Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

ROCK Inhibitor Fasudil Attenuates Neuroinflammation and Associated Metabolic Dysregulation in the Tau Transgenic Mouse Model of Alzheimer’s Disease

In Press, (this is not the final "Version of Record"). Available online 21 June, 2024
Author(s): Xiaosen Ouyang, Roberto Collu, Gloria A. Benavides, Ran Tian, Victor Darley-Usmar, Weiming Xia* and Jianhua Zhang*
Published on: 21 June, 2024

DOI: 10.2174/0115672050317608240531130204

Price: $95

Abstract

The pathological manifestations of Alzheimer’s disease (AD) include not only brain amyloid β protein (Aβ) containing neuritic plaques and hyperphosphorylated tau (p-tau) containing neurofibrillary tangles but also microgliosis, astrocytosis, and neurodegeneration mediated by metabolic dysregulation and neuroinflammation. Method: While antibody-based therapies targeting Aβ have shown clinical promise, effective therapies targeting metabolism, neuroinflammation, and p-tau are still an urgent need. Based on the observation that Ras homolog (Rho)-associated kinases (ROCK) activities are elevated in AD, ROCK inhibitors have been explored as therapies in AD models. This study determines the effects of fasudil, a ROCK inhibitor, on neuroinflammation and metabolic regulation in the P301S tau transgenic mouse line PS19 that models neurodegenerative tauopathy and AD. Using daily intraperitoneal (i.p.) delivery of fasudil in PS19 mice, we observed a significant hippocampal-specific decrease of the levels of phosphorylated tau (pTau Ser202/Thr205), a decrease of GFAP+ cells and glycolytic enzyme Pkm1 in broad regions of the brain, and a decrease in mitochondrial complex IV subunit I in the striatum and thalamic regions. Results: Although no overt detrimental phenotype was observed, mice dosed with 100 mg/kg/day for 2 weeks exhibited significantly decreased mitochondrial outer membrane and electron transport chain (ETC) protein abundance, as well as ETC activities. Conclusion: Our results provide insights into dose-dependent neuroinflammatory and metabolic responses to fasudil and support further refinement of ROCK inhibitors for the treatment of AD.

[1]
2022 Alzheimer’s disease facts and figures. Alzheimers Dement 2022; 18(4): 700-89.
[http://dx.doi.org/10.1002/alz.12638] [PMID: 35289055]
[2]
Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Mol Neurodegener 2020; 15(1): 30.
[http://dx.doi.org/10.1186/s13024-020-00376-6] [PMID: 32471464]
[3]
Austad SNBS, Buford TW, Carter CS, Smith DL Jr, Darley-Usmar V, Zhang J. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer’s disease. Acta Pharm Sin B 2021; 12(2): 511-31.
[PMID: 35256932]
[4]
Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 2019; 20(3): 148-60.
[http://dx.doi.org/10.1038/s41583-019-0132-6] [PMID: 30737462]
[5]
Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[6]
Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002; 298(5594): 789-91.
[http://dx.doi.org/10.1126/science.1074069] [PMID: 12399581]
[7]
van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early alzheimer’s disease. N Engl J Med 2023; 388(1): 9-21.
[http://dx.doi.org/10.1056/NEJMoa2212948] [PMID: 36449413]
[8]
Gueorguieva I, Willis BA, Chua L, et al. Donanemab population pharmacokinetics, amyloid plaque reduction, and safety in participants with alzheimer’s disease. Clin Pharmacol Ther 2023; 113(6): 1258-67.
[http://dx.doi.org/10.1002/cpt.2875] [PMID: 36805552]
[9]
Sims JR, Zimmer JA, Evans CD, et al. Donanemab in early symptomatic alzheimer disease. JAMA 2023; 330(6): 512-27.
[http://dx.doi.org/10.1001/jama.2023.13239] [PMID: 37459141]
[10]
Reardon S. Alzheimer’s drug donanemab helps most when taken at earliest disease stage, study finds. Nature 2023; 619(7971): 682-3.
[http://dx.doi.org/10.1038/d41586-023-02321-1] [PMID: 37460689]
[11]
Manly JJ, Deters KD. Donanemab for alzheimer disease—who benefits and who is harmed? JAMA 2023; 330(6): 510-1.
[http://dx.doi.org/10.1001/jama.2023.11704] [PMID: 37459138]
[12]
Gueorguieva I, Willis BA, Chua L, et al. Donanemab exposure and efficacy relationship using modeling in Alzheimer’s disease. Alzheimers Dement 2023; 9(2): e12404.
[http://dx.doi.org/10.1002/trc2.12404] [PMID: 37388759]
[13]
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: Current status and future directions. Nat Rev Neurol 2023; 19(12): 715-36.
[http://dx.doi.org/10.1038/s41582-023-00883-2] [PMID: 37875627]
[14]
Ayalon G, Lee SH, Adolfsson O, et al. Antibody semorinemab reduces tau pathology in a transgenic mouse model and engages tau in patients with Alzheimer’s disease. Sci Transl Med 2021; 13(593): eabb2639.
[http://dx.doi.org/10.1126/scitranslmed.abb2639] [PMID: 33980574]
[15]
Cunnane SC, Trushina E, Morland C, et al. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19(9): 609-33.
[http://dx.doi.org/10.1038/s41573-020-0072-x] [PMID: 32709961]
[16]
Tai YH, Engels D, Locatelli G, et al. Targeting the TCA cycle can ameliorate widespread axonal energy deficiency in neuroinflammatory lesions. Nat Metab 2023; 5(8): 1364-81.
[http://dx.doi.org/10.1038/s42255-023-00838-3] [PMID: 37430025]
[17]
Pålsson-McDermott EM, O’Neill LAJ. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res 2020; 30(4): 300-14.
[http://dx.doi.org/10.1038/s41422-020-0291-z] [PMID: 32132672]
[18]
Rai SN, Zahra W, Birla H, Singh SS, Singh SP. Commentary: Mild endoplasmic reticulum stress ameliorates lpopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. Front Aging Neurosci 2018; 10: 192.
[http://dx.doi.org/10.3389/fnagi.2018.00192] [PMID: 29988480]
[19]
Rai SN, Singh C, Singh A, Singh MP, Singh BK. Mitochondrial dysfunction: a potential therapeutic target to treat alzheimer’s disease. Mol Neurobiol 2020; 57(7): 3075-88.
[http://dx.doi.org/10.1007/s12035-020-01945-y] [PMID: 32462551]
[20]
Tripathi PN, Srivastava P, Sharma P, et al. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem 2019; 85: 82-96.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.017] [PMID: 30605887]
[21]
Srivastava P, Tripathi PN, Sharma P, et al. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem 2019; 163: 116-35.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.049] [PMID: 30503937]
[22]
Lee DH, Lee JY, Hong DY, et al. ROCK and PDE-5 inhibitors for the treatment of dementia: literature review and meta-analysis. Biomedicines 2022; 10(6): 1348.
[http://dx.doi.org/10.3390/biomedicines10061348] [PMID: 35740369]
[23]
Chong CM, Ai N, Lee S. ROCK in CNS: Different roles of isoforms and therapeutic target for neurodegenerative disorders. Curr Drug Targets 2017; 18(4): 455-62.
[http://dx.doi.org/10.2174/1389450117666160401123825] [PMID: 27033194]
[24]
Henderson BW, Gentry EG, Rush T, et al. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer’s disease and ROCK 1 depletion reduces amyloid-β levels in brain. J Neurochem 2016; 138(4): 525-31.
[http://dx.doi.org/10.1111/jnc.13688] [PMID: 27246255]
[25]
Weber AJ, Herskowitz JH. Perspectives on ROCK2 as a therapeutic target for alzheimer’s disease. Front Cell Neurosci 2021; 15: 636017.
[http://dx.doi.org/10.3389/fncel.2021.636017] [PMID: 33790742]
[26]
Herskowitz JH, Feng Y, Mattheyses AL, et al. Pharmacologic inhibition of ROCK2 suppresses amyloid-β production in an Alzheimer’s disease mouse model. J Neurosci 2013; 33(49): 19086-98.
[http://dx.doi.org/10.1523/JNEUROSCI.2508-13.2013] [PMID: 24305806]
[27]
Cai R, Wang Y, Huang Z, et al. Role of RhoA/ROCK signaling in Alzheimer’s disease. Behav Brain Res 2021; 414: 113481.
[http://dx.doi.org/10.1016/j.bbr.2021.113481] [PMID: 34302876]
[28]
Ono-Saito N, Niki I, Hidaka H. H-series protein kinase inhibitors and potential clinical applications. Pharmacol Ther 1999; 82(2-3): 123-31.
[http://dx.doi.org/10.1016/S0163-7258(98)00070-9] [PMID: 10454191]
[29]
Couch BA, DeMarco GJ, Gourley SL, Koleske AJ. Increased dendrite branching in AbetaPP/PS1 mice and elongation of dendrite arbors by fasudil administration. J Alzheimers Dis 2010; 20(4): 1003-8.
[http://dx.doi.org/10.3233/JAD-2010-091114] [PMID: 20413901]
[30]
Zhao Y, Tseng I-C, Heyser CJ, et al. Appoptosin-mediated caspase cleavage of tau contributes to progressive supranuclear palsy pathogenesis. Neuron 2015; 87(5): 963-75.
[http://dx.doi.org/10.1016/j.neuron.2015.08.020] [PMID: 26335643]
[31]
Guo H, Zhao Z, Zhang R, et al. Monocytes in the peripheral clearance of amyloid-β and alzheimer’s disease. J Alzheimers Dis 2019; 68(4): 1391-400.
[http://dx.doi.org/10.3233/JAD-181177] [PMID: 30958361]
[32]
Hamano T, Shirafuji N, Yen SH, et al. Rho-kinase ROCK inhibitors reduce oligomeric tau protein. Neurobiol Aging 2020; 89: 41-54.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.12.009] [PMID: 31982202]
[33]
Elliott C, Rojo AI, Ribe E, et al. A role for APP in Wnt signalling links synapse loss with β-amyloid production. Transl Psychiatry 2018; 8(1): 179.
[http://dx.doi.org/10.1038/s41398-018-0231-6] [PMID: 30232325]
[34]
Guo MF, Zhang HY, Zhang PJ, et al. Fasudil reduces β-amyloid levels and neuronal apoptosis in APP/PS1 transgenic mice via inhibition of the Nogo-A/NgR/RhoA signaling axis. J Integr Neurosci 2020; 19(4): 651-62.
[http://dx.doi.org/10.31083/j.jin.2020.04.243] [PMID: 33378839]
[35]
Wei W, Wang Y, Zhang J, et al. Fasudil ameliorates cognitive deficits, oxidative stress and neuronal apoptosis via inhibiting ROCK/MAPK and activating Nrf2 signalling pathways in APP/PS1 mice. Folia Neuropathol 2021; 59(1): 32-49.
[http://dx.doi.org/10.5114/fn.2021.105130] [PMID: 33969676]
[36]
Yan Y, Gao Y, Fang Q, et al. Inhibition of Rho kinase by fasudil ameliorates cognition impairment in APP/PS1 transgenic mice via modulation of gut microbiota and metabolites. Front Aging Neurosci 2021; 13: 755164.
[http://dx.doi.org/10.3389/fnagi.2021.755164] [PMID: 34721000]
[37]
Yoshiyama Y, Higuchi M, Zhang B, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 2007; 53(3): 337-51.
[http://dx.doi.org/10.1016/j.neuron.2007.01.010] [PMID: 17270732]
[38]
Benavides GA, Mueller T, Darley-Usmar V, Zhang J. Optimization of measurement of mitochondrial electron transport activity in postmortem human brain samples and measurement of susceptibility to rotenone and 4-hydroxynonenal inhibition. Redox Biol 2022; 50: 102241.
[http://dx.doi.org/10.1016/j.redox.2022.102241] [PMID: 35066289]
[39]
Huynh VN, Benavides GA, Johnson MS, et al. Acute inhibition of OGA sex-dependently alters the networks associated with bioenergetics, autophagy, and neurodegeneration. Mol Brain 2022; 15(1): 22.
[http://dx.doi.org/10.1186/s13041-022-00906-x] [PMID: 35248135]
[40]
Ha C, Bakshi S, Brahma MK, et al. Sustained increases in cardiomyocyte protein O-linked β-N-acetylglucosamine levels lead to cardiac hypertrophy and reduced mitochondrial function without systolic contractile impairment. J Am Heart Assoc. 2023; 12: p. (19)e029898.
[41]
Kane MS, Benavides GA, Osuma E, et al. The interplay between sex, time of day, fasting status, and their impact on cardiac mitochondrial structure, function, and dynamics. Sci Rep 2023; 13(1): 21638.
[http://dx.doi.org/10.1038/s41598-023-49018-z] [PMID: 38062139]
[42]
Ouyang X, Bakshi S, Benavides GA, et al. Cardiomyocyte ZKSCAN3 regulates remodeling following pressure-overload. Physiol Rep 2023; 11(9): e15686.
[http://dx.doi.org/10.14814/phy2.15686] [PMID: 37144628]
[43]
Acin-Perez R, Benador IY, Petcherski A, et al. A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO J 2020; 39(13): e104073.
[http://dx.doi.org/10.15252/embj.2019104073] [PMID: 32432379]
[44]
Yang W, Wei H, Benavides GA, et al. Protein kinase CK2 controls CD8+ T cell effector and memory function during infection. J Immunol 2022; 209(5): 896-906.
[http://dx.doi.org/10.4049/jimmunol.2101080] [PMID: 35914835]
[45]
Ouyang X, Ahmad I, Johnson MS, et al. Nuclear receptor binding factor 2 (NRBF2) is required for learning and memory. Lab Invest 2020; 100(9): 1238-51.
[http://dx.doi.org/10.1038/s41374-020-0433-4] [PMID: 32350405]
[46]
Wright JN, Benavides GA, Johnson MS, et al. Acute increases in O -GlcNAc indirectly impair mitochondrial bioenergetics through dysregulation of LonP1-mediated mitochondrial protein complex turnover. Am J Physiol Cell Physiol 2019; 316(6): C862-75.
[http://dx.doi.org/10.1152/ajpcell.00491.2018] [PMID: 30865517]
[47]
Redmann M, Benavides GA, Wani WY, et al. Methods for assessing mitochondrial quality control mechanisms and cellular consequences in cell culture. Redox Biol 2018; 17: 59-69.
[http://dx.doi.org/10.1016/j.redox.2018.04.005] [PMID: 29677567]
[48]
Bernard K, Logsdon NJ, Benavides GA, et al. Glutaminolysis is required for transforming growth factor-β1–induced myofibroblast differentiation and activation. J Biol Chem 2018; 293(4): 1218-28.
[http://dx.doi.org/10.1074/jbc.RA117.000444] [PMID: 29222329]
[49]
Dodson M, Wani WY, Redmann M, et al. Regulation of autophagy, mitochondrial dynamics, and cellular bioenergetics by 4-hydroxynonenal in primary neurons. Autophagy 2017; 13(11): 1828-40.
[http://dx.doi.org/10.1080/15548627.2017.1356948] [PMID: 28837411]
[50]
Wani WY, Ouyang X, Benavides GA, et al. O-GlcNAc regulation of autophagy and α-synuclein homeostasis; implications for Parkinson’s disease. Mol Brain 2017; 10(1): 32.
[http://dx.doi.org/10.1186/s13041-017-0311-1] [PMID: 28724388]
[51]
Bernard K, Logsdon NJ, Miguel V, et al. NADPH oxidase 4 (Nox4) suppresses mitochondrial biogenesis and bioenergetics in lung fibroblasts via a nuclear factor erythroid-derived 2-like 2 (Nrf2)-dependent pathway. J Biol Chem 2017; 292(7): 3029-38.
[http://dx.doi.org/10.1074/jbc.M116.752261] [PMID: 28049732]
[52]
Redmann M, Benavides GA, Berryhill TF, et al. Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox Biol 2017; 11: 73-81.
[http://dx.doi.org/10.1016/j.redox.2016.11.004] [PMID: 27889640]
[53]
Boyer-Guittaut M, Poillet L, Liang Q, et al. The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy 2014; 10(6): 986-1003.
[http://dx.doi.org/10.4161/auto.28390] [PMID: 24879149]
[54]
Benavides GA, Liang Q, Dodson M, Darley-Usmar V, Zhang J. Inhibition of autophagy and glycolysis by nitric oxide during hypoxia–reoxygenation impairs cellular bioenergetics and promotes cell death in primary neurons. Free Radic Biol Med 2013; 65: 1215-28.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.09.006] [PMID: 24056030]
[55]
Liang Q, Benavides GA, Vassilopoulos A, Gius D, Darley-Usmar V, Zhang J. Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts. Biochem J 2013; 454(2): 249-57.
[http://dx.doi.org/10.1042/BJ20130414] [PMID: 23767918]
[56]
Higdon AN, Benavides GA, Chacko BK, et al. Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: The protective role of autophagy. Am J Physiol Heart Circ Physiol 2012; 302(7): H1394-409.
[http://dx.doi.org/10.1152/ajpheart.00584.2011] [PMID: 22245770]
[57]
Hill BG, Benavides GA, Lancaster JR Jr, et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. bchm 2012; 393(12): 1485-512.
[http://dx.doi.org/10.1515/hsz-2012-0198] [PMID: 23092819]
[58]
Schneider L, Giordano S, Zelickson BR, et al. Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radic Biol Med 2011; 51(11): 2007-17.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.08.030] [PMID: 21945098]
[59]
Dranka BP, Benavides GA, Diers AR, et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic Biol Med 2011; 51(9): 1621-35.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.08.005] [PMID: 21872656]
[60]
Xia Y, Prokop S, Gorion KMM, et al. Tau Ser208 phosphorylation promotes aggregation and reveals neuropathologic diversity in Alzheimer’s disease and other tauopathies. Acta Neuropathol Commun 2020; 8(1): 88.
[http://dx.doi.org/10.1186/s40478-020-00967-w] [PMID: 32571418]
[61]
Luan W, Wang Y, Chen X, et al. PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop. Oncotarget 2015; 6(15): 13006-18.
[http://dx.doi.org/10.18632/oncotarget.3514] [PMID: 25948776]
[62]
Morita M, Sato T, Nomura M, et al. PKM1 confers metabolic advantages and promotes cell-autonomous tumor cell growth. Cancer Cell 2018; 33(3): 355-367.e7.
[http://dx.doi.org/10.1016/j.ccell.2018.02.004] [PMID: 29533781]
[63]
Davidson SM, Schmidt DR, Heyman JE, et al. Pyruvate kinase M1 suppresses development and progression of prostate adenocarcinoma. Cancer Res 2022; 82(13): 2403-16.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-2352] [PMID: 35584006]
[64]
Li Q, Li C, Elnwasany A, et al. PKM1 exerts critical roles in cardiac remodeling under pressure overload in the heart. Circulation 2021; 144(9): 712-27.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.121.054885] [PMID: 34102853]
[65]
Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol Res 2018; 131: 87-101.
[http://dx.doi.org/10.1016/j.phrs.2018.03.010] [PMID: 29551631]
[66]
Wiegand G, Remington SJ. Citrate synthase: Structure, control, and mechanism. Annu Rev Biophys Biophys Chem 1986; 15(1): 97-117.
[http://dx.doi.org/10.1146/annurev.bb.15.060186.000525] [PMID: 3013232]
[67]
Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu S. The voltage-dependent anion channel (VDAC): Function in intracellular signalling, cell life and cell death. Curr Pharm Des 2006; 12(18): 2249-70.
[http://dx.doi.org/10.2174/138161206777585111] [PMID: 16787253]
[68]
Baumgart M, Priebe S, Groth M, et al. Longitudinal RNA-Seq analysis of vertebrate aging identifies mitochondrial complex I as a small-molecule-sensitive modifier of lifespan. Cell Syst 2016; 2(2): 122-32.
[http://dx.doi.org/10.1016/j.cels.2016.01.014] [PMID: 27135165]
[69]
Copeland JM, Cho J, Lo T Jr, et al. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol 2009; 19(19): 1591-8.
[http://dx.doi.org/10.1016/j.cub.2009.08.016] [PMID: 19747824]
[70]
Trushina E, Trushin S, Hasan MF. Mitochondrial complex I as a therapeutic target for Alzheimer’s disease. Acta Pharm Sin B 2022; 12(2): 483-95.
[http://dx.doi.org/10.1016/j.apsb.2021.11.003] [PMID: 35256930]
[71]
Collu R, Yin Z, Giunti E, et al. Effect of the ROCK inhibitor fasudil on the brain proteomic profile in the tau transgenic mouse model of Alzheimer’s disease. Front Aging Neurosci 2024; 16: 1323563.
[http://dx.doi.org/10.3389/fnagi.2024.1323563] [PMID: 38440100]
[72]
Escartin C, Galea E, Lakatos A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 2021; 24(3): 312-25.
[http://dx.doi.org/10.1038/s41593-020-00783-4] [PMID: 33589835]
[73]
Allen NJ. Astrocyte regulation of synaptic behavior. Annu Rev Cell Dev Biol 2014; 30(1): 439-63.
[http://dx.doi.org/10.1146/annurev-cellbio-100913-013053] [PMID: 25288116]
[74]
Perego C, Vanoni C, Bossi M, et al. The GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. J Neurochem 2000; 75(3): 1076-84.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0751076.x] [PMID: 10936189]
[75]
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541(7638): 481-7.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[76]
Bernardinelli Y, Randall J, Janett E, et al. Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Curr Biol 2014; 24(15): 1679-88.
[http://dx.doi.org/10.1016/j.cub.2014.06.025] [PMID: 25042585]
[77]
Taday J, Fróes FT, Seady M, Gonçalves CA, Leite MC. In vitro astroglial dysfunction induced by neurotoxins: Mimicking astrocytic metabolic alterations of alzheimer’s disease. Metabolites 2024; 14(3): 151.
[http://dx.doi.org/10.3390/metabo14030151] [PMID: 38535311]
[78]
Moolman DL, Vitolo OV, Vonsattel JPG, Shelanski ML. Dendrite and dendritic spine alterations in alzheimer models. J Neurocytol 2004; 33(3): 377-87.
[http://dx.doi.org/10.1023/B:NEUR.0000044197.83514.64] [PMID: 15475691]
[79]
Johansson C, Thordardottir S, Laffita-Mesa J, et al. Plasma biomarker profiles in autosomal dominant Alzheimer’s disease. Brain 2023; 146(3): 1132-40.
[http://dx.doi.org/10.1093/brain/awac399] [PMID: 36626935]
[80]
Paciotti S, Wojdała AL, Bellomo G, et al. Potential diagnostic value of CSF metabolism-related proteins across the Alzheimer’s disease continuum. Alzheimers Res Ther 2023; 15(1): 124.
[http://dx.doi.org/10.1186/s13195-023-01269-8] [PMID: 37454217]
[81]
Han J, Hyun J, Park J, et al. Aberrant role of pyruvate kinase M2 in the regulation of gamma-secretase and memory deficits in Alzheimer’s disease. Cell Rep 2021; 37(10): 110102.
[http://dx.doi.org/10.1016/j.celrep.2021.110102] [PMID: 34879266]
[82]
da Silva EMG, Santos LGC, de Oliveira FS, et al. Proteogenomics reveals orthologous alternatively spliced proteoforms in the same human and mouse brain regions with differential abundance in an alzheimer’s disease mouse model. Cells 2021; 10(7): 1583.
[http://dx.doi.org/10.3390/cells10071583] [PMID: 34201730]
[83]
Martire S, Fuso A, Mosca L, et al. Bioenergetic impairment in animal and cellular models of alzheimer’s disease: PARP-1 inhibition rescues metabolic dysfunctions. J Alzheimers Dis 2016; 54(1): 307-24.
[http://dx.doi.org/10.3233/JAD-151040] [PMID: 27567805]
[84]
Day NJ, Zhang T, Gaffrey MJ, et al. A deep redox proteome profiling workflow and its application to skeletal muscle of a Duchenne Muscular Dystrophy model. Free Radic Biol Med 2022; 193(Pt 1): 373-84.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.10.300] [PMID: 36306991]
[85]
Garnock-Jones KP. Ripasudil: First global approval. Drugs 2014; 74(18): 2211-5.
[http://dx.doi.org/10.1007/s40265-014-0333-2] [PMID: 25414122]
[86]
Naik M, Kapur M, Gupta V, Sethi H, Srivastava K. Ripasudil endgame: Role of rho-kinase inhibitor as a last-ditch-stand towards maximally tolerated medical therapy to a patient of advanced glaucoma. Clin Ophthalmol 2021; 15: 2683-92.
[http://dx.doi.org/10.2147/OPTH.S318897] [PMID: 34194222]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy