Generic placeholder image

Current Signal Transduction Therapy

Editor-in-Chief

ISSN (Print): 1574-3624
ISSN (Online): 2212-389X

Review Article

Functional Roles of Long Non-coding RNAs on Stem Cell-related Pathways in Glioblastoma

Author(s): Arya Moftakhar, Seyed Esmaeil Khoshnam, Maryam Farzaneh* and Mahrokh Abouali Gale Dari*

Volume 19, Issue 3, 2024

Published on: 03 July, 2024

Article ID: e030724231570 Pages: 13

DOI: 10.2174/0115743624311471240703071345

Price: $65

Abstract

Long non-coding RNAs (lncRNAs), characterized by their length exceeding 200 nucleotides and lack of protein-coding capacity, are intricately associated with a wide array of cellular processes, encompassing cell invasion, differentiation, proliferation, migration, apoptosis, and regeneration. Perturbations in lncRNA expression have been observed in numerous diseases and have emerged as pivotal players in the pathogenesis of diverse tumor types. Glioblastoma, a highly malignant primary tumor of the central nervous system (CNS), remains a formidable challenge even with the advent of novel therapeutic interventions, as primary glioblastomas invariably exhibit therapy resistance and aggressive behavior. Glioblastomas can arise from progenitor cells or neuroglial stem cells, revealing profound cellular heterogeneity, notably in the form of glioblastoma stem cells (GSCs) possessing stem-like properties. Glioblastomas comprise neural precursors that harbor essential characteristics of neural stem cells (NSCs). Several signaling pathways have been implicated in the regulation of self-renewal in both cancer cells and stem cells. In addition to their involvement in therapy resistance and survival of glioblastoma, lncRNAs are implicated in the modulation of GSC behaviors through diverse pathways and the intricate regulation of various genes and proteins. This review aims to comprehensively discuss the interplay between lncRNAs, their associated pathways, and GSCs, shedding light on their potential implications in glioblastoma.

[1]
Grochans S, Cybulska AM, Simińska D, et al. Epidemiology of glioblastoma multiforme–literature review. Cancers 2022; 14(10): 2412.
[http://dx.doi.org/10.3390/cancers14102412] [PMID: 35626018]
[2]
Todeschi J, Dannhoff G, Chibbaro S, et al. Second cancer affecting the central nervous system: Systematic literature review exploring the link between malignant melanoma and glioblastoma. World Neurosurg 2023; 179: 178-84.
[http://dx.doi.org/10.1016/j.wneu.2023.08.073 ] [PMID: 37625631]
[3]
Shi S, Ren H, Xie Y, Yu M, Chen Y, Yang L. Engineering advanced nanomedicines against central nervous system diseases. Mater Today 2023; 69: 355-92.
[http://dx.doi.org/10.1016/j.mattod.2023.08.005]
[4]
El Khayari A, Bouchmaa N, Taib B, Wei Z, Zeng A, El Fatimy R. Metabolic rewiring in glioblastoma cancer: EGFR, IDH and beyond. Front Oncol 2022; 12: 901951.
[http://dx.doi.org/10.3389/fonc.2022.901951 ] [PMID: 35912242]
[5]
Hashemi M, Etemad S, Rezaei S, et al. Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother 2023; 158: 114204.
[http://dx.doi.org/10.1016/j.biopha.2022.114204 ] [PMID: 36916430]
[6]
Alhaddad L, Chuprov-Netochin R, Pustovalova M, Osipov AN, Leonov S. Polyploid/Multinucleated giant and slow-cycling cancer cell enrichment in response to X-ray irradiation of human glioblastoma multiforme cells differing in radioresistance and TP53/PTEN status. Int J Mol Sci 2023; 24(2): 1228.
[http://dx.doi.org/10.3390/ijms24021228 ] [PMID: 36674747]
[7]
Sun X, Klingbeil O, Lu B, et al. BRD8 maintains glioblastoma by epigenetic reprogramming of the p53 network. Nature 2023; 613(7942): 195-202.
[http://dx.doi.org/10.1038/s41586-022-05551-x ] [PMID: 36544023]
[8]
Cetintas VB, Duzgun Z, Akalin T, et al. Molecular dynamic simulation and functional analysis of pathogenic PTEN mutations in glioblastoma. J Biomol Struct Dyn 2023; 41(21): 11471-83.
[http://dx.doi.org/10.1080/07391102.2022.2162582 ] [PMID: 36591942]
[9]
Huang W, Li J, Zhu H, et al. A novel EGFR variant EGFRx maintains glioblastoma stem cells through STAT5. Neuro-oncol 2024; 26(1): 85-99.
[http://dx.doi.org/10.1093/neuonc/noad153 ] [PMID: 37616578]
[10]
Maddison K, Bowden NA, Graves MC, Tooney PA. Characteristics of vasculogenic mimicry and tumour to endothelial transdifferentiation in human glioblastoma: a systematic review. BMC Cancer 2023; 23(1): 185.
[http://dx.doi.org/10.1186/s12885-023-10659-y ] [PMID: 36823554]
[11]
Kou F, Wu L, Ren X, Yang L. Chromosome abnormalities: new insights into their clinical significance in cancer. Mol Ther Oncolytics 2020; 17: 562-70.
[http://dx.doi.org/10.1016/j.omto.2020.05.010 ] [PMID: 32637574]
[12]
Mack SC, Bertrand KC. A Molecular Blueprint to Targeting ALK Gene Fusions in Glioblastoma. Clin Cancer Res 2023; 29(14): 2567-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-23-0472 ] [PMID: 37260294]
[13]
Eisenbarth D, Wang YA. Glioblastoma heterogeneity at single cell resolution. Oncogene 2023; 42(27): 2155-65.
[http://dx.doi.org/10.1038/s41388-023-02738-y ] [PMID: 37277603]
[14]
Chawla S, Bukhari S, Afridi OM, et al. Metabolic and physiologic magnetic resonance imaging in distinguishing true progression from pseudoprogression in patients with glioblastoma. NMR Biomed 2022; 35(7): e4719.
[http://dx.doi.org/10.1002/nbm.4719 ] [PMID: 35233862]
[15]
Martucci M, Russo R, Giordano C, et al. Advanced Magnetic Resonance Imaging in the Evaluation of Treated Glioblastoma: A Pictorial Essay. Cancers (Basel) 2023; 15(15): 3790.
[http://dx.doi.org/10.3390/cancers15153790 ] [PMID: 37568606]
[16]
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 2020; 70(4): 299-312.
[http://dx.doi.org/10.3322/caac.21613 ] [PMID: 32478924]
[17]
Nørøxe DS, Poulsen HS, Lassen U. Hallmarks of glioblastoma: a systematic review. ESMO Open 2016; 1(6): e000144.
[http://dx.doi.org/10.1136/esmoopen-2016-000144 ] [PMID: 28912963]
[18]
Delgado-Martín B, Medina MÁ. Advances in the knowledge of the molecular biology of glioblastoma and its impact in patient diagnosis, stratification, and treatment. Adv Sci (Weinh) 2020; 7(9): 1902971.
[http://dx.doi.org/10.1002/advs.201902971 ] [PMID: 32382477]
[19]
Prager BC, Bhargava S, Mahadev V, Hubert CG, Rich JN. Glioblastoma stem cells: driving resilience through chaos. Trends Cancer 2020; 6(3): 223-35.
[http://dx.doi.org/10.1016/j.trecan.2020.01.009 ] [PMID: 32101725]
[20]
Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis 2015; 2(2): 152-63.
[http://dx.doi.org/10.1016/j.gendis.2015.02.001 ] [PMID: 26137500]
[21]
Reimunde P, Pensado-López A, Carreira Crende M, et al. Cellular and Molecular Mechanisms Underlying Glioblastoma and Zebrafish Models for the Discovery of New Treatments. Cancers (Basel) 2021; 13(5): 1087.
[http://dx.doi.org/10.3390/cancers13051087 ] [PMID: 33802571]
[22]
Guan R, Zhang X, Guo M. Glioblastoma stem cells and Wnt signaling pathway: molecular mechanisms and therapeutic targets. Chinese Neurosurgical Journal 2020; 6(1): 25.
[http://dx.doi.org/10.1186/s41016-020-00207-z ] [PMID: 32922954]
[23]
Yao Y, Ma J, Xue Y, et al. Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152. Cancer Lett 2015; 359(1): 75-86.
[http://dx.doi.org/10.1016/j.canlet.2014.12.051 ] [PMID: 25578780]
[24]
Zhang X, Kiang K, Zhang G, Leung G. Long non-coding RNAs dysregulation and function in glioblastoma stem cells. Noncoding RNA 2015; 1(1): 69-86.
[http://dx.doi.org/10.3390/ncrna1010069 ] [PMID: 29861416]
[25]
Rajabi A, Kayedi M, Rahimi S, et al. Non-coding RNAs and glioma: Focus on cancer stem cells. Mol Ther Oncolytics 2022; 27: 100-23.
[http://dx.doi.org/10.1016/j.omto.2022.09.005 ] [PMID: 36321132]
[26]
De Dominicis C. Molecular expression and characterisation of non-coding RNA in tumor growth and invasiveness of glioblastoma stem-like cells Doctoral thesis, Sapienza University of Rome 2023.
[27]
Mnatsakanyan H, Pechdimaljian C, Jha R, et al. CSIG-17. SCD5 protects glioblastoma stem cells from death and differentiation by modulating intracellular lipid composition. Neuro-oncol 2022; 24 (Suppl. 7): vii42-2.
[http://dx.doi.org/10.1093/neuonc/noac209.166]
[28]
Sonawala K, Ramalingam S, Sellamuthu I. Influence of Long Non-Coding RNA in the Regulation of Cancer Stem Cell Signaling Pathways. Cells 2022; 11(21): 3492.
[http://dx.doi.org/10.3390/cells11213492 ] [PMID: 36359888]
[29]
Shahcheraghi SH, Asl ER, Lotfi M, Ayatollahi J, Khaleghinejad SH, Aljabali AA. Non-coding RNAs as Key Regulators of the Notch Signaling Pathway in Glioblastoma: Diagnostic, Prognostic, and Therapeutic Targets. CNS Neurol Disord Drug Targets 2024; Jan 24.
[30]
Stackhouse CT, Gillespie GY, Willey CD. Exploring the roles of lncRNAs in GBM pathophysiology and their therapeutic potential. Cells 2020; 9(11): 2369.
[http://dx.doi.org/10.3390/cells9112369 ] [PMID: 33126510]
[31]
Wang L, He Z. Functional Roles of Long Non-Coding RNAs (LncRNAs) in Glioma Stem Cells. Med Sci Monit 2019; 25: 7567-73.
[http://dx.doi.org/10.12659/MSM.916040 ] [PMID: 31593561]
[32]
Xue W, Zheng Y, Shen Z, et al. Involvement of long non‐coding RNAs in the progression of esophageal cancer. Cancer Commun (Lond) 2021; 41(5): 371-88.
[http://dx.doi.org/10.1002/cac2.12146 ] [PMID: 33605567]
[33]
Liu H, Wan J, Chu J. Long non-coding RNAs and endometrial cancer. Biomed Pharmacother 2019; 119: 109396.
[http://dx.doi.org/10.1016/j.biopha.2019.109396 ] [PMID: 31505425]
[34]
Amrovani M, Mohammadtaghizadeh M, Aghaali MK, Zamanifard S, Alqasi A, Sanei M. Long Non-coding RNAs: Potential Players in Cardiotoxicity Induced by Chemotherapy Drugs. Cardiovasc Toxicol 2022; 22(3): 191-206.
[http://dx.doi.org/10.1007/s12012-021-09681-y ] [PMID: 34417760]
[35]
Fontanini M, Cabiati M, Giacomarra M, Federico G, Del Ry S. Long Non-Coding RNAs and Obesity: New Potential Pathogenic Biomarkers. Curr Pharm Des 2022; 28(19): 1592-605.
[http://dx.doi.org/10.2174/1381612828666220211153304 ] [PMID: 35152861]
[36]
Gysens F, Mestdagh P, de Bony de Lavergne E, Maes T. Unlocking the secrets of long non-coding RNAs in asthma. Thorax 2022; 77(5): 514-22.
[http://dx.doi.org/10.1136/thoraxjnl-2021-218359 ] [PMID: 35246486]
[37]
Okuyan HM, Begen MA. LncRNAs in Osteoarthritis. Clin Chim Acta 2022; 532: 145-63.
[http://dx.doi.org/10.1016/j.cca.2022.05.030 ] [PMID: 35667478]
[38]
Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol 2021; 220(2): e202009045.
[http://dx.doi.org/10.1083/jcb.202009045 ] [PMID: 33464299]
[39]
Baruah C, Nath P, Barah P. LncRNAs in neuropsychiatric disorders and computational insights for their prediction. Mol Biol Rep 2022; 49(12): 11515-34.
[http://dx.doi.org/10.1007/s11033-022-07819-x ] [PMID: 36097122]
[40]
Andersen RE, Lim DA. Forging our understanding of lncRNAs in the brain. Cell Tissue Res 2018; 371(1): 55-71.
[http://dx.doi.org/10.1007/s00441-017-2711-z ] [PMID: 29079882]
[41]
Yu X, Zheng H, Tse G, Chan MTV, Wu WKK. Long non‐coding RNAs in melanoma. Cell Prolif 2018; 51(4): e12457.
[http://dx.doi.org/10.1111/cpr.12457 ] [PMID: 29582492]
[42]
Zhang S, Meng Y, Zhou L, et al. Targeting epigenetic regulators for inflammation: Mechanisms and intervention therapy. MedComm 2022; 3(4): e173.
[http://dx.doi.org/10.1002/mco2.173 ] [PMID: 36176733]
[43]
Vasudeva K, Dutta A, Munshi A. Role of lncRNAs in the Development of Ischemic Stroke and Their Therapeutic Potential. Mol Neurobiol 2021; 58(8): 3712-28.
[http://dx.doi.org/10.1007/s12035-021-02359-0 ] [PMID: 33818737]
[44]
Ashrafizadeh M, Rabiee N, Kumar AP, Sethi G, Zarrabi A, Wang Y. Long noncoding RNAs (lncRNAs) in pancreatic cancer progression. Drug Discov Today 2022; 27(8): 2181-98.
[http://dx.doi.org/10.1016/j.drudis.2022.05.012 ] [PMID: 35589014]
[45]
Trevisani F, Floris M, Vago R, Minnei R, Cinque A. Long Non-Coding RNAs as Novel Biomarkers in the Clinical Management of Papillary Renal Cell Carcinoma Patients: A Promise or a Pledge? Cells 2022; 11(10): 1658.
[http://dx.doi.org/10.3390/cells11101658 ] [PMID: 35626699]
[46]
Ding Y, Zhao J, Xu X, Zuo Q, Zhang Y, Jin K. Inhibition of autophagy maintains esc pluripotency and inhibits primordial germ cell formation in chickens. Stem Cells Int 2023; 2023: 4956871.
[http://dx.doi.org/10.1155/2023/4956871]
[47]
Eptaminitaki GC, Stellas D, Bonavida B, Baritaki S. Long non-coding RNAs (lncRNAs) signaling in cancer chemoresistance: From prediction to druggability. Drug Resist Updat 2022; 65: 100866.
[http://dx.doi.org/10.1016/j.drup.2022.100866 ] [PMID: 36198236]
[48]
Hashemipour M, Boroumand H, Mollazadeh S, et al. Exosomal microRNAs and exosomal long non-coding RNAs in gynecologic cancers. Gynecol Oncol 2021; 161(1): 314-27.
[http://dx.doi.org/10.1016/j.ygyno.2021.02.004 ] [PMID: 33581845]
[49]
Puvvula PK. LncRNAs Regulatory Networks in Cellular Senescence. Int J Mol Sci 2019; 20(11): 2615.
[http://dx.doi.org/10.3390/ijms20112615 ] [PMID: 31141943]
[50]
Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol 2013; 10(6): 924-33.
[http://dx.doi.org/10.4161/rna.24604 ] [PMID: 23696037]
[51]
Xu J, Yin Y, Lin Y, et al. Long non‐coding RNAs: Emerging roles in periodontitis. J Periodontal Res 2021; 56(5): 848-62.
[http://dx.doi.org/10.1111/jre.12910 ] [PMID: 34296758]
[52]
Yin X, Lin H, Lin L, Miao L, He J, Zhuo Z. LncRNAs and CircRNAs in cancer. MedComm 2022; 3(2): e141.
[http://dx.doi.org/10.1002/mco2.141 ] [PMID: 35592755]
[53]
Kobayashi T, Kageyama R. Lysosomes and signaling pathways for maintenance of quiescence in adult neural stem cells. FEBS J 2021; 288(10): 3082-93.
[http://dx.doi.org/10.1111/febs.15555 ] [PMID: 32902139]
[54]
Zhang M, Wang Y, Jiang L, et al. LncRNA CBR3-AS1 regulates of breast cancer drug sensitivity as a competing endogenous RNA through the JNK1/MEK4-mediated MAPK signal pathway. J Exp Clin Cancer Res 2021; 40(1): 41.
[http://dx.doi.org/10.1186/s13046-021-01844-7 ] [PMID: 33494806]
[55]
Cheng L, Hu S, Ma J, et al. Long noncoding RNA RP11-241J12.3 targeting pyruvate carboxylase promotes hepatocellular carcinoma aggressiveness by disrupting pyruvate metabolism and the DNA mismatch repair system. Molecular Biomedicine 2022; 3(1): 4.
[http://dx.doi.org/10.1186/s43556-021-00065-w ] [PMID: 35122182]
[56]
Najafi S, Khatami SH, Khorsand M, et al. Long non-coding RNAs (lncRNAs); roles in tumorigenesis and potentials as biomarkers in cancer diagnosis. Exp Cell Res 2022; 418(2): 113294.
[http://dx.doi.org/10.1016/j.yexcr.2022.113294 ] [PMID: 35870535]
[57]
Park EG, Pyo SJ, Cui Y, Yoon SH, Nam JW. Tumor immune microenvironment lncRNAs. Brief Bioinform 2022; 23(1): bbab504.
[http://dx.doi.org/10.1093/bib/bbab504 ] [PMID: 34891154]
[58]
Rathinasamy B, Velmurugan BK. Role of lncRNAs in the cancer development and progression and their regulation by various phytochemicals. Biomed Pharmacother 2018; 102: 242-8.
[http://dx.doi.org/10.1016/j.biopha.2018.03.077 ] [PMID: 29567536]
[59]
Ebrahimi N, Parkhideh S, Samizade S, et al. Crosstalk between lncRNAs in the apoptotic pathway and therapeutic targets in cancer. Cytokine Growth Factor Rev 2022; 65: 61-74.
[http://dx.doi.org/10.1016/j.cytogfr.2022.04.003 ] [PMID: 35597701]
[60]
Tan YT, Lin JF, Li T, Li JJ, Xu RH, Ju HQ. LncRNA‐mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun 2021; 41(2): 109-20.
[http://dx.doi.org/10.1002/cac2.12108 ] [PMID: 33119215]
[61]
Wu X, Yang L, Wang J, Hao Y, Wang C, Lu Z. The involvement of long non-coding RNAs in glioma: From early detection to immunotherapy. Front Immunol 2022; 13: 897754.
[http://dx.doi.org/10.3389/fimmu.2022.897754 ] [PMID: 35619711]
[62]
DeSouza PA, Qu X, Chen H, Patel B, Maher CA, Kim AH. Long, Noncoding RNA dysregulation in glioblastoma. Cancers 2021; 13(7): 1604.
[http://dx.doi.org/10.3390/cancers13071604 ] [PMID: 33807183]
[63]
Lin A, Hu Q, Li C, et al. The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol 2017; 19(3): 238-51.
[http://dx.doi.org/10.1038/ncb3473 ] [PMID: 28218907]
[64]
Xu CL, Sang B, Liu GZ, et al. SENEBLOC, a long non-coding RNA suppresses senescence via p53-dependent and independent mechanisms. Nucleic Acids Res 2020; 48(6): 3089-102.
[http://dx.doi.org/10.1093/nar/gkaa063 ] [PMID: 32030426]
[65]
Schertzer MD, Braceros KCA, Starmer J, et al. lncRNA-Induced Spread of Polycomb Controlled by Genome Architecture, RNA Abundance, and CpG Island DNA. Mol Cell 2019; 75(3): 523-537.e10.
[http://dx.doi.org/10.1016/j.molcel.2019.05.028 ] [PMID: 31256989]
[66]
Kleaveland B, Shi CY, Stefano J, Bartel DP. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 2018; 174(2): 350-362.e17.
[http://dx.doi.org/10.1016/j.cell.2018.05.022 ] [PMID: 29887379]
[67]
Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5(1): 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5 ] [PMID: 32296030]
[68]
Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci 2019; 234: 116781.
[http://dx.doi.org/10.1016/j.lfs.2019.116781 ] [PMID: 31430455]
[69]
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859): 105-11.
[http://dx.doi.org/10.1038/35102167 ] [PMID: 11689955]
[70]
Lu X, Kang Y. Cell fusion hypothesis of the cancer stem cell. Adv Exp Med Biol 2011; 950: 129-40.
[http://dx.doi.org/10.1007/978-94-007-0782-5_6 ] [PMID: 21506011]
[71]
Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CLL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev 2015; 29(12): 1203-17.
[http://dx.doi.org/10.1101/gad.261982.115 ] [PMID: 26109046]
[72]
Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 2005; 45(8): 872-7.
[http://dx.doi.org/10.1177/0091270005276905 ] [PMID: 16027397]
[73]
Hemmings C. The elaboration of a critical framework for understanding cancer: the cancer stem cell hypothesis. Pathology 2010; 42(2): 105-12.
[http://dx.doi.org/10.3109/00313020903488773 ] [PMID: 20085510]
[74]
Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature 2004; 432(7015): 396-401.
[http://dx.doi.org/10.1038/nature03128 ] [PMID: 15549107]
[75]
Read TA, Hegedus B, Wechsler-Reya R, Gutmann DH. The neurobiology of neurooncology. Ann Neurol 2006; 60(1): 3-11.
[http://dx.doi.org/10.1002/ana.20912 ] [PMID: 16802285]
[76]
Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007; 17(2): 165-72.
[http://dx.doi.org/10.1016/j.cub.2006.11.033 ] [PMID: 17196391]
[77]
Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64(19): 7011-21.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1364 ] [PMID: 15466194]
[78]
Zaidi HA, Kosztowski T, DiMeco F, Quiñones-Hinojosa A. Origins and clinical implications of the brain tumor stem cell hypothesis. J Neurooncol 2009; 93(1): 49-60.
[http://dx.doi.org/10.1007/s11060-009-9856-x ] [PMID: 19430882]
[79]
Elder GA, De Gasperi R, Gama Sosa MA. Research update: neurogenesis in adult brain and neuropsychiatric disorders. Mt Sinai J Med 2006; 73(7): 931-40.
[PMID: 17195878]
[80]
Andreotti JP, Silva WN, Costa AC, et al. Neural stem cell niche heterogeneity. Semin Cell Dev Biol 2019; 95: 42-53.
[http://dx.doi.org/10.1016/j.semcdb.2019.01.005 ] [PMID: 30639325]
[81]
Boese AC, Le QSE, Pham D, Hamblin MH, Lee JP. Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Res Ther 2018; 9(1): 154.
[http://dx.doi.org/10.1186/s13287-018-0913-2 ] [PMID: 29895321]
[82]
Huang L, Zhang L. Neural stem cell therapies and hypoxic-ischemic brain injury. Prog Neurobiol 2019; 173: 1-17.
[http://dx.doi.org/10.1016/j.pneurobio.2018.05.004 ] [PMID: 29758244]
[83]
Grochowski C, Radzikowska E, Maciejewski R. Neural stem cell therapy—Brief review. Clin Neurol Neurosurg 2018; 173: 8-14.
[http://dx.doi.org/10.1016/j.clineuro.2018.07.013 ] [PMID: 30053745]
[84]
Götz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol 2005; 6(10): 777-88.
[http://dx.doi.org/10.1038/nrm1739 ] [PMID: 16314867]
[85]
Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 2004; 7(2): 136-44.
[http://dx.doi.org/10.1038/nn1172 ] [PMID: 14703572]
[86]
Noctor SC, Martínez-Cerdeño V, Kriegstein AR. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 2008; 508(1): 28-44.
[http://dx.doi.org/10.1002/cne.21669 ] [PMID: 18288691]
[87]
Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965; 124(3): 319-35.
[http://dx.doi.org/10.1002/cne.901240303 ] [PMID: 5861717]
[88]
Sorrells SF, Paredes MF, Cebrian-Silla A, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 2018; 555(7696): 377-81.
[http://dx.doi.org/10.1038/nature25975 ] [PMID: 29513649]
[89]
Zhang Y, Cruickshanks N, Pahuski M, Yuan F, Dutta A, Schiff D. Noncoding RNAs in Glioblastoma. In: Glioblastoma. Codon Publications 2017.
[http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch6]
[90]
Li Q, Jia H, Li H, Dong C, Wang Y, Zou Z. LncRNA and mRNA expression profiles of glioblastoma multiforme (GBM) reveal the potential roles of lncRNAs in GBM pathogenesis. Tumour Biol 2016; 37(11): 14537-52.
[http://dx.doi.org/10.1007/s13277-016-5299-0 ] [PMID: 27604987]
[91]
Zhang K, Li Q, Kang X, Wang Y, Wang S. Identification and functional characterization of lncRNAs acting as ceRNA involved in the malignant progression of glioblastoma multiforme. Oncol Rep 2016; 36(5): 2911-25.
[http://dx.doi.org/10.3892/or.2016.5070 ] [PMID: 27600337]
[92]
Zhang H, Zhang N, Wu W, et al. Machine learning-based tumor-infiltrating immune cell-associated lncRNAs for predicting prognosis and immunotherapy response in patients with glioblastoma. Brief Bioinform 2022; 23(6): bbac386.
[http://dx.doi.org/10.1093/bib/bbac386 ] [PMID: 36136350]
[93]
Zhong L, Liu P, Fan J, Luo Y. Long non-coding RNA H19: Physiological functions and involvements in central nervous system disorders. Neurochem Int 2021; 148: 105072.
[http://dx.doi.org/10.1016/j.neuint.2021.105072 ] [PMID: 34058282]
[94]
Amit D, Matouk IJ, Lavon I, et al. Transcriptional targeting of glioblastoma by diphtheria toxin-A driven by both H19 and IGF2-P4 promoters. Int J Clin Exp Med 2012; 5(2): 124-35.
[PMID: 22567173]
[95]
Li W, Jiang P, Sun X, Xu S, Ma X, Zhan R. Suppressing H19 Modulates Tumorigenicity and Stemness in U251 and U87MG Glioma Cells. Cell Mol Neurobiol 2016; 36(8): 1219-27.
[http://dx.doi.org/10.1007/s10571-015-0320-5 ] [PMID: 26983719]
[96]
Gong M, Wang X, Mu L, et al. Steroid receptor coactivator‐1 enhances the stemness of glioblastoma by activating long noncoding RNA XIST/miR‐152/KLF4 pathway. Cancer Sci 2021; 112(2): 604-18.
[http://dx.doi.org/10.1111/cas.14685 ] [PMID: 33090636]
[97]
Buccarelli M, Lulli V, Giuliani A, et al. Deregulated expression of the imprinted DLK1-DIO3 region in glioblastoma stemlike cells: tumor suppressor role of lncRNA MEG3. Neuro-oncol 2020; 22(12): 1771-84.
[http://dx.doi.org/10.1093/neuonc/noaa127 ] [PMID: 32459347]
[98]
Mazor G, Levin L, Picard D, et al. The lncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Cell Death Dis 2019; 10(3): 246.
[http://dx.doi.org/10.1038/s41419-019-1477-5 ] [PMID: 30867410]
[99]
Zhen L, Yun-hui L, Hong-yu D, Jun M, Yi-long Y. Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis. Tumour Biol 2016; 37(1): 673-83.
[http://dx.doi.org/10.1007/s13277-015-3843-y ] [PMID: 26242266]
[100]
Lulli V, Buccarelli M, Ilari R, et al. Mir-370-3p impairs glioblastoma stem-like cell malignancy regulating a complex interplay between HMGA2/HIF1A and the oncogenic long non-coding RNA (lncRNA) NEAT1. Int J Mol Sci 2020; 21(10): 21.
[http://dx.doi.org/10.3390/ijms21103610 ] [PMID: 32443824]
[101]
Yang X, Xiao Z, Du X, Huang L, Du G. Silencing of the long non-coding RNA NEAT1 suppresses glioma stem-like properties through modulation of the miR-107/CDK6 pathway. Oncol Rep 2017; 37(1): 555-62.
[http://dx.doi.org/10.3892/or.2016.5266 ] [PMID: 27878295]
[102]
Gong W, Zheng J, Liu X, Ma J, Liu Y, Xue Y. Knockdown of NEAT1 restrained the malignant progression of glioma stem cells by activating microRNA let-7e. Oncotarget 2016; 7(38): 62208-23.
[http://dx.doi.org/10.18632/oncotarget.11403 ] [PMID: 27556696]
[103]
Choudhry H, Albukhari A, Morotti M, et al. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene 2015; 34(34): 4482-90.
[http://dx.doi.org/10.1038/onc.2014.378 ] [PMID: 25417700]
[104]
Jiang P, Chen A, Wu X, et al. NEAT1 acts as an inducer of cancer stem cell‐like phenotypes in NSCLC by inhibiting EGCG‐upregulated CTR1. J Cell Physiol 2018; 233(6): 4852-63.
[http://dx.doi.org/10.1002/jcp.26288 ] [PMID: 29152741]
[105]
Dong P, Xiong Y, Yue J, et al. Long Non-coding RNA NEAT1: A Novel Target for Diagnosis and Therapy in Human Tumors. Front Genet 2018; 9: 471.
[http://dx.doi.org/10.3389/fgene.2018.00471 ] [PMID: 30374364]
[106]
Bi CL, Liu JF, Zhang MY, Lan S, Yang ZY, Fang JS. LncRNA NEAT1 promotes malignant phenotypes and TMZ resistance in glioblastoma stem cells by regulating let-7g-5p/MAP3K1 axis. Biosci Rep 2020; 40(10): BSR20201111.
[http://dx.doi.org/10.1042/BSR20201111 ] [PMID: 33057597]
[107]
Mineo M, Ricklefs F, Rooj AK, et al. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches. Cell Rep 2016; 15(11): 2500-9.
[http://dx.doi.org/10.1016/j.celrep.2016.05.018 ] [PMID: 27264189]
[108]
Han M, Wang S, Fritah S, et al. Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling. Brain 2020; 143(2): 512-30.
[http://dx.doi.org/10.1093/brain/awz406 ] [PMID: 31891366]
[109]
Kim SS, Harford JB, Moghe M, Rait A, Pirollo KF, Chang EH. Targeted nanocomplex carrying siRNA against MALAT1 sensitizes glioblastoma to temozolomide. Nucleic Acids Res 2018; 46(3): 1424-40.
[http://dx.doi.org/10.1093/nar/gkx1221 ] [PMID: 29202181]
[110]
Wang S, Guo X, Lv W, et al. LncRNA RPSAP52 Upregulates TGF-β1 to Increase Cancer Cell Stemness and Predict Postoperative Survival in Glioblastoma. Cancer Manag Res 2020; 12: 2541-7.
[http://dx.doi.org/10.2147/CMAR.S227496 ] [PMID: 32368136]
[111]
Chen X, Sun YZ, Guan NN, et al. Computational models for lncRNA function prediction and functional similarity calculation. Brief Funct Genomics 2019; 18(1): 58-82.
[http://dx.doi.org/10.1093/bfgp/ely031 ] [PMID: 30247501]
[112]
Qian X, Zhao J, Yeung PY, Zhang QC, Kwok CK. Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem Sci 2019; 44(1): 33-52.
[http://dx.doi.org/10.1016/j.tibs.2018.09.012 ] [PMID: 30459069]
[113]
Ma H, Hao Y, Dong X, Gong Q, Chen J, Zhang J. Molecular mechanisms and function prediction of long noncoding RNA. =Sci World J 2012; 2012: 541786.
[http://dx.doi.org/10.1100/2012/541786]
[114]
Zhang S, Li Y, Xin S, et al. Insight into LncRNA- and CircRNA-mediated CeRNAs: Regulatory network and implications in nasopharyngeal carcinoma—A narrative literature review. Cancers 2022; 14(19): 4564.
[http://dx.doi.org/10.3390/cancers14194564 ] [PMID: 36230487]
[115]
Yang G, Lu X, Yuan L. LncRNA: A link between RNA and cancer. Biochimica et Biophysica Acta (BBA)-. Gene Regulatory Mechanisms 2014; 1839: 1097-109.
[116]
Yadav B, Pal S, Rubstov Y, et al. LncRNAs associated with glioblastoma: From transcriptional noise to novel regulators with a promising role in therapeutics. Mol Ther Nucleic Acids 2021; 24: 728-42.
[http://dx.doi.org/10.1016/j.omtn.2021.03.018 ] [PMID: 33996255]
[117]
Kansara S, Pandey V, Lobie PE, Sethi G, Garg M, Pandey AK. Mechanistic involvement of long non-coding RNAs in oncotherapeutics resistance in triple-negative breast cancer. Cells 2020; 9(6): 1511.
[http://dx.doi.org/10.3390/cells9061511 ] [PMID: 32575858]
[118]
Peng Y, Tang D, Zhao M, Kajiyama H, Kikkawa F, Kondo Y. Long non-coding RNA: A recently accentuated molecule in chemoresistance in cancer. Cancer Metastasis Rev 2020; 39(3): 825-35.
[http://dx.doi.org/10.1007/s10555-020-09910-w ] [PMID: 32594276]
[119]
He J, Zhu S, Liang X, et al. LncRNA as a multifunctional regulator in cancer multi-drug resistance. Mol Biol Rep 2021; 48(8): 1-15.
[http://dx.doi.org/10.1007/s11033-021-06603-7 ] [PMID: 34333735]
[120]
Ramos AD, Andersen RE, Liu SJ, et al. The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell 2015; 16(4): 439-47.
[http://dx.doi.org/10.1016/j.stem.2015.02.007 ] [PMID: 25800779]
[121]
Chen N, Zhao G, Yan X, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol 2018; 19(1): 218.
[http://dx.doi.org/10.1186/s13059-018-1594-y ] [PMID: 30537986]
[122]
Du Z, Jia L, Wang Y, et al. Combined RNA-seq and RAT-seq mapping of long noncoding RNAs in pluripotent reprogramming. Sci Data 2018; 5(1): 180255.
[http://dx.doi.org/10.1038/sdata.2018.255 ] [PMID: 30457566]
[123]
Zhang S, Wang Y, Jia L, et al. Profiling the long noncoding RNA interaction network in the regulatory elements of target genes by chromatin in situ reverse transcription sequencing. Genome Res 2019; 29(9): 1521-32.
[http://dx.doi.org/10.1101/gr.244996.118 ] [PMID: 31315906]
[124]
Cao M, Zhao J, Hu G. Genome-wide methods for investigating long noncoding RNAs. Biomed Pharmacother 2019; 111: 395-401.
[http://dx.doi.org/10.1016/j.biopha.2018.12.078 ] [PMID: 30594777]
[125]
Dey BK, Mueller AC, Dutta A. Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription 2014; 5(4): e944014.
[http://dx.doi.org/10.4161/21541272.2014.944014 ] [PMID: 25483404]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy