and indirect costs of dementia in Brazil. PLoS One 2018; 13(3): e0193209.
[3]
Atri A. The alzheimer’s disease clinical spectrum. Med Clin North Am 2019; 103(2): 263-93.
[http://dx.doi.org/10.1016/j.mcna.2018.10.009] [PMID: 30704681]
[4]
Bakkour A, Morris JC, Wolk DA, Dickerson BC. The effects of aging and Alzheimer’s disease on cerebral cortical anatomy: Specificity and differential relationships with cognition. Neuroimage 2013; 76: 332-44.
[http://dx.doi.org/10.1016/j.neuroimage.2013.02.059] [PMID: 23507382]
[5]
Nie X, Sun Y, Wan S, Zhao H, Liu R, Li X, et al. Subregional structural alterations in hippocampus and nucleus accumbens correlate with the clinical impairment in patients with alzheimer’s disease clinical spectrum: Parallel combining volume and vertex-based approach. Front Neurol 2017; 8: 399.
[6]
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet 2021; 397(10284): 1577-90.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[7]
Daulatzai M. Non-celiac gluten sensitivity triggers gut dysbiosis, neuroinflammation, gut-brain axis dysfunction, and vulnerability for dementia. CNS Neurol Disord Drug Targets 2015; 14(1): 110-31.
[http://dx.doi.org/10.2174/1871527314666150202152436] [PMID: 25642988]
[8]
Tse KH, Herrup K. Re‐imagining Alzheimer’s disease – the diminishing importance of amyloid and a glimpse of what lies ahead. J Neurochem 2017; 143(4): 432-44.
[http://dx.doi.org/10.1111/jnc.14079] [PMID: 28547865]
[9]
Long JM, Holtzman DM. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019; 179(2): 312-39.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[10]
Liu S, Gao J, Liu K, Zhang HL. Microbiota-gut-brain axis and Alzheimer’s disease: Implications of the blood-brain barrier as an intervention target. Mech Ageing Dev 2021; 199: 111560.
[http://dx.doi.org/10.1016/j.mad.2021.111560] [PMID: 34411603]
[11]
Kowalski K, Mulak A. Brain-Gut-Microbiota Axis in Alzheimer’s Disease. J Neurogastroenterol Motil 2019; 25(1): 48-60.
[http://dx.doi.org/10.5056/jnm18087] [PMID: 30646475]
[12]
Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of alzheimer’s disease: A critical review. Mol Neurobiol 2019; 56(3): 1841-51.
[http://dx.doi.org/10.1007/s12035-018-1188-4] [PMID: 29936690]
[13]
Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol 2018; 6(2): 133-48.
[http://dx.doi.org/10.1016/j.jcmgh.2018.04.003]
[14]
Tillisch K. The effects of gut microbiota on CNS function in humans. Gut Microbes 2014; 5(3): 404-10.
[http://dx.doi.org/10.4161/gmic.29232]
[15]
Cryan JF, Dinan TG. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13(10): 701-12.
[http://dx.doi.org/10.1038/nrn3346] [PMID: 22968153]
[16]
Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell 2016; 167(4): 915-32.
[http://dx.doi.org/10.1016/j.cell.2016.10.027]
[17]
Alsenani F. Unraveling potential neuroprotective mechanisms of herbal medicine for Alzheimer’s diseases through comprehensive molecular docking analyses. Saudi J Biol Sci 2024; 31(6): 103998.
[http://dx.doi.org/10.1016/j.sjbs.2024.103998] [PMID: 38681227]
[18]
Wang X, Sun G, Feng T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 2019; 29(10): 787-803.
[http://dx.doi.org/10.1038/s41422-019-0216-x] [PMID: 31488882]
[19]
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, et al. Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9(1): 37.
[http://dx.doi.org/10.1038/s41392-024-01743-1]
[20]
Caballero-Flores G, Pickard JM, Núñez G. Microbiota-mediated colonization resistance: Mechanisms and regulation. Nat Rev Microbiol 2023; 21(6): 347-60.
[http://dx.doi.org/10.1038/s41579-022-00833-7] [PMID: 36539611]
[21]
Collins SM. A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol 2014; 11(8): 497-505.
[http://dx.doi.org/10.1038/nrgastro.2014.40] [PMID: 24751910]
[22]
Trapecar M, Wogram E, Svoboda D, et al. Human physiomimetic model integrating microphysiological systems of the gut, liver, and brain for studies of neurodegenerative diseases. Sci Adv 2021; 7(5): eabd1707.
[http://dx.doi.org/10.1126/sciadv.abd1707] [PMID: 33514545]
[23]
Pigrau M, Rodiño-Janeiro BK, Casado-Bedmar M, et al. The joint power of sex and stress to modulate brain–gut–microbiota axis and intestinal barrier homeostasis: Implications for irritable bowel syndrome. Neurogastroenterol Motil 2016; 28(4): 463-86.
[http://dx.doi.org/10.1111/nmo.12717] [PMID: 26556786]
[24]
Moloney RD, Johnson AC, O’Mahony SM, Dinan TG, Greenwood-Van Meerveld B, Cryan JF. Stress and the microbiota–gut–brain axis in visceral pain: Relevance to irritable bowel syndrome. CNS Neurosci Ther 2016; 22(2): 102-17.
[http://dx.doi.org/10.1111/cns.12490] [PMID: 26662472]
[25]
Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res 1693; 1693(Pt B): 128-33.
[26]
Harach T, Marungruang N, Duthilleul N, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 2017; 7(1): 41802.
[http://dx.doi.org/10.1038/srep41802]
[27]
Chen Y, Fang L, Chen S, Zhou H, Fan Y, Lin L, et al. Gut microbiome alterations precede cerebral amyloidosis and microglial pathology in a mouse model of alzheimer’s disease. Biomed Res Int 2020; 2020: 8456596.
[http://dx.doi.org/10.1155/2020/8456596]
[28]
Cuervo-Zanatta D, Garcia-Mena J, Perez-Cruz C. Gut microbiota alterations and cognitive impairment are sexually dissociated in a transgenic mice model of alzheimer’s disease. J Alzheimers Dis 2021; 82(s1): S195-214.
[http://dx.doi.org/10.3233/JAD-201367] [PMID: 33492296]
[29]
Brandscheid C, Schuck F, Reinhardt S, et al. Altered gut microbiome composition and tryptic activity of the 5xFAD alzheimer’s mouse model. J Alzheimers Dis 2017; 56(2): 775-88.
[http://dx.doi.org/10.3233/JAD-160926] [PMID: 28035935]
[30]
Minter MR, Hinterleitner R, Meisel M, et al. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer’s disease. Sci Rep 2017; 7(1): 10411.
[http://dx.doi.org/10.1038/s41598-017-11047-w] [PMID: 28874832]
[31]
Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 2017; 49: 60-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.019] [PMID: 27776263]
[32]
Saji N, Niida S, Murotani K, Hisada T, Tsuduki T, Sugimoto T, et al. Analysis of the relationship between the gut microbiome and dementia: A cross-sectional study conducted in Japan. Sci Rep 2019; 9(1): 1008.
[http://dx.doi.org/10.1038/s41598-018-38218-7]
[33]
Kawashima K, Misawa H, Moriwaki Y, et al. Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sci 2007; 80(24-25): 2206-9.
[http://dx.doi.org/10.1016/j.lfs.2007.01.059] [PMID: 17363003]
[34]
Russell WR, Hoyles L, Flint HJ, Dumas ME. Colonic bacterial metabolites and human health. Curr Opin Microbiol 2013; 16(3): 246-54.
[http://dx.doi.org/10.1016/j.mib.2013.07.002] [PMID: 23880135]
[35]
Qian XH, Song XX, Liu XL, Chen SD, Tang HD. Inflammatory pathways in Alzheimer’s disease mediated by gut microbiota. Ageing Res Rev 2021; 68: 101317.
[36]
Friedland RP. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimers Dis 2015; 45(2): 349-62.
[http://dx.doi.org/10.3233/JAD-142841] [PMID: 25589730]
[37]
Sȩdzikowska A, Szablewski L. Insulin and insulin resistance in alzheimer’s disease. Int J Mol Sci 2021; 22(18): 9987.
[http://dx.doi.org/10.3390/ijms22189987]
[38]
Kim S, Kwon SH, Kam TI, et al. Transneuronal propagation of pathologic α-Synuclein from the gut to the brain models parkinson’s disease. Neuron 2019; 103(4): 627-641.e7.
[http://dx.doi.org/10.1016/j.neuron.2019.05.035] [PMID: 31255487]
[39]
Sgritta M, Dooling SW, Buffington SA, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 2019; 101(2): 246-259.e6.
[http://dx.doi.org/10.1016/j.neuron.2018.11.018] [PMID: 30522820]
[40]
Thal DR, Fändrich M. Protein aggregation in Alzheimer’s disease: Aβ and τ and their potential roles in the pathogenesis of AD. Acta Neuropathol 2015; 129(2): 163-5.
[http://dx.doi.org/10.1007/s00401-015-1387-2] [PMID: 25600324]
[41]
Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci 2019; 20(9): 2293.
[http://dx.doi.org/10.3390/ijms20092293] [PMID: 31075861]
[42]
Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 2011; 377(9770): 1019-31.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[43]
Pistollato F. Role of dietary patterns in the prevention and regression of insulin resistance-related cancers. Med J Nutrition Metab 2015; 8(1): 37-49.
[http://dx.doi.org/10.3233/MNM-140024]
[44]
Pistollato F, Battino M. Role of plant-based diets in the prevention and regression of metabolic syndrome and neurodegenerative diseases. Trends Food Sci Technol 2014; 40(1): 62-81.
[http://dx.doi.org/10.1016/j.tifs.2014.07.012]
[45]
Stenvinkel P. Obesity—a disease with many aetiologies disguised in the same oversized phenotype: Has the overeating theory failed? Nephrol Dial Transplant 2015; 30(10): 1656-64.
[http://dx.doi.org/10.1093/ndt/gfu338] [PMID: 25361999]
[46]
Lorente-Cebrián S, Costa AGV, Navas-Carretero S, et al. An update on the role of omega-3 fatty acids on inflammatory and degenerative diseases. J Physiol Biochem 2015; 71(2): 341-9.
[http://dx.doi.org/10.1007/s13105-015-0395-y] [PMID: 25752887]
[47]
Greiner AK, Papineni RVL, Umar S. Chemoprevention in gastrointestinal physiology and disease. Natural products and microbiome. Am J Physiol Gastrointest Liver Physiol 2014; 307(1): G1-G15.
[http://dx.doi.org/10.1152/ajpgi.00044.2014] [PMID: 24789206]
[48]
Gill PA, Inniss S, Kumagai T, Rahman FZ, Smith AM. The role of diet and gut microbiota in regulating gastrointestinal and inflammatory disease. Front Immunol 2022; 13: 866059.
[http://dx.doi.org/10.3389/fimmu.2022.866059] [PMID: 35450067]
[49]
Fallucca F, Porrata C, Fallucca S, Pianesi M. Influence of diet on gut microbiota, inflammation and type 2 diabetes mellitus. First experience with macrobiotic Ma-Pi 2 diet. Diabetes Metab Res Rev 2014; 30(Suppl 1): 48-54.
[50]
Kalman DS, Hewlings S. Inactivated Probiotic Bacillus coagulans GBI-30 Demonstrates Immunosupportive Properties in Healthy Adults Following Stressful Exercise. J Probiotics Health 2018; 6(1)
[http://dx.doi.org/10.4172/2329-8901.1000190]
[51]
Tillisch K, Labus J, Kilpatrick L, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 2013; 144(7): 1394-1401.e4, 1401.e1-1401.e4.
[http://dx.doi.org/10.1053/j.gastro.2013.02.043] [PMID: 23474283]
[52]
Tomasik J, Yolken RH, Bahn S, Dickerson FB. Immunomodulatory effects of probiotic supplementation in schizophrenia patients: A randomized, placebo-controlled trial. Biomark Insights 2015; 10: BMI.S22007.
[http://dx.doi.org/10.4137/BMI.S22007] [PMID: 26052224]
[53]
Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331(6015): 337-41. https://pubmed.ncbi.nlm.nih.gov/21205640/.
[54]
Kang JW, Zivkovic AM. The potential utility of prebiotics to modulate alzheimer’s disease: A review of the evidence. Microorganisms 2021; 9(11): 2310.
[http://dx.doi.org/10.3390/microorganisms9112310] [PMID: 34835436]
[55]
Berti V, Murray J, Davies M, et al. Nutrient patterns and brain biomarkers of Alzheimer’s disease in cognitively normal individuals. J Nutr Health Aging 2015; 19(4): 413-23.
[http://dx.doi.org/10.1007/s12603-014-0534-0] [PMID: 25809805]
[56]
Mosconi L, Murray J, Davies M, et al. Nutrient intake and brain biomarkers of Alzheimer’s disease in at-risk cognitively normal individuals: A cross-sectional neuroimaging pilot study. BMJ Open 2014; 4(6): e004850.
[http://dx.doi.org/10.1136/bmjopen-2014-004850] [PMID: 24961717]
[57]
Stefani M, Rigacci S. Beneficial properties of natural phenols: Highlight on protection against pathological conditions associated with amyloid aggregation. Biofactors 2014; 40(5): 482-93.
[http://dx.doi.org/10.1002/biof.1171] [PMID: 24890399]
[58]
Rigacci S, Stefani M. Nutraceuticals and amyloid neurodegenerative diseases: A focus on natural phenols. Expert Rev Neurother 2015; 15(1): 41-52.
[http://dx.doi.org/10.1586/14737175.2015.986101] [PMID: 25418871]
[59]
Kobayashi H, Murata M, Kawanishi S, Oikawa S. Polyphenols with anti-amyloid β aggregation show potential risk of toxicity via pro-oxidant properties. Int J Mol Sci 2020; 21(10): 3561.
[http://dx.doi.org/10.3390/ijms21103561]
[60]
Rigacci S. Olive oil phenols as promising multi-targeting agents against alzheimer’s disease. Adv Exp Med Biol 2015; 863: 1-20.
[http://dx.doi.org/10.1007/978-3-319-18365-7_1] [PMID: 26092624]
[61]
Abuznait AH, Qosa H, Busnena BA, El Sayed KA, Kaddoumi A. Olive-oil-derived oleocanthal enhances β-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: in vitro and in vivo studies. ACS Chem Neurosci 2013; 4(6): 973-82.
[http://dx.doi.org/10.1021/cn400024q] [PMID: 23414128]
[62]
Qosa H, Abuasal BS, Romero IA, et al. Differences in amyloid-β clearance across mouse and human blood–brain barrier models: Kinetic analysis and mechanistic modeling. Neuropharmacology 2014; 79: 668-78.
[http://dx.doi.org/10.1016/j.neuropharm.2014.01.023] [PMID: 24467845]
[63]
Maïza A, Chantepie S, Vera C, et al. The role of heparan sulfates in protein aggregation and their potential impact on neurodegeneration. FEBS Lett 2018; 592(23): 3806-18.
[http://dx.doi.org/10.1002/1873-3468.13082] [PMID: 29729013]
[64]
Fernando WMADB, Martins IJ, Goozee KG, Brennan CS, Jayasena V, Martins RN. The role of dietary coconut for the prevention and treatment of Alzheimer’s disease: Potential mechanisms of action. Br J Nutr 2015; 114(1): 1-14.
[http://dx.doi.org/10.1017/S0007114515001452] [PMID: 25997382]
[65]
Laparra JM, Sanz Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 2010; 61(3): 219-25.
[http://dx.doi.org/10.1016/j.phrs.2009.11.001] [PMID: 19914380]
[66]
Lee HC, Jenner AM, Low CS, Lee YK. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 2006; 157(9): 876-84.
[http://dx.doi.org/10.1016/j.resmic.2006.07.004] [PMID: 16962743]
[67]
Merkle DL, Cheng C-H, Castellino FJ, Chibber BAK. Modulation of fibrin assembly and polymerization by the?? -amyloid of Alzheimer??s disease. Blood Coagul Fibrinolysis 1996; 7(6): 650-8.
[http://dx.doi.org/10.1097/00001721-199609000-00011] [PMID: 8899155]
[68]
Zamolodchikov D, Strickland S. Aβ delays fibrin clot lysis by altering fibrin structure and attenuating plasminogen binding to fibrin. Blood 2012; 119(14): 3342-51.
[http://dx.doi.org/10.1182/blood-2011-11-389668] [PMID: 22238323]
[69]
Lipinski B, Pretorius E. The role of iron-induced fibrin in the pathogenesis of Alzheimer’s disease and the protective role of magnesium. Front Hum Neurosci 2013; 7(OCT): 735.
[http://dx.doi.org/10.3389/fnhum.2013.00735] [PMID: 24194714]
[70]
Rebolledo-Mendez JD, Vaishnav RA, Cooper NG, Friedland RP. Cross-kingdom sequence similarities between human micro-RNAs and plant viruses. Commun Integr Biol 2013; 6(5): e24951.
[http://dx.doi.org/10.4161/cib.24951]
[71]
Cheng L, Quek CYJ, Sun X, Bellingham SA, Hill AF. The detection of microRNA associated with Alzheimer’s disease in biological fluids using next-generation sequencing technologies. Front Genet 2013; 4(AUG): 150.
[http://dx.doi.org/10.3389/fgene.2013.00150] [PMID: 23964286]
[72]
Rutsch A, Kantsjö JB, Ronchi F. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Front Immunol 2020; 11: 604179.
[http://dx.doi.org/10.3389/fimmu.2020.604179] [PMID: 33362788]
[73]
Francisco ÉC, Franco TT, Wagner R, Jacob-Lopes E. Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria. Bioprocess Biosyst Eng 2014; 37(8): 1497-505.
[http://dx.doi.org/10.1007/s00449-013-1121-1] [PMID: 24445336]
[74]
Thomson P, Medina DA, Garrido D. Human milk oligosaccharides and infant gut bifidobacteria: Molecular strategies for their utilization. Food Microbiol 2018; 75: 37-46.
[http://dx.doi.org/10.1016/j.fm.2017.09.001] [PMID: 30056961]
[75]
Xiao S, Chan P, Wang T, et al. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimers Res Ther 2021; 13(1): 62.
[http://dx.doi.org/10.1186/s13195-021-00795-7] [PMID: 33731209]
[76]
Wang J, Lei X, Xie Z, et al. CA-30, an oligosaccharide fraction derived from Liuwei Dihuang decoction, ameliorates cognitive deterioration via the intestinal microbiome in the senescence-accelerated mouse prone 8 strain. Aging 2019; 11(11): 3463-86.
[http://dx.doi.org/10.18632/aging.101990] [PMID: 31160541]
[77]
Arora K, Green M, Prakash S. The microbiome and alzheimer's disease: Potential and limitations of prebiotic, synbiotic, and probiotic formulations. Front Bioeng Biotechnol 2020; 8: 537847.
[78]
Lee HJ, Lee KE, Kim JK, Kim DH. Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice. Sci Rep 2019; 9(1): 11814.
[http://dx.doi.org/10.1038/s41598-019-48342-7] [PMID: 31413350]
[79]
Yang X, Yu D, Xue L, Li H, Du J. Probiotics modulate the microbiota–gut–brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm Sin B 2020; 10(3): 475-87.
[http://dx.doi.org/10.1016/j.apsb.2019.07.001] [PMID: 32140393]
[80]
Sun J, Xu J, Yang B, et al. Effect of Clostridium butyricum against Microglia‐Mediated Neuroinflammation in Alzheimer’s Disease via Regulating Gut Microbiota and Metabolites Butyrate. Mol Nutr Food Res 2020; 64(2): 1900636.
[http://dx.doi.org/10.1002/mnfr.201900636] [PMID: 31835282]
[81]
Tran N, Zhebrak M, Yacoub C, Pelletier J, Hawley D. The gut-brain relationship: Investigating the effect of multispecies probiotics on anxiety in a randomized placebo-controlled trial of healthy young adults. J Affect Disord 2019; 252: 271-7.
[http://dx.doi.org/10.1016/j.jad.2019.04.043] [PMID: 30991255]
[82]
van den Brink AC, Brouwer-Brolsma EM, Berendsen AAM, van de Rest O. The mediterranean, dietary approaches to stop hypertension (DASH), and mediterranean-DASH intervention for neurodegenerative delay (MIND) diets are associated with less cognitive decline and a lower risk of alzheimer’s disease—A review. Adv Nutr 2019; 10(6): 1040-65.
[http://dx.doi.org/10.1093/advances/nmz054] [PMID: 31209456]
[83]
Sun J, Liu S, Ling Z, et al. Fructooligosaccharides ameliorating cognitive deficits and neurodegeneration in APP/PS1 transgenic mice through modulating gut microbiota. J Agric Food Chem 2019; 67(10): 3006-17.
[http://dx.doi.org/10.1021/acs.jafc.8b07313] [PMID: 30816709]
[84]
Yuan T, Chu C, Shi R, et al. ApoE-dependent protective effects of sesamol on high-fat diet-induced behavioral disorders: Regulation of the microbiome-gut–brain axis. J Agric Food Chem 2019; 67(22): 6190-201.
[http://dx.doi.org/10.1021/acs.jafc.9b01436] [PMID: 31117496]
[85]
Tan FHP, Liu G, Lau SYA, et al. Lactobacillus probiotics improved the gut microbiota profile of a Drosophila melanogaster Alzheimer’s disease model and alleviated neurodegeneration in the eye. Benef Microbes 2020; 11(1): 79-90.
[http://dx.doi.org/10.3920/BM2019.0086] [PMID: 32066253]
[86]
Kim CS, Cha L, Sim M, et al. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: A randomized, double-blind, placebo-controlled, multicenter trial. J Gerontol A Biol Sci Med Sci 2021; 76(1): 32-40.
[http://dx.doi.org/10.1093/gerona/glaa090] [PMID: 32300799]
[87]
Westfall S, Lomis N, Prakash S. A novel synbiotic delays Alzheimer’s disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster. PLoS One 2019; 14(4): e0214985.
[http://dx.doi.org/10.1371/journal.pone.0214985] [PMID: 31009489]
[88]
Ma D, Wang AC, Parikh I, Green SJ, Hoffman JD, Chlipala G, et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep 2018; 8(1): 6670.
[http://dx.doi.org/10.1038/s41598-018-25190-5]
[89]
Neth BJ, Mintz A, Whitlow C, et al. Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer’s disease: A pilot study. Neurobiol Aging 2020; 86: 54-63.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.09.015] [PMID: 31757576]
[90]
Syeda T, Sanchez-Tapia M, Pinedo-Vargas L, et al. Bioactive food abates metabolic and synaptic alterations by modulation of gut microbiota in a mouse model of alzheimer’s disease. J Alzheimers Dis 2018; 66(4): 1657-82.
[http://dx.doi.org/10.3233/JAD-180556] [PMID: 30475761]
[91]
Wang D, Ho L, Faith J, et al. Role of intestinal microbiota in the generation of polyphenol‐derived phenolic acid mediated attenuation of Alzheimer’s disease β‐amyloid oligomerization. Mol Nutr Food Res 2015; 59(6): 1025-40.
[http://dx.doi.org/10.1002/mnfr.201400544] [PMID: 25689033]
[92]
Hoffman JD, Yanckello LM, Chlipala G, et al. Dietary inulin alters the gut microbiome, enhances systemic metabolism and reduces neuroinflammation in an APOE4 mouse model. PLoS One 2019; 14(8): e0221828.
[http://dx.doi.org/10.1371/journal.pone.0221828] [PMID: 31461505]
[93]
Itzhaki RF, Lathe R, Balin BJ, et al. Microbes and Alzheimer’s Disease. J Alzheimers Dis 2016; 51(4): 979-84.
[http://dx.doi.org/10.3233/JAD-160152] [PMID: 26967229]
[94]
Stojković D, Kostić M, Smiljković M, et al. Linking antimicrobial potential of natural products derived from aquatic organisms and microbes involved in alzheimer’s disease - A review. Curr Med Chem 2020; 27(26): 4372-91.
[http://dx.doi.org/10.2174/0929867325666180309103645] [PMID: 29521212]
[95]
Lim C, Hammond CJ, Hingley ST, Balin BJ. Chlamydia pneumoniae infection of monocytes in vitro stimulates innate and adaptive immune responses relevant to those in Alzheimer’s disease. J Neuroinflammation 2014; 11(1): 217.
[http://dx.doi.org/10.1186/s12974-014-0217-0] [PMID: 25540075]
[96]
Vogt NM, Romano KA, Darst BF, et al. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimers Res Ther 2018; 10(1): 124.
[http://dx.doi.org/10.1186/s13195-018-0451-2] [PMID: 30579367]
[97]
Zhang L, Wang Y, Xiayu X, et al. Altered gut microbiota in a mouse model of alzheimer’s disease. J Alzheimers Dis 2017; 60(4): 1241-57.
[http://dx.doi.org/10.3233/JAD-170020] [PMID: 29036812]
[98]
Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci 2014; 124(5): 307-21.
[http://dx.doi.org/10.3109/00207454.2013.833510] [PMID: 23930978]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy