Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis and Biological Evaluation of Thiazole-based Fibroblast Growth Factor Receptor-1 Inhibitors

Author(s): Mohammad A. Khanfar*, Ibrahim M. Salman and Omar Z. Ameer

Volume 24, Issue 15, 2024

Published on: 21 June, 2024

Page: [1159 - 1165] Pages: 7

DOI: 10.2174/1871520622666220905141248

Price: $65

Abstract

Background: The Fibroblast Growth Factor Receptor-1 (FGFR-1) is a tyrosine kinase and a validated target for the treatment of different cancer types.

Objective: Design and synthesis of novel thiazole-based analogues of anticancer agents.

Methods: Series of 2-aryl-5-methylthiazole analogues linked to structurally variable basic heads were synthesized as novel anticancer agents. Developed compounds were tested for their cytotoxic activities against several cancer cell lines.

Results: Many analogues exhibited strong antiproliferative activities against breast cancer cell lines, with higher potency towards the highly metastatic form (MDA-MB-231). Pharmacophoric profiling using an in-house pharmacophore database identified FGFR-1 as a molecular target of active analogues. Synthesized compounds were bioassayed for their FGFR-1 inhibitory activities and many hits exhibited IC50 values in the low micromolar to nanomolar range.

Conclusion: The 2-aryl-5-methylthiazole linked to a basic head is a novel chemical scaffold of ATP-competitive inhibitor of FGFR-1 with potential therapeutic activities against different types of cancer.

Keywords: thiazole, anticancer, FGFR-1, pharmacophore, kinase

« Previous
[1]
Haugsten, E.M.; Wiedlocha, A.; Olsnes, S.; Wesche, J. Roles of fibroblast growth factor receptors in carcinogenesis. Mol. Cancer Res., 2010, 8(11), 1439-1452.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0168] [PMID: 21047773]
[2]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[3]
Beenken, A.; Mohammadi, M. The FGF family: Biology, pathophysiology and therapy. Nat. Rev. Drug Discov., 2009, 8(3), 235-253.
[http://dx.doi.org/10.1038/nrd2792] [PMID: 19247306]
[4]
Turner, N.; Grose, R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer, 2010, 10(2), 116-129.
[http://dx.doi.org/10.1038/nrc2780] [PMID: 20094046]
[5]
Korc, M.; Friesel, R. The role of fibroblast growth factors in tumor growth. Curr. Cancer Drug Targets, 2009, 9(5), 639-651.
[http://dx.doi.org/10.2174/156800909789057006] [PMID: 19508171]
[6]
Helsten, T.; Elkin, S.; Arthur, E.; Tomson, B.N.; Carter, J.; Kurzrock, R. The FGFR landscape in cancer: Analysis of 4,853 tumors by next-generation sequencing. Clin. Cancer Res., 2016, 22(1), 259-267.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3212] [PMID: 26373574]
[7]
Dai, S.; Zhou, Z.; Chen, Z.; Xu, G.; Chen, Y. Fibroblast Growth Factor Receptors (FGFRs): Structures and small molecule inhibitors. Cells, 2019, 8(6), 614.
[http://dx.doi.org/10.3390/cells8060614] [PMID: 31216761]
[8]
Motzer, R.J.; Porta, C.; Vogelzang, N.J.; Sternberg, C.N.; Szczylik, C.; Zolnierek, J.; Kollmannsberger, C.; Rha, S.Y.; Bjarnason, G.A.; Melichar, B.; De Giorgi, U.; Grünwald, V.; Davis, I.D.; Lee, J.L.; Esteban, E.; Urbanowitz, G.; Cai, C.; Squires, M.; Marker, M.; Shi, M.M.; Escudier, B. Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: An open-label, randomised phase 3 trial. Lancet Oncol., 2014, 15(3), 286-296.
[http://dx.doi.org/10.1016/S1470-2045(14)70030-0] [PMID: 24556040]
[9]
Zhao, Y.; Zhang, Y.N.; Wang, K.T.; Chen, L. Lenvatinib for hepatocellular carcinoma: From preclinical mechanisms to anti-cancer therapy. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(1), 188391.
[http://dx.doi.org/10.1016/j.bbcan.2020.188391] [PMID: 32659252]
[10]
Bansal, P.; Dwivedi, D.K.; Hatwal, D.; Sharma, P.; Gupta, V.; Goyal, S.; Maithani, M. Erdafitinib as a novel and advanced treatment strategy of metastatic urothelial carcinoma. Anticancer. Agents Med. Chem., 2021, 21(18), 2478-2486.
[http://dx.doi.org/10.2174/1871520621666210121093852] [PMID: 33475078]
[11]
Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, 97, 699-718.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.015] [PMID: 25934508]
[12]
Sharma, P.C.; Bansal, K.K.; Sharma, A.; Sharma, D.; Deep, A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur. J. Med. Chem., 2020, 188, 112016.
[http://dx.doi.org/10.1016/j.ejmech.2019.112016] [PMID: 31926469]
[13]
André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; Yamashita, T.; Lu, Y.S.; Inoue, K.; Takahashi, M.; Pápai, Z.; Longin, A.S.; Mills, D.; Wilke, C.; Hirawat, S.; Juric, D. Alpelisib for PIK3CA-Mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med., 2019, 380(20), 1929-1940.
[http://dx.doi.org/10.1056/NEJMoa1813904] [PMID: 31091374]
[14]
Chen, L.; Pankiewicz, K.W. Recent development of IMP dehydrogenase inhibitors for the treatment of cancer. Curr. Opin. Drug Discov. Devel., 2007, 10(4), 403-412.
[PMID: 17659481]
[15]
Chang, Z.; Sitachitta, N.; Rossi, J.V.; Roberts, M.A.; Flatt, P.M.; Jia, J.; Sherman, D.H.; Gerwick, W.H. Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J. Nat. Prod., 2004, 67(8), 1356-1367.
[http://dx.doi.org/10.1021/np0499261] [PMID: 15332855]
[16]
McCafferty, E.H.; Dhillon, S.; Deeks, E.D. Dasatinib: A review in pediatric chronic myeloid leukemia. Paediatr. Drugs, 2018, 20(6), 593-600.
[http://dx.doi.org/10.1007/s40272-018-0319-8] [PMID: 30465234]
[17]
Kainthla, R.; Kim, K.B.; Falchook, G.S. Dabrafenib. Recent Results Cancer Res., 2014, 201, 227-240.
[http://dx.doi.org/10.1007/978-3-642-54490-3_14] [PMID: 24756796]
[18]
Pivot, X.; Dufresne, A.; Villanueva, C. Efficacy and safety of ixabepilone, a novel epothilone analogue. Clin. Breast Cancer, 2007, 7(7), 543-549.
[http://dx.doi.org/10.3816/CBC.2007.n.009] [PMID: 17509162]
[19]
Kerdesky, F.A.J.; Holms, J.H.; Moore, J.L.; Bell, R.L.; Dyer, R.D.; Carter, G.W.; Brooks, D.W. 4-Hydroxythiazole inhibitors of 5-lipoxygenase. J. Med. Chem., 1991, 34(7), 2158-2165.
[http://dx.doi.org/10.1021/jm00111a035] [PMID: 2066989]
[20]
Alabed, S.J.; Khanfar, M.; Taha, M.O. Computer-aided discovery of new FGFR-1 inhibitors followed by in vitro validation. Future Med. Chem., 2016, 8(15), 1841-1869.
[http://dx.doi.org/10.4155/fmc-2016-0056] [PMID: 27643626]
[21]
Riddle, S.M.; Vedvik, K.L.; Hanson, G.T.; Vogel, K.W. Time-resolved fluorescence resonance energy transfer kinase assays using physiological protein substrates: Applications of terbium-fluorescein and terbium-green fluorescent protein fluorescence resonance energy transfer pairs. Anal. Biochem., 2006, 356(1), 108-116.
[http://dx.doi.org/10.1016/j.ab.2006.05.017] [PMID: 16797477]
[22]
Shoichet, B.K. Interpreting steep dose-response curves in early inhibitor discovery. J. Med. Chem., 2006, 49(25), 7274-7277.
[http://dx.doi.org/10.1021/jm061103g] [PMID: 17149857]
[23]
Grünewald, S.; Politz, O.; Bender, S.; Héroult, M.; Lustig, K.; Thuss, U.; Kneip, C.; Kopitz, C.; Zopf, D.; Collin, M.P.; Boemer, U.; Ince, S.; Ellinghaus, P.; Mumberg, D.; Hess-Stumpp, H.; Ziegelbauer, K. Rogaratinib: A potent and selective pan‐FGFR inhibitor with broad antitumor activity in FGFR‐overexpressing preclinical cancer models. Int. J. Cancer, 2019, 145(5), 1346-1357.
[http://dx.doi.org/10.1002/ijc.32224] [PMID: 30807645]
[24]
Cui, Y.; Zhang, L.; Xing, J.; Yang, Z. Research on mechanism of FGFR1 inhibitor BAY1163877 against proliferation of breast cancer cells. IOP Conf. Series Mater. Sci. Eng., 2019, 562(1), 012128.
[http://dx.doi.org/10.1088/1757-899X/562/1/012128]
[25]
Riaz, S.K.; Khan, W.; Wang, F.; Khaliq, T.; Malik, A.; Razia, E.T.; Khan, J.S.; Haque, S.; Hashem, A.M.; Alkhayyat, S.S.; Azhar, N.E.; Harakeh, S.; Ansari, M.J.; Haq, F.; Malik, M.F.A. Targeted Inhibition of fibroblast growth factor receptor 1-GLI through AZD4547 and GANT61 modulates breast cancer progression. Front. Cell Dev. Biol., 2021, 9, 758400.
[http://dx.doi.org/10.3389/fcell.2021.758400] [PMID: 34722544]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy