Generic placeholder image

Current Topics in Chemistry

Editor-in-Chief

ISSN (Print): 2950-4023
ISSN (Online): 2950-4031

Research Article

Sustainable Green Synthesis and Molecular Docking Study of a Bis-Fused System Incorporating Pyrido[2,3-d]pyrimidine using Nanocatalyst under Microwave Condition

Author(s): Elshimaa M. Eid*

Volume 4, 2024

Published on: 15 June, 2024

Article ID: e200624231074 Pages: 12

DOI: 10.2174/0126660016263316240610065901

Price: $65

Abstract

Aims: This study aimed to employ sustainable green methods in the synthesis of bisfused cycles incorporating pyrido[2,3-d]pyrimidine moiety using a green catalyst nano ZnO catalyst by one-pot, multicomponent reaction among 2,2'-(propane-1,3-diylbis(sulfanediyl)) bis(6-aminopyrimidin-4(3H)-one) 3, 1H-indene-1,3(2H)-dione 4, and aromatic aldehydes 5.

Method: The reactions proceeded with both conventional and microwave (MW) irradiation methods.

Result: The microwave-assisted method carried out the reaction in 10 min and had high yields (89-95%).

Conclusion: A molecular docking simulation study was conducted using human serum albumin (PDB: ID (2XVQ)). The study revealed that compounds strongly fit into the active sites of the target protein.

[1]
Harvard Extension School. Sustainability Master’s Degree Program. Available From: https://extension.harvard.edu/blog/green-chemistry-and-the-future-of-sustainability/
[3]
Bajpai, S.; Raza, S.; Azad, I.; Khan, T. Green Chemistry: Making chemistry environment-friendly. Med. Environ. Chem.: Exp. Adv. Simul., 2021, (Part I), 220-243.
[http://dx.doi.org/10.2174/9789814998277121010013]
[4]
Ghosh, S.; Mukhopadhyay, C. Microwave syntheses: A modern day approach towards sustainable chemistry. Curr. Microw. Chem., 2018, 4(4)
[http://dx.doi.org/10.2174/2213335604666170830122722]
[5]
Khan, T.; Khan, A.R.; Raza, S.; Azad, I.; Lawrence, A.J. Eds.; Medicinal and Environmental Chemistry: Experimental Advances and Simulations (Part I); Bentham Books: Netherlands, 2021.
[http://dx.doi.org/10.2174/97898149982771210101]
[6]
Bhat, A.R.; Dongre, R.S.; Naikoo, G.A.; Hassan, I.U.; Ara, T. Proficient synthesis of bioactive annulated pyrimidine derivatives: A review. J. Taibah Univ. Sci., 2017, 11(6), 1047-1069.
[http://dx.doi.org/10.1016/j.jtusci.2017.05.005]
[7]
Mamaghani, M.; Tabatabaeian, K.; Araghi, R.; Fallah, A.; Hossein Nia, R. An efficient, clean, and catalyst-free synthesis of fused pyrimidines using sonochemistry. Org. Chem. Int., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/406869]
[8]
Wang, S.; Yuan, X.H.; Wang, S.Q.; Zhao, W.; Chen, X.B.; Yu, B. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application. Eur. J. Med. Chem., 2021, 214, 113218.
[http://dx.doi.org/10.1016/j.ejmech.2021.113218] [PMID: 33540357]
[9]
Shamroukh, A.H.; Rashad, A.E.; Abdelmegeid, F.M.E. The chemistry of pyrido[2,3-d]pyrimidines and their applications. J. Chem. Pharm. Res., 2016, 8(3), 734-772.
[10]
Jubete, G.; Puig de la Bellacasa, R.; Estrada-Tejedor, R.; Teixidó, J.; Borrell, J.I. Pyrido[2,3-d]pyrimidin-7(8H)-ones: Synthesis and biomedical applications. Molecules, 2019, 24(22), 4161.
[http://dx.doi.org/10.3390/molecules24224161] [PMID: 31744155]
[11]
Ajani, O.O.; Isaac, J.T.; Owoeye, T.F.; Akinsiku, A.A. Exploration of the chemistry and biological properties of pyrimidine as a privilege pharmacophore in therapeutics. Int. J. Biol. Chem., 2015, 9(4), 148-177.
[http://dx.doi.org/10.3923/ijbc.2015.148.177]
[12]
Fares, M.; Abou-Seri, S.M.; Abdel-Aziz, H.A.; Abbas, S.E.S.; Youssef, M.M.; Eladwy, R.A. Synthesis and antitumor activity of pyrido[2,3-d]pyrimidine and pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidine derivatives that induce apoptosis through G1 cell-cycle arrest. Eur. J. Med. Chem., 2014, 83, 155-166.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.027] [PMID: 24956552]
[13]
Bazgir, A.; Khanaposhtani, M.M.; Soorki, A.A. One-pot synthesis and antibacterial activities of pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine-dione derivatives. Bioorg. Med. Chem. Lett., 2008, 18(21), 5800-5803.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.057] [PMID: 18842404]
[14]
Sowmya, H.B.V.; Suresha Kumara, T.H.; Nagendrappa, G.; Jasinski, J.P.; Millikan, S.P.; Jose, G. R, D.; Sujan Ganapathy, P.S. Solvent free synthesis, crystal studies, docking studies and antibacterial properties of some novel fluorinated pyridazinone derivatives. J. Mol. Struct., 2013, 1054-1055, 179-187.
[http://dx.doi.org/10.1016/j.molstruc.2013.09.046]
[15]
El-Gazzar, A.R.B.A.; Hafez, H.N. Synthesis of 4-substituted pyrido[2,3-d]pyrimidin-4(1H)-one as analgesic and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2009, 19(13), 3392-3397.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.044] [PMID: 19481936]
[16]
Mohamed, N.R.; Abdelhalim, M.M.; Khadrawy, Y.A.; Elmegeed, G.A.; Abdel-Salam, O.M.E. One-pot three-component synthesis of novel heterocyclic steroids as a central antioxidant and anti-inflammatory agents. Steroids, 2012, 77(13), 1469-1476.
[http://dx.doi.org/10.1016/j.steroids.2012.09.001] [PMID: 22999991]
[17]
Abdallah, M.A.; Gomha, S.M.; Morad, M.A.; Elaasser, M.M. Synthesis of pyridotriazolopyrimidines as antitumor agents. J. Heterocycl. Chem., 2017, 54(2), 1242-1251.
[http://dx.doi.org/10.1002/jhet.2699]
[18]
Lu, J. Palbociclib: A first-in-class CDK4/CDK6 inhibitor for the treatment of hormone-receptor positive advanced breast cancer. J. Hematol. Oncol., 2015, 8(1), 98.
[http://dx.doi.org/10.1186/s13045-015-0194-5] [PMID: 26264704]
[19]
Miller, S.M.; Goulet, D.R.; Johnson, G.L. Targeting the breast cancer kinome. J. Cell. Physiol., 2017, 232(1), 53-60.
[http://dx.doi.org/10.1002/jcp.25427] [PMID: 27186656]
[20]
Elansary, A.K.; Moneer, A.A.; Kadry, H.H.; Gedawy, E.M. Synthesis and anticancer activity of some novel fused pyridine ring system. Arch. Pharm. Res., 2012, 35(11), 1909-1917.
[http://dx.doi.org/10.1007/s12272-012-1107-6] [PMID: 23212632]
[21]
Reddy, M.V.R.; Akula, B.; Cosenza, S.C.; Athuluridivakar, S.; Mallireddigari, M.R.; Pallela, V.R.; Billa, V.K.; Subbaiah, D.R.C.V.; Bharathi, E.V.; Vasquez-Del Carpio, R.; Padgaonkar, A.; Baker, S.J.; Reddy, E.P. Discovery of 8-Cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3- d]pyrimidine-6-carbonitrile (7x) as a Potent Inhibitor of Cyclin-Dependent Kinase 4 (CDK4) and AMPK-Related Kinase 5 (ARK5). J. Med. Chem., 2014, 57(3), 578-599.
[http://dx.doi.org/10.1021/jm401073p] [PMID: 24417566]
[22]
Abbas, S.E.S.; George, R.F.; Samir, E.M.; Aref, M.M.A.; Abdel-Aziz, H.A. Synthesis and anticancer activity of some pyrido[2,3-d]pyrimidine derivatives as apoptosis inducers and cyclin-dependent kinase inhibitors. Future Med. Chem., 2019, 11(18), 2395-2414.
[http://dx.doi.org/10.4155/fmc-2019-0050] [PMID: 31544523]
[23]
VanderWel, S.N.; Harvey, P.J.; McNamara, D.J.; Repine, J.T.; Keller, P.R.; Quin, J., III; Booth, R.J.; Elliott, W.L.; Dobrusin, E.M.; Fry, D.W.; Toogood, P.L. Pyrido[2,3-d]pyrimidin-7-ones as specific inhibitors of cyclin-dependent kinase 4. J. Med. Chem., 2005, 48(7), 2371-2387.
[http://dx.doi.org/10.1021/jm049355+] [PMID: 15801830]
[24]
Pevarello, P.; Bischoff, J.R.; Mercurio, C. Targeting cyclin-dependent kinases with small molecule inhibitors. Checkpoint Controls and Targets in Cancer Therapy; Humana Press: Totowa, NJ, 2010, pp. 235-244.
[http://dx.doi.org/10.1007/978-1-60761-178-3_15]
[25]
Horiuchi, T.; Nagata, M.; Kitagawa, M.; Akahane, K.; Uoto, K. Discovery of novel thieno[2,3-d]pyrimidin-4-yl hydrazone-based inhibitors of Cyclin D1-CDK4: Synthesis, biological evaluation and structure–activity relationships. Part 2. Bioorg. Med. Chem., 2009, 17(23), 7850-7860.
[http://dx.doi.org/10.1016/j.bmc.2009.10.039] [PMID: 19889545]
[26]
Zhang, J.; Chen, P.; Duan, Y.; Xiong, H.; Li, H.; Zeng, Y.; Liang, G.; Tang, Q.; Wu, D. Design, synthesis and biological evaluation of 7H-pyrrolo[2,3-d]pyrimidine derivatives containing 1,8-naphthyridine-4-one fragment. Eur. J. Med. Chem., 2021, 215(Feb), 113273.
[http://dx.doi.org/10.1016/j.ejmech.2021.113273] [PMID: 33601310]
[27]
Elzahabi, H.S.A.; Nossier, E.S.; Khalifa, N.M.; Alasfoury, R.A.; El-Manawaty, M.A. Anticancer evaluation and molecular modeling of multi-targeted kinase inhibitors based pyrido[2,3- d]pyrimidine scaffold. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 546-557.
[http://dx.doi.org/10.1080/14756366.2018.1437729] [PMID: 29482389]
[28]
Le Brazidec, J.Y.; Pasis, A.; Tam, B.; Boykin, C.; Black, C.; Wang, D.; Claassen, G.; Chong, J.H.; Chao, J.; Fan, J.; Nguyen, K.; Silvian, L.; Ling, L.; Zhang, L.; Choi, M.; Teng, M.; Pathan, N.; Zhao, S.; Li, T.; Taveras, A. Synthesis, SAR and biological evaluation of 1,6-disubstituted-1H-pyrazolo[3,4-d]pyrimidines as dual inhibitors of Aurora kinases and CDK1. Bioorg. Med. Chem. Lett., 2012, 22(5), 2070-2074.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.019] [PMID: 22326168]
[29]
Eid, E.M.; Hassaneen, M.M. Molecular docking studies and synthesis of novel hybrid molecules containing thiazolopyrimidine/pyrido-pyrimidothiazine. Int J Sci. Res. Multidis. Stud., 2021, 7(5), 8-13.
[30]
Eid, E.M.; Hassaneen, H.M.E.; Abdelhamid, I.A.; Elwahy, A.H.M. Facile one‐pot, three‐component synthesis of novel bis(heterocycles) incorporating thieno[2,3‐ b]thiophenes via Michael addition reaction. J. Heterocycl. Chem., 2020, 57(5), 2243-2255.
[http://dx.doi.org/10.1002/jhet.3945]
[31]
Nia, R.H.; Mamaghani, M.; Tabatabaeian, K.; Shirini, F.; Rassa, M. A rapid one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using Brønsted-acidic ionic liquid as catalyst. Acta Chim. Slov., 2013, 60(4), 889-895.
[PMID: 24362994]
[32]
Mohammadi Ziarani, G.; Hosseini Nasab, N.; Rahimifard, M.; Abolhasani Soorki, A. One-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using sulfonic acid functionalized SBA-15 and the study on their antimicrobial activities. J. Saudi Chem. Soc., 2015, 19(6), 676-681.
[http://dx.doi.org/10.1016/j.jscs.2014.06.007]
[33]
Bhattacharyya, P.; Paul, S.; Das, A.R. Facile synthesis of pyridopyrimidine and coumarin fused pyridine libraries over a Lewis base-surfactant-combined catalyst TEOA in aqueous medium. RSC Advances, 2013, 3(10), 3203.
[http://dx.doi.org/10.1039/c3ra23254a]
[34]
Jain, S.; Paliwal, P.K.; Neelaiah Babu, G.; Bhatewara, A. DABCO promoted one-pot synthesis of dihydropyrano(c)chromene and pyrano[2,3-d]pyrimidine derivatives and their biological activities. J. Saudi Chem. Soc., 2014, 18(5), 535-540.
[http://dx.doi.org/10.1016/j.jscs.2011.10.023]
[35]
Riadi, Y.; Massip, S.; Leger, J.M.; Jarry, C.; Lazar, S.; Guillaumet, G. Convenient synthesis of 2,4-disubstituted pyrido[2,3-d]pyrimidines via regioselective palladium-catalyzed reactions. Tetrahedron, 2012, 68(25), 5018-5024.
[http://dx.doi.org/10.1016/j.tet.2012.04.051]
[36]
Samai, S.; Chandra Nandi, G.; Chowdhury, S.; Singh, M.S. l-Proline catalyzed synthesis of densely functionalized pyrido[2,3-d]pyrimidines via three-component one-pot domino Knoevenagel aza-Diels–Alder reaction. Tetrahedron, 2011, 67(33), 5935-5941.
[http://dx.doi.org/10.1016/j.tet.2011.06.051]
[37]
Abdolmohammadi, S.; Afsharpour, M. Facile one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives over ZrO2 nanoparticles catalyst. Chin. Chem. Lett., 2012, 23(3), 257-260.
[http://dx.doi.org/10.1016/j.cclet.2012.01.001]
[38]
Mohsenimehr, M.; Mamaghani, M.; Shirini, F.; Sheykhan, M.; Moghaddam, F.A. One-pot synthesis of novel pyrido[2,3-d]pyrimidines using HAp-encapsulated-γ-Fe2O3 supported sulfonic acid nanocatalyst under solvent-free conditions. Chin. Chem. Lett., 2014, 25(10), 1387-1391.
[http://dx.doi.org/10.1016/j.cclet.2014.04.025]
[39]
Maleki, N.; Shakarami, Z.; Jamshidian, S.; Nazari, M. Clean synthesis of pyrano[2,3- D]pyrimidines using ZnO nano-powders. Acta Chemica Iasi, 2016, 24(1), 20-28.
[http://dx.doi.org/10.1515/achi-2016-0002]
[40]
Parrey, I.R.; Hashmi, A.A. One-pot synthesis of new Pyrido[2,3-d] Pyrimidine derivatives under ultrasonic irradiation using organo catalyst 4-Dimethylaminopyridine (DMAP). Catal. Sustain. Energy, 2016, 3(1), 1-6.
[http://dx.doi.org/10.1515/cse-2016-0002]
[41]
Eid, E.M. Sustainable green synthesis of pyrimidine derivatives: Review on multicomponent synthesis, catalysts and techniques. Curr. Org. Synth., 2024, 21(2), 127-139.
[http://dx.doi.org/10.2174/1570179420666230330081211]
[42]
Eid, E.M.; Hassaneen, H.M.E.; Loutfy, S.A.; Salaheldin, T. Preparation of pyrimido[4,5- b][1,6]naphthyridin-4(1H)-one derivatives using a zeolite–nanogold catalyst and their in vitro evaluation as anticancer agent. J. Chem. Res., 2021, 45(7-8), 679-686.
[http://dx.doi.org/10.1177/1747519820988806]
[43]
Tu, S.; Wu, S.; Han, Z.; Hao, W. An efficient microwave‐assisted synthesis of pyrido[2,3‐ d]pyrimidine derivatives. Chin. J. Chem., 2009, 27(6), 1148-1152.
[http://dx.doi.org/10.1002/cjoc.200990192]
[44]
Gao, Y.; Tu, S.; Li, T.; Zhang, X.; Zhu, S.; Fang, F.; Shi, D. Effective synthesis of 7‐Amino‐6‐cyano‐5‐aryl‐5 H ‐pyrano[2,3‐ d]pyrimidine‐2,4(1 H, 3 H)‐diones Under Microwave Irradiation. Synth. Commun., 2004, 34(7), 1295-1299.
[http://dx.doi.org/10.1081/SCC-120030318]
[45]
Devi, I.; Kumar, B.S.D.; Bhuyan, P.J. A novel three-component one-pot synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines using microwave heating in the solid state. Tetrahedron Lett., 2003, 44(45), 8307-8310.
[http://dx.doi.org/10.1016/j.tetlet.2003.09.063]
[46]
Polshettiwar, V.; Varma, R.S. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 2008, 41(5), 629-639.
[http://dx.doi.org/10.1021/ar700238s] [PMID: 18419142]
[47]
Chemical Computing Group ULC. Molecular Operating Environment (MOE). 2021. Available From: https://www.chemcomp.com/Products.htm
[48]
PDB. 2XVQ: Human serum albumin complexed with dansyl-L-sarcosine. 2010. Available From: https://www.rcsb.org/structure/2XVQ
[49]
Kjell Undheim, T.B. Pyrimidines and their Benzo DerivativesComprehensive Heterocyclic Chemistry II; Elsevier Ltd: Amsterdam, 1996, 6, pp. 93-231.
[50]
Boraei, A.T.A.; El Ashry, E.S.H.; Duerkop, A.; Duerkop, A.; El Ashry, E.S.H.; Duerkop, A. Regioselectivity of the alkylation of S-substituted 1,2,4-triazoles with dihaloalkanes. Chem. Cent. J., 2016, 10(1), 22.
[http://dx.doi.org/10.1186/s13065-016-0165-0] [PMID: 27127538]
[51]
Gaafar, A.; Aly, A.; Abu-Zied, K.M.; Abdel-Rahman, A.E.; Helmy, M. Chemical Synthesis of Some Novel 6-Aminouracil-2-Thiones and Their Glycoside Analogues. Egypt. J. Chem., 2016, 59(5), 779-797.
[http://dx.doi.org/10.21608/ejchem.2016.1449]
[52]
Sakai, T.; Yamasaki, K.; Sako, T.; Kragh-Hansen, U.; Suenaga, A.; Otagiri, M. Interaction mechanism between indoxyl sulfate, a typical uremic toxin bound to site II, and ligands bound to site I of human serum albumin. Pharm. Res., 2001, 18(4), 520-524.
[http://dx.doi.org/10.1023/A:1011014629551] [PMID: 11451040]
[53]
Yamasaki, K.; Maruyama, T.; Yoshimoto, K.; Tsutsumi, Y.; Narazaki, R.; Fukuhara, A.; Kragh-Hansen, U.; Otagiri, M. Interactive binding to the two principal ligand binding sites of human serum albumin: Effect of the neutral-to-base transition. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1999, 1432(2), 313-323.
[http://dx.doi.org/10.1016/S0167-4838(99)00098-9] [PMID: 10407153]
[54]
Yamasaki, K.; Hyodo, S.; Taguchi, K.; Nishi, K.; Yamaotsu, N.; Hirono, S.; Chuang, V.T.G.; Seo, H.; Maruyama, T.; Otagiri, M. Long chain fatty acids alter the interactive binding of ligands to the two principal drug binding sites of human serum albumin. PLoS One, 2017, 12(6), e0180404.
[http://dx.doi.org/10.1371/journal.pone.0180404] [PMID: 28662200]
[55]
Yamasaki, K.; Nishi, K.; Anraku, M.; Taguchi, K.; Maruyama, T.; Otagiri, M. Metal-catalyzed oxidation of human serum albumin does not alter the interactive binding to the two principal drug binding sites. Biochem. Biophys. Rep., 2018, 14, 155-160.
[http://dx.doi.org/10.1016/j.bbrep.2018.05.002] [PMID: 29872747]
[56]
Ryan, A.J.; Ghuman, J.; Zunszain, P.A.; Chung, C.; Curry, S. Structural basis of binding of fluorescent, site-specific dansylated amino acids to human serum albumin. J. Struct. Biol., 2011, 174(1), 84-91.
[http://dx.doi.org/10.1016/j.jsb.2010.10.004] [PMID: 20940056]
[57]
Badshah, S.; Naeem, A. Bioactive thiazine and benzothiazine derivatives: Green synthesis methods and their medicinal importance. Molecules, 2016, 21(8), 1054.
[http://dx.doi.org/10.3390/molecules21081054] [PMID: 27537865]
[58]
Fatemeh Bavafa, K.A.D. Synthesis and thermal analysis of new bis-1, 2, 4-triazoles.The 22nd Iranian Seminar of Organic Chemistry; 19-21 August 2014Tabriz, Iran, 2014.
[59]
Severina, H.I.; Skupa, O.O.; Voloshchuk, N.I.; Khairulin, A.R.; Georgiyants, V.A. Design, synthesis, in vivo and in silico anticonvulsant activity studies of derivatives of 6-amino-4-hydroxy-2-thio-pyrimidine. ACTA Pharmaceut. Sci., 2020, 58(3), 371.
[http://dx.doi.org/10.23893/1307-2080.APS.05821]
[60]
Eid, E.M. COVID-19 Main Protease Molecular Docking Simulation against Synthesised Bis Imidazo[4,5-b] Indole using Nano Au-Zeolite. Ann. Clin Pharmacol. Toxicol., 2021, 2(2), 1020.
[61]
Ahadi, S.; Kamranifard, T.; Armaghan, M.; Khavasi, H.R.; Bazgir, A. Domino Knoevenagel condensation–Michael addition–cyclization for the diastereoselective synthesis of dihydrofuropyrido[2,3-d]pyrimidines via pyridinium ylides in water. RSC Adv., 2014, 4(14), 7296-7300.
[http://dx.doi.org/10.1039/c3ra45795h]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy