Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Optimizing Coreopsis tinctoria Flower Extraction and Inhibiting CML Activity: Box-Behnken Design

Author(s): Xinmei Chen*, Xinyu Zhou and Ya Gao

Volume 24, Issue 15, 2024

Published on: 24 June, 2024

Page: [1151 - 1158] Pages: 8

DOI: 10.2174/0118715206299886240620070011

Price: $65

Abstract

Background: Chronic myelogenous leukemia (CML) is an uncommon type of cancer of the bone marrow associated with high mortality. Although several effective therapies have been developed to reduce symptoms in patients with CML, many of these methods are associated with side effects. Coreopsis tinctoria Nutt. (C. tinctoria) is a natural medicinal material that possesses antioxidant and anticancer activities. Yet, its effect in treating leukemia has still not been fully explored.

Objective: To optimize the C. tinctoria flower extraction process and investigate whether these extracts can impair CML cell survival.

Methods: The extraction process of C. tinctoria was optimized by the Box-Behnken design response surface method. K562 cells were treated with different volumes (0, 10, 25, 50, and 100 μL) of C. tinctoria flower extracts. The effect of C. tinctoria extract on cell morphology and cell apoptosis was assessed by light microscopy, laser confocal microscopy, and flow cytometry.

Results: We established the following optimized C. tinctoria flower extraction conditions: temperature of 84.4 °C, extraction period of 10 mins, solid-liquid ratio of 1:65, and times 4. These conditions were applied for C. tinctoria flower extraction. Pre-incubation of extracts prepared under the aforementioned optimal conditions with K562 cells induced cell cytotoxicity and cell apoptosis.

Conclusion: C. tinctoria flower extracts exert obvious anti-leukemia effects in vitro and may be a potential drug candidate for leukemia treatment.

[1]
Whiteley, A.E.; Price, T.T.; Cantelli, G.; Sipkins, D.A. Leukaemia: a model metastatic disease. Nat. Rev. Cancer, 2021, 21(7), 461-475.
[http://dx.doi.org/10.1038/s41568-021-00355-z] [PMID: 33953370]
[2]
Jabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am. J. Hematol., 2020, 95(6), 691-709.
[http://dx.doi.org/10.1002/ajh.25792] [PMID: 32239758]
[3]
Zhao, P.; Zhong, Y.; Pan, P.; Zhang, S.; Tian, Y.; Zhang, J.; Yi, G.; Zhao, Z.; Wu, T. DNA self-assembly nanoflower reverse P-glycoprotein mediated drug resistance in chronic myelogenous leukemia therapy. Front. Bioeng. Biotechnol., 2023, 11, 1265199.
[http://dx.doi.org/10.3389/fbioe.2023.1265199]
[4]
Costa, A.; Scalzulli, E.; Carmosino, I.; Ielo, C.; Bisegna, M.L.; Martelli, M.; Breccia, M. Pharmacotherapeutic advances for chronic myelogenous leukemia: Beyond tyrosine kinase inhibitors. Expert Opin. Pharmacother., 2024, 25(2), 189-202.
[http://dx.doi.org/10.1080/14656566.2024.2331778] [PMID: 38488824]
[5]
Yohannan, B.; Omo-Ogboi, A.; Kachira, J.J.; Juneja, H. Hematologic complications after kidney and pancreas transplant in a patient with chronic myeloid leukemia. Cleve. Clin. J. Med., 2024, 91(3), 183-190.
[http://dx.doi.org/10.3949/ccjm.91a.23042] [PMID: 38429002]
[6]
Shen, J.; Hu, M.; Tan, W.; Ding, J.; Jiang, B.; Xu, L.; Hamulati, H.; He, C.; Sun, Y.; Xiao, P. Traditional uses, phytochemistry, pharmacology, and toxicology of Coreopsis tinctoria Nutt.: A review. J. Ethnopharmacol., 2021, 269, 113690.
[7]
Zhou, X.; Cheng, W.; Chen, X.; Wang, K. UPLC–quadrupole time‐of‐flight–tandem mass spectrometry combined with chemometrics and network pharmacology to differentiate Coreopsis tinctoria Nutt. Biomed. Chromatogr., 2024, 38(3), e5797.
[http://dx.doi.org/10.1002/bmc.5797] [PMID: 38084786]
[8]
Liang, Y.; Niu, H.; Ma, L.; Du, D.; Wen, L.; Xia, Q.; Huang, W. Eriodictyol 7-O-β-D glucopyranoside from Coreopsis tinctoria Nutt. ameliorates lipid disorders via protecting mitochondrial function and suppressing lipogenesis. Mol. Med. Rep., 2017, 16(2), 1298-1306.
[http://dx.doi.org/10.3892/mmr.2017.6743] [PMID: 28627652]
[9]
Cai, W.; Yu, L.; Zhang, Y.; Feng, L.; Kong, S.; Tan, H.; Xu, H.; Huang, C. Extracts of coreopsis tinctoria nutt. flower exhibit antidiabetic effects via the inhibition of α-glucosidase activity. J. Diabetes Res., 2016, 2016, 2340276.
[10]
Guo, H.; Yuan, Q.; Fu, Y.; Liu, W.; Su, Y.H.; Liu, H.; Wu, C.Y.; Zhao, L.; Zhang, Q.; Lin, D.R.; Chen, H.; Qin, W.; Wu, D.T. Extraction optimization and effects of extraction methods on the chemical structures and antioxidant activities of polysaccharides from snow chrysanthemum (Coreopsis Tinctoria). Polymers, 2019, 11(2), 215.
[http://dx.doi.org/10.3390/polym11020215] [PMID: 30960199]
[11]
Yao, L.; Li, J.; Li, L.; Li, X.; Zhang, R.; Zhang, Y.; Mao, X. Coreopsis tinctoria Nutt ameliorates high glucose-induced renal fibrosis and inflammation via the TGF-β1/SMADS/AMPK/NF-κB pathways. BMC Complement. Altern. Med., 2019, 19(1), 14.
[http://dx.doi.org/10.1186/s12906-018-2410-7] [PMID: 30630477]
[12]
Abdurehman, D.; Guoruoluo, Y.; Lu, X.; Li, J.; Abudulla, R.; Liu, G.; Xin, X.; Aisa, H.A. Optimization of preparation method of hepatoprotective active components from Coreopsis tinctoria Nutt. and its action mechanism in vivo. Biomed. Pharmacother., 2023, 167, 115590.
[13]
Ma, P.; Zhang, R.; Xu, L.; Liu, H.; Xiao, P. The neuroprotective effects of coreopsis tinctoria and its mechanism: Interpretation of network pharmacological and experimental data. Front. Pharmacol., 2021, 12, 791288.
[14]
Li, Y.; Yang, P.; Luo, Y.; Gao, B.; Sun, J.; Lu, W.; Liu, J.; Chen, P.; Zhang, Y.; Yu, L.L. Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chem., 2019, 286, 8-16.
[http://dx.doi.org/10.1016/j.foodchem.2019.02.013]
[15]
Zhang, M.; Zhao, N.; Xie, M.; Dong, D.; Chen, W.; He, Y.; Yan, D.; Fu, H.; Liang, X.; Zhou, L. Antioxidant properties of polyphenols from snow chrysanthemum (Coreopsis tinctoria) and the modulation on intestinal microflora in vitro. Pharm. Biol., 2022, 60(1), 1771-1780.
[http://dx.doi.org/10.1080/13880209.2022.2117386] [PMID: 36093612]
[16]
Yang, Y.; Sun, X.; Liu, J.; Kang, L.; Chen, S.; Ma, B.; Guo, B. Quantitative and qualitative analysis of flavonoids and phenolic acids in snow chrysanthemum (Coreopsis tinctoria Nutt.) by HPLC-DAD and UPLC-ESI-QTOF-MS. Molecules, 2016, 21(10), 1307.
[http://dx.doi.org/10.3390/molecules21101307] [PMID: 27706037]
[17]
Bermúdez-Bazán, M.; Estarrón-Espinosa, M.; Castillo-Herrera, G.A.; Escobedo-Reyes, A.; Urias-Silvas, J.E.; Lugo-Cervantes, E.; Gschaedler-Mathis, A. Agave angustifolia Haw. leaves as a potential source of bioactive compounds: Extraction optimization and extract characterization. Molecules, 2024, 29(5), 1137.
[http://dx.doi.org/10.3390/molecules29051137] [PMID: 38474649]
[18]
Jia, S.; Li, F.; Liu, Y.; Ren, H.; Gong, G.; Wang, Y.; Wu, S. Effects of extraction methods on the antioxidant activities of polysaccharides from Agaricus blazei Murrill. Int. J. Biol. Macromol., 2013, 62, 66-69.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.031]
[19]
Tienaho, J.; Fidelis, M.; Brännström, H.; Hellström, J.; Rudolfsson, M.; Kumar, D.A.; Liimatainen, J.; Kumar, A.; Kurkilahti, M.; Kilpeläinen, P. Valorizing assorted logging residues: Response surface methodology in the extraction optimization of a green norway spruce needle-rich fraction to obtain valuable bioactive compounds. ACS Sustain. Res. Manag., 2024, 1(2), 237-249.
[http://dx.doi.org/10.1021/acssusresmgt.3c00050] [PMID: 38414817]
[20]
Yang, L.; Zhang, F.; He, W.; Zhao, B.; Zhang, T.; Wang, S.; Zhou, L.; He, J. Extraction optimization and constituent analysis of total flavonoid from Hosta plantaginea (Lam.) Aschers flowers and its ameliorative effect on chronic prostatitis via inhibition of multiple inflammatory pathways in rats. J. Ethnopharmacol, 2024, 318(Pt A), 116922.
[21]
Hui, L.; Tao, Y.; Xinmin, M. Protective effect of effective components of coreopsis tinctoria nutt on retinopathy of db/db diabetic mice. Evid. Based Complement. Alternat. Med., 2021, 2021, 9948609.
[22]
Ghahramanloo, K.H.; Kamalidehghan, B.; Akbari Javar, H.; Teguh Widodo, R.; Majidzadeh, K.; Noordin, M.I. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction. Drug Des. Devel. Ther., 2017, 11, 2221-2226.
[23]
Jiang, B.; Le, L.; Liu, H.; Xu, L.; He, C.; Hu, K.; Peng, Y.; Xiao, P. Marein protects against methylglyoxal-induced apoptosis by activating the AMPK pathway in PC12 cells. Free Radic. Res., 2016, 50(11), 1173-1187.
[http://dx.doi.org/10.1080/10715762.2016.1222374] [PMID: 27596733]
[24]
Kianersi, F.; Abdollahi, M.R.; Mirzaie-asl, A.; Dastan, D.; Rasheed, F. Identification and tissue-specific expression of rutin biosynthetic pathway genes in Capparis spinosa elicited with salicylic acid and methyl jasmonate. Sci. Rep., 2020, 10(1), 8884.
[http://dx.doi.org/10.1038/s41598-020-65815-2] [PMID: 32483287]
[25]
Zhang, Y.; Shi, S.; Zhao, M.; Chai, X.; Tu, P. C14-polyacetylene glycosides from the capitula of Coreopsis tinctoria and its anti-inflammatory activity against COX-2. Fitoterapia, 2013, 87, 93-97.
[26]
Tian, Y.; Li, Y.; Li, F.; Zhi, Q.; Li, F.; Tang, Y.; Yang, Y.; Yin, R.; Ming, J. Protective effects of Coreopsis tinctoria flowers phenolic extract against D-galactosamine/lipopolysaccharide -induced acute liver injury by up-regulation of Nrf2, PPARα, and PPARγ. Food Chem. Toxicol., 2018, 121, 404-412.
[27]
Li, H.; Xu, G.; Wu, D.; Li, J.; Cui, J.; Liu, J. Effects of ethyl acetate extract from Coreopsis tinctoria on learning and memory impairment in D -galactose-induced aging mice and the underlying molecular mechanism. Food Funct., 2021, 12(6), 2531-2542.
[http://dx.doi.org/10.1039/D0FO03293J] [PMID: 33621295]
[28]
Yu, Q.; Chen, W.; Zhong, J.; Qing, D.; Yan, C. Structural elucidation of three novel oligosaccharides from Kunlun chrysanthemum flower tea and their bioactivities. Food Chem. Toxicol., 2021, 149, 112032.
[http://dx.doi.org/10.1016/j.fct.2021.112032]
[29]
Yao, X.; Gu, C.; Tian, L.; Wang, X.; Tang, H. Comparative study on the antioxidant activities of extracts of Coreopsis tinctoria flowering tops from Kunlun Mountains, Xinjiang, north-western China. Nat. Prod. Res., 2016, 30(4), 429-432.
[http://dx.doi.org/10.1080/14786419.2015.1015019] [PMID: 25776853]
[30]
Wu, D.T.; Yuan, Q.; Guo, H.; Fu, Y.; Li, F.; Wang, S.P.; Gan, R.Y. Dynamic changes of structural characteristics of snow chrysanthemum polysaccharides during in vitro digestion and fecal fermentation and related impacts on gut microbiota. Food Res. Int., 2021, 141, 109888.
[http://dx.doi.org/10.1016/j.foodres.2020.109888]
[31]
Li, Y.; Zhang, J.; Yan, C.; Chen, Q.; Xiang, C.; Zhang, Q.; Wang, X.; Jiang, K. Marein prevented LPS-induced osteoclastogenesis by regulating the NF-κB pathway In Vitro. J. Microbiol. Biotechnol., 2022, 32(2), 141-148.
[http://dx.doi.org/10.4014/jmb.2109.09033] [PMID: 35001005]
[32]
Baghban, N.; Khoradmehr, A.; Afshar, A.; Jafari, N.; Zendehboudi, T.; Rasekh, P.; Abolfathi, L.G.; Barmak, A.; Mohebbi, G.; Akmaral, B.; Askerovich, K.A.; Maratovich, M.N.; Azari, H.; Assadi, M.; Nabipour, I.; Tamadon, A. MRI tracking of marine proliferating cells in vivo using anti-oct4 antibody-conjugated iron nanoparticles for precision in regenerative medicine. Biosensors, 2023, 13(2), 268.
[http://dx.doi.org/10.3390/bios13020268] [PMID: 36832034]
[33]
Matutes, E.; Polliack, A. Morphological and immunophenotypic features of chronic lymphocytic leukemia. Rev. Clin. Exp. Hematol., 2000, 4(1), 22-47.
[http://dx.doi.org/10.1046/j.1468-0734.2000.00002.x] [PMID: 11486329]
[34]
Wufuer, Y.; Yang, X.; Guo, L.; Aximujiang, K.; Zhong, L.; Yunusi, K.; Wu, G. The antitumor effect and mechanism of total flavonoids from Coreopsis tinctoria nutt (snow chrysanthemum) on lung cancer using network pharmacology and molecular docking. Front. Pharmacol., 2022, 13, 761785.
[35]
Dias, T.; Liu, B.; Jones, P.; Houghton, P.J.; Mota-Filipe, H.; Paulo, A. Cytoprotective effect of Coreopsis tinctoria extracts and flavonoids on tBHP and cytokine-induced cell injury in pancreatic MIN6 cells. J. Ethnopharmacol., 2012, 139(2), 485-492.
[http://dx.doi.org/10.1016/j.jep.2011.11.038] [PMID: 22143153]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy