Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Research Article

Downregulation of Tnf-α and Cat Expression in a Wistar Rat Diabetic Model during Diabetes Onset

In Press, (this is not the final "Version of Record"). Available online 20 June, 2024
Author(s): Catherine Giovanna Costas Arcia, Jessica Freitas Araujo Encinas, Joyce Regina Santos Raimundo, Katharyna Cardoso de Gois, Beatriz da Costa Aguiar Alves, Matheus Moreira Perez, Thais Moura Gascon, Fernando Luiz Affonso Fonseca and Glaucia Luciano da Veiga*
Published on: 20 June, 2024

Article ID: e200624231125

DOI: 10.2174/0115733998264880230919062657

Price: $95

Abstract

Introduction: Diabetes Mellitus (DM) is a metabolic disorder characterized by persistent hyperglycemia and/or insulin resistance. If left uncontrolled, it can lead to a combination of cardiac and renal alterations known as cardiorenal syndrome. Additionally, oxidative stress and inflammation contribute to tissue damage, thereby reducing the life expectancy of individuals with diabetes.

Aim: The aim of this study was to identify early molecular markers associated with cardiorenal syndrome, oxidative stress, and inflammation, and to investigate their correlation with the duration of exposure to DM.

Methods: An experimental DM model was employed using Wistar rats. The rats were divided into four groups: diabetic rats at 7 days (DM7), diabetic rats at 30 days (DM30), control sham at 7 days (CS7), and control sham at 30 days (CS30). Blood and brain tissue from the brainstem region were collected at 7 and 30 days after confirming DM induction. Gene expression analysis of Bnp, Anp, Cat, Gpx, Sod, Tnf-α, and Il-6 was performed.

Results: The analysis revealed lower expression values of Cat in the brainstem tissue of the DM7 group compared to the NDS7 group. Moreover, diabetic animals exhibited statistically lower levels of Tnf-α in their peripheral blood compared to the control animals.

Conclusion: This study concluded that DM alters the oxidative balance in the brainstem after 7 days of DM induction, resulting in lower Cat expression levels. Although some genes did not show statistical differences after 30 days of DM induction, other genes exhibited no expression values, indicating possible gene silencing. The study identified an imbalance in the studied pathways and concluded that the organism undergoes a compensatory state in response to the initial metabolic alterations caused by DM.

[1]
Hadjiphilippou S, Kon SP. Cardiorenal syndrome: Review of our current understanding. J R Soc Med 2016; 109(1): 12-7.
[http://dx.doi.org/10.1177/0141076815616091] [PMID: 26609123]
[2]
Jeong S, Cho S, Kong SY. Effect of income level on stroke incidence and the mediated effect of simultaneous diagnosis of metabolic syndrome diseases; a nationwide cohort study in South Korea. Diabetol Metab Syndr 2022; 14(1): 110.
[http://dx.doi.org/10.1186/s13098-022-00882-1] [PMID: 35941692]
[3]
Rangaswami J, Bhalla V, Blair JEA, et al. Cardiorenal syndrome: Classification, pathophysiology, diagnosis, and treatment strategies: A Scientific statement from the american heart association. Circulation 2019; 139(16): e840-78.
[http://dx.doi.org/10.1161/CIR.0000000000000664] [PMID: 30852913]
[4]
Mandavia CH, Aroor AR, DeMarco VG, Sowers JR. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes. Life Sci 2013; 92(11): 601-8.
[http://dx.doi.org/10.1016/j.lfs.2012.10.028] [PMID: 23147391]
[5]
Chan JCY, Knudson O, Wu F, Morser J, Dole WP, Wu Q. Hypertension in mice lacking the proatrial natriuretic peptide convertase corin. Proc Natl Acad Sci 2005; 102(3): 785-90.
[http://dx.doi.org/10.1073/pnas.0407234102] [PMID: 15637153]
[6]
Akashi YJ, Springer J, Lainscak M, Anker SD. Atrial natriuretic peptide and related peptides. Clin Chem Lab Med 2007; 45(10): 1259-67.
[http://dx.doi.org/10.1515/CCLM.2007.274] [PMID: 17663625]
[7]
Del Ry S, Cabiati M, Clerico A. Natriuretic peptide system and the heart. Front Horm Res 2014; 43: 134-43.
[http://dx.doi.org/10.1159/000360597] [PMID: 24943304]
[8]
Bie P. Natriuretic peptides and normal body fluid regulation. Compr Physiol 2018; 8(3): 1211-49.
[http://dx.doi.org/10.1002/cphy.c180002] [PMID: 29978892]
[9]
Estrada V, Téllez MJ, Moya J, Fernández-Durango R, Egido J, Fernández Cruz A. High plasma levels of endothelin-1 and atrial natriuretic peptide in patients with acute ischemic stroke. Am J Hypertens 1994; 7(12): 1085-9.
[http://dx.doi.org/10.1093/ajh/7.12.1085] [PMID: 7702803]
[10]
Feng Y, Wang D, Bi H, Zhang H. The role of natriuretic peptides in diabetes and its complications. Biomed Pharmacother 2016; 84: 1826-32.
[http://dx.doi.org/10.1016/j.biopha.2016.10.089] [PMID: 27832993]
[11]
Berezin AE, Berezin AA. Circulating cardiac biomarkers in diabetes mellitus: A new dawn for risk stratification-A narrative review. Diabetes Ther 2020; 11(6): 1271-91.
[http://dx.doi.org/10.1007/s13300-020-00835-9] [PMID: 32430864]
[12]
Benomar K, Espiard S, Loyer C, Jannin A, Vantyghem MC. (Atrial natriuretic hormones and metabolic syndrome: Recent advances). Presse Med 2018; 47(2): 116-24.
[http://dx.doi.org/10.1016/j.lpm.2017.12.002] [PMID: 29496376]
[13]
Yamada T, Nakao K, Itoh H, et al. Intracerebroventricular injection of brain natriuretic peptide inhibits vasopressin secretion in conscious rats. Neurosci Lett 1988; 95(1-3): 223-8.
[http://dx.doi.org/10.1016/0304-3940(88)90661-1] [PMID: 3226610]
[14]
Villacorta Júnior H, Mesquita ET. (Clinical applications of B-type natriuretic peptide assays). Arq Bras Cardiol 2006; 86(4): 251-5.
[PMID: 16680288]
[15]
Vickery S, Price CP, John RI, et al. B-type natriuretic peptide (BNP) and amino-terminal proBNP in patients with CKD: Relationship to renal function and left ventricular hypertrophy. Am J Kidney Dis 2005; 46(4): 610-20.
[http://dx.doi.org/10.1053/j.ajkd.2005.06.017] [PMID: 16183415]
[16]
Miranda-Díaz AG, Pazarín-Villaseñor L, Yanowsky-Escatell FG, Andrade-Sierra J. Oxidative stress in diabetic nephropathy with early chronic kidney disease. J Diabetes Res 2016; 2016: 1-7.
[http://dx.doi.org/10.1155/2016/7047238] [PMID: 27525285]
[17]
Clough GF, Kuliga KZ, Chipperfield AJ. Flow motion dynamics of microvascular blood flow and oxygenation: Evidence of adaptive changes in obesity and type 2 diabetes mellitus/insulin resistance. Microcirculation 2017; 24(2): e12331.
[http://dx.doi.org/10.1111/micc.12331] [PMID: 27809397]
[18]
Yaribeygi H, Butler AE, Barreto GE, Sahebkar A. Antioxidative potential of antidiabetic agents: A possible protective mechanism against vascular complications in diabetic patients. J Cell Physiol 2019; 234(3): 2436-46.
[http://dx.doi.org/10.1002/jcp.27278] [PMID: 30191997]
[19]
Rehman K, Akash MSH, Liaqat A, Kamal S, Qadir MI, Rasul A. Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus. Crit Rev Eukaryot Gene Expr 2017; 27(3): 229-36.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2017019712] [PMID: 29199608]
[20]
Ahmed S, Mundhe N, Borgohain M, et al. Diosmin modulates the NF-kB signal transduction pathways and downregulation of various oxidative stress markers in alloxan-induced diabetic nephropathy. Inflammation 2016; 39(5): 1783-97.
[http://dx.doi.org/10.1007/s10753-016-0413-4] [PMID: 27492452]
[21]
Ghobadi H, Aslani MR, Hosseinian A, Farzaneh E. The correlation of serum brain natriuretic peptide and interleukin-6 with quality of life using the chronic obstructive pulmonary disease assessment test. Med Princ Pract 2017; 26(6): 509-15.
[http://dx.doi.org/10.1159/000484900] [PMID: 29131048]
[22]
Kirchner B, Paul V, Riedmaier I, Pfaffl MW. mRNA and microRNA purity and integrity: The key to success in expression profiling. Methods Mol Biol 2014; 1160: 43-53.
[http://dx.doi.org/10.1007/978-1-4939-0733-5_5] [PMID: 24740220]
[23]
Li H, Liu X, Ren Z, et al. Effects of diabetic hyperglycemia on central Ang-(1-7)-Mas-R-nNOS pathways in spontaneously hypertensive rats. Cell Physiol Biochem 2016; 40(5): 1186-97.
[http://dx.doi.org/10.1159/000453172] [PMID: 27960152]
[24]
Lu HL, Huang X, Wu YS, et al. Gastric nNOS reduction accompanied by natriuretic peptides signaling pathway upregulation in diabetic mice. World J Gastroenterol 2014; 20(16): 4626-35.
[http://dx.doi.org/10.3748/wjg.v20.i16.4626] [PMID: 24782615]
[25]
Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: From molecular basis to treatment. Clin Sci 2015; 130(2): 57-77.
[http://dx.doi.org/10.1042/CS20150469] [PMID: 26637405]
[26]
Ohishi M. Hypertension with diabetes mellitus: Physiology and pathology. Hypertens Res 2018; 41(6): 389-93.
[http://dx.doi.org/10.1038/s41440-018-0034-4] [PMID: 29556093]
[27]
Rangel Silvares R, Nunes Goulart da Silva Pereira E, Eduardo Ilaquita Flores E, et al. High-fat diet-induced kidney alterations in rats with metabolic syndrome: Endothelial dysfunction and decreased antioxidant defense. Diabetes Metab Syndr Obes 2019; 12: 1773-81.
[http://dx.doi.org/10.2147/DMSO.S211253] [PMID: 31564943]
[28]
Barbosa JH, Oliveira SL, Seara LT. The role of advanced glycation end-products (AGEs) in the development of vascular diabetic complications. Arq Bras Endocrinol Metabol 2008; 52(6): 940-50.
[http://dx.doi.org/10.1590/S0004-27302008000600005] [PMID: 18820805]
[29]
Rom S, Zuluaga-Ramirez V, Gajghate S, et al. Hyperglycemia-driven neuroinflammation compromises bbb leading to memory loss in both Diabetes Mellitus (DM) type 1 and type 2 mouse models. Mol Neurobiol 2019; 56(3): 1883-96.
[http://dx.doi.org/10.1007/s12035-018-1195-5] [PMID: 29974394]
[30]
Kimura H, Kamiyama K, Imamoto T, et al. Fenofibrate reduces cisplatin-induced apoptosis by inhibiting the p53/Puma/Caspase-9 pathway and the MAPK/Caspase-8 pathway rather than by promoting autophagy in murine renal proximal tubular cells. Biochem Biophys Rep 2022; 30: 101237.
[http://dx.doi.org/10.1016/j.bbrep.2022.101237] [PMID: 35252595]
[31]
Fehlmann T, Lehallier B, Schaum N, et al. Common diseases alter the physiological age-related blood microRNA profile. Nat Commun 2020; 11(1): 5958.
[http://dx.doi.org/10.1038/s41467-020-19665-1] [PMID: 33235214]
[32]
Takahashi M, Eda A, Fukushima T, Hohjoh H. Reduction of type IV collagen by upregulated miR-29 in normal elderly mouse and klotho-deficient, senescence-model mouse. PLoS One 2012; 7(11): e48974.
[http://dx.doi.org/10.1371/journal.pone.0048974] [PMID: 23139829]
[33]
Heinemann FM, Jindra PT, Bockmeyer CL, et al. Glomerulocapillary miRNA response to HLA-class I antibody in vitro and in vivo. Sci Rep 2017; 7(1): 14554.
[http://dx.doi.org/10.1038/s41598-017-14674-5] [PMID: 29109529]
[34]
Zhao W, Meng X, Liang J. Analysis of circRNA‐mRNA expression profiles and functional enrichment in diabetes mellitus based on high throughput sequencing. Int Wound J 2022; 19(5): 1253-62.
[http://dx.doi.org/10.1111/iwj.13838] [PMID: 35504843]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy