Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Emerging Multi-Omic Approaches to the Molecular Diagnosis of Mitochondrial Disease and Available Strategies for Treatment and Prevention

Author(s): Faeze Khaghani, Mahboobeh Hemmati, Masoumeh Ebrahimi and Arash Salmaninejad*

Volume 25, Issue 5, 2024

Published on: 14 June, 2024

Page: [358 - 379] Pages: 22

DOI: 10.2174/0113892029308327240612110334

Price: $65

Abstract

Mitochondria are semi-autonomous organelles present in several copies within most cells in the human body that are controlled by the precise collaboration of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoding mitochondrial proteins. They play important roles in numerous metabolic pathways, such as the synthesis of adenosine triphosphate (ATP), the predominant energy substrate of the cell generated through oxidative phosphorylation (OXPHOS), intracellular calcium homeostasis, metabolite biosynthesis, aging, cell cycles, and so forth. Previous studies revealed that dysfunction of these multi-functional organelles, which may arise due to mutations in either the nuclear or mitochondrial genome, leads to a diverse group of clinically and genetically heterogeneous disorders. These diseases include neurodegenerative and metabolic disorders as well as cardiac and skeletal myopathies in both adults and newborns. The plethora of phenotypes and defects displayed leads to challenges in the diagnosis and treatment of mitochondrial diseases. In this regard, the related literature proposed several diagnostic options, such as high throughput mitochondrial genomics and omics technologies, as well as numerous therapeutic options, such as pharmacological approaches, manipulating the mitochondrial genome, increasing the mitochondria content of the affected cells, and recently mitochondrial diseases transmission prevention. Therefore, the present article attempted to review the latest advances and challenges in diagnostic and therapeutic options for mitochondrial diseases.

[1]
Alshial, E.E.; Abdulghaney, M.I.; Wadan, A.H.S.; Abdellatif, M.A.; Ramadan, N.E.; Suleiman, A.M.; Waheed, N.; Abdellatif, M.; Mohammed, H.S. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci., 2023, 334, 122257.
[http://dx.doi.org/10.1016/j.lfs.2023.122257] [PMID: 37949207]
[2]
San-Millán, I. The key role of mitochondrial function in health and disease. Antioxidants, 2023, 12(4), 782.
[http://dx.doi.org/10.3390/antiox12040782] [PMID: 37107158]
[3]
Chinnery, P.F. Primary mitochondrial disorders overview; GeneReviews, 2021.
[4]
Aldossary, A.M.; Tawfik, E.A.; Alomary, M.N.; Alsudir, S.A.; Alfahad, A.J.; Alshehri, A.A.; Almughem, F.A.; Mohammed, R.Y.; Alzaydi, M.M. Recent advances in mitochondrial diseases: From molecular insights to therapeutic perspectives. Saudi Pharm. J., 2022, 30(8), 1065-1078.
[http://dx.doi.org/10.1016/j.jsps.2022.05.011] [PMID: 36164575]
[5]
Stenton, S.L.; Prokisch, H. Advancing genomic approaches to the molecular diagnosis of mitochondrial disease. Essays Biochem., 2018, 62(3), 399-408.
[http://dx.doi.org/10.1042/EBC20170110] [PMID: 29950319]
[6]
Grady, J.P.; Pickett, S.J.; Ng, Y.S.; Alston, C.L.; Blakely, E.L.; Hardy, S.A.; Feeney, C.L.; Bright, A.A.; Schaefer, A.M.; Gorman, G.S.; McNally, R.J.Q.; Taylor, R.W.; Turnbull, D.M.; McFarland, R. mt DNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease. EMBO Mol. Med., 2018, 10(6), e8262.
[http://dx.doi.org/10.15252/emmm.201708262] [PMID: 29735722]
[7]
Korchivaia, E.; Silaeva, Y.; Mazunin, I.; Volodyaev, I. The mitochondrial challenge: Disorders and prevention strategies. Biosystems, 2023, 223, 104819.
[http://dx.doi.org/10.1016/j.biosystems.2022.104819] [PMID: 36450320]
[8]
El-Hattab, A.W.; Scaglia, F. Mitochondrial cytopathies. Cell Calcium, 2016, 60(3), 199-206.
[http://dx.doi.org/10.1016/j.ceca.2016.03.003] [PMID: 26996063]
[9]
Lake, N.J.; Bird, M.J.; Isohanni, P.; Paetau, A. Leigh syndrome. J. Neuropathol. Exp. Neurol., 2015, 74(6), 482-492.
[http://dx.doi.org/10.1097/NEN.0000000000000195] [PMID: 25978847]
[10]
Schubert Baldo, M.; Vilarinho, L. Molecular basis of Leigh syndrome: A current look. Orphanet J. Rare Dis., 2020, 15(1), 31.
[http://dx.doi.org/10.1186/s13023-020-1297-9] [PMID: 31996241]
[11]
Avula, S.; Parikh, S.; Demarest, S.; Kurz, J.; Gropman, A. Treatment of mitochondrial disorders. Curr. Treat. Options Neurol., 2014, 16(6), 292.
[http://dx.doi.org/10.1007/s11940-014-0292-7] [PMID: 24700433]
[12]
Quinzii, C.M.; Emmanuele, V.; Hirano, M. Clinical presentations of coenzyme q10 deficiency syndrome. Mol. Syndromol., 2014, 5(3-4), 141-146.
[http://dx.doi.org/10.1159/000360490] [PMID: 25126046]
[13]
Pfeffer, G.; Horvath, R.; Klopstock, T.; Mootha, V.K.; Suomalainen, A.; Koene, S.; Hirano, M.; Zeviani, M.; Bindoff, L.A.; Yu-Wai-Man, P.; Hanna, M.; Carelli, V.; McFarland, R.; Majamaa, K.; Turnbull, D.M.; Smeitink, J.; Chinnery, P.F. New treatments for mitochondrial disease—no time to drop our standards. Nat. Rev. Neurol., 2013, 9(8), 474-481.
[http://dx.doi.org/10.1038/nrneurol.2013.129] [PMID: 23817350]
[14]
Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers, 2016, 2(1), 16080.
[http://dx.doi.org/10.1038/nrdp.2016.80] [PMID: 27775730]
[15]
McCormick, E.; Place, E.; Falk, M.J. Molecular genetic testing for mitochondrial disease: From one generation to the next. Neurotherapeutics, 2013, 10(2), 251-261.
[http://dx.doi.org/10.1007/s13311-012-0174-1] [PMID: 23269497]
[16]
McCormick, E.M.; Zolkipli-Cunningham, Z.; Falk, M.J. Mitochondrial disease genetics update: Recent insights into the molecular diagnosis and expanding phenotype of primary mitochondrial disease. Curr. Opin. Pediatr., 2018, 30(6), 714-724.
[http://dx.doi.org/10.1097/MOP.0000000000000686] [PMID: 30199403]
[17]
Thompson, K.; Collier, J.J.; Glasgow, R.I.C.; Robertson, F.M.; Pyle, A.; Blakely, E.L.; Alston, C.L.; Oláhová, M.; McFarland, R.; Taylor, R.W. Recent advances in understanding the molecular genetic basis of mitochondrial disease. J. Inherit. Metab. Dis., 2020, 43(1), 36-50.
[http://dx.doi.org/10.1002/jimd.12104] [PMID: 31021000]
[18]
Serre, V.; Rozanska, A.; Beinat, M.; Chretien, D.; Boddaert, N.; Munnich, A.; Rötig, A.; Chrzanowska-Lightowlers, Z.M. Mutations in mitochondrial ribosomal protein MRPL12 leads to growth retardation, neurological deterioration and mitochondrial translation deficiency. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(8), 1304-1312.
[http://dx.doi.org/10.1016/j.bbadis.2013.04.014] [PMID: 23603806]
[19]
Meienberg, J.; Bruggmann, R.; Oexle, K.; Matyas, G. Clinical sequencing: Is WGS the better WES? Hum. Genet., 2016, 135(3), 359-362.
[http://dx.doi.org/10.1007/s00439-015-1631-9] [PMID: 26742503]
[20]
Valenti, D.; Vacca, R. Primary and secondary mitochondrial diseases: Etiologies and therapeutic strategies. J. Clin. Med., 2022, 11(14), 4209.
[http://dx.doi.org/10.3390/jcm11144209] [PMID: 35887983]
[21]
Tinker, R.J.; Lim, A.Z.; Stefanetti, R.J.; McFarland, R. Current and emerging clinical treatment in mitochondrial disease. Mol. Diagn. Ther., 2021, 25(2), 181-206.
[http://dx.doi.org/10.1007/s40291-020-00510-6] [PMID: 33646563]
[22]
Braun, E. Mitochondrial replacement techniques for treating infertility. J. Med. Ethics, 2024, jme-2023-109660.
[http://dx.doi.org/10.1136/jme-2023-109660] [PMID: 38383152]
[23]
Watson, E.; Davis, R.; Sue, C.M. New diagnostic pathways for mitochondrial disease. J. Transl. Genet. Genom., 2020, 4, 188-202.
[24]
Lightowlers, R.N.; Taylor, R.W.; Turnbull, D.M. Mutations causing mitochondrial disease: What is new and what challenges remain? Science, 2015, 349(6255), 1494-1499.
[http://dx.doi.org/10.1126/science.aac7516] [PMID: 26404827]
[25]
Ng, Y.S.; Turnbull, D.M. Mitochondrial disease: Genetics and management. J. Neurol., 2016, 263(1), 179-191.
[http://dx.doi.org/10.1007/s00415-015-7884-3] [PMID: 26315846]
[26]
Legati, A.; Reyes, A.; Nasca, A.; Invernizzi, F.; Lamantea, E.; Tiranti, V.; Garavaglia, B.; Lamperti, C.; Ardissone, A.; Moroni, I.; Robinson, A.; Ghezzi, D.; Zeviani, M. New genes and pathomechanisms in mitochondrial disorders unraveled by NGS technologies. Biochim. Biophys. Acta Bioenerg., 2016, 1857(8), 1326-1335.
[http://dx.doi.org/10.1016/j.bbabio.2016.02.022] [PMID: 26968897]
[27]
Stenton, S.L.; Prokisch, H. Genetics of mitochondrial diseases: Identifying mutations to help diagnosis. EBioMedicine, 2020, 56, 102784.
[http://dx.doi.org/10.1016/j.ebiom.2020.102784] [PMID: 32454403]
[28]
Wu, T.H.; Peng, J.; Yang, L.; Chen, Y.H.; Lu, X.L.; Huang, J.T.; You, J.Y.; Ou-Yang, W.X.; Sun, Y.Y.; Xue, Y.N.; Mao, X.; Yan, H.M.; Ren, R.N.; Xie, J.; Chen, Z.H.; Zhang, V.W.; Lyu, G.Z.; He, F. Use of dual genomic sequencing to screen mitochondrial diseases in pediatrics: A retrospective analysis. Sci. Rep., 2023, 13(1), 4193.
[http://dx.doi.org/10.1038/s41598-023-31134-5] [PMID: 36918699]
[29]
Ahmad, R.; Hasan, M.Y. Next-generation sequencing technology in the diagnosis of mitochondrial disorders. Int. J. Health Sci., 2021, 15(1), 1-2.
[PMID: 33456435]
[30]
Stendel, C.; Neuhofer, C.; Floride, E.; Yuqing, S.; Ganetzky, R.D.; Park, J.; Freisinger, P.; Kornblum, C.; Kleinle, S.; Schöls, L.; Distelmaier, F.; Stettner, G.M.; Büchner, B.; Falk, M.J.; Mayr, J.A.; Synofzik, M.; Abicht, A.; Haack, T.B.; Prokisch, H.; Wortmann, S.B.; Murayama, K.; Fang, F.; Klopstock, T. Delineating MT-ATP6 -associated disease. Neurol. Genet., 2020, 6(1), e393.
[http://dx.doi.org/10.1212/NXG.0000000000000393] [PMID: 32042921]
[31]
Herbers, E.; Kekäläinen, N.J.; Hangas, A.; Pohjoismäki, J.L.; Goffart, S. Tissue specific differences in mitochondrial DNA maintenance and expression. Mitochondrion, 2019, 44, 85-92.
[http://dx.doi.org/10.1016/j.mito.2018.01.004] [PMID: 29339192]
[32]
Belkadi, A.; Bolze, A.; Itan, Y.; Cobat, A.; Vincent, Q.B.; Antipenko, A.; Shang, L.; Boisson, B.; Casanova, J.L.; Abel, L. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc. Natl. Acad. Sci. USA, 2015, 112(17), 5473-5478.
[http://dx.doi.org/10.1073/pnas.1418631112] [PMID: 25827230]
[33]
Frazier, A. E.; Compton, A. G.; Kishita, Y.; Hock, D. H.; Welch, A. E.; Amarasekera, S. S.; Rius, R.; Formosa, L. E.; Imai-Okazaki, A.; Francis, D. Fatal perinatal mitochondrial cardiac failure caused by recurrent de novo duplications in the ATAD3 locus. Med, 2021, 2, 49-73.
[34]
Alston, C.L.; Stenton, S.L.; Hudson, G.; Prokisch, H.; Taylor, R.W. The genetics of mitochondrial disease: Dissecting mitochondrial pathology using multi-omic pipelines. J. Pathol., 2021, 254(4), 430-442.
[http://dx.doi.org/10.1002/path.5641] [PMID: 33586140]
[35]
Bourchany, A.; Thauvin-Robinet, C.; Lehalle, D.; Bruel, A.L.; Masurel-Paulet, A.; Jean, N.; Nambot, S.; Willems, M.; Lambert, L.; El Chehadeh-Djebbar, S.; Schaefer, E.; Jaquette, A.; St-Onge, J.; Poe, C.; Jouan, T.; Chevarin, M.; Callier, P.; Mosca-Boidron, A.L.; Laurent, N.; Lefebvre, M.; Huet, F.; Houcinat, N.; Moutton, S.; Philippe, C.; Tran-Mau-Them, F.; Vitobello, A.; Kuentz, P.; Duffourd, Y.; Rivière, J.B.; Thevenon, J.; Faivre, L. Reducing diagnostic turnaround times of exome sequencing for families requiring timely diagnoses. Eur. J. Med. Genet., 2017, 60(11), 595-604.
[http://dx.doi.org/10.1016/j.ejmg.2017.08.011] [PMID: 28807864]
[36]
Schon, K.R.; Ratnaike, T.; van den Ameele, J.; Horvath, R.; Chinnery, P.F. Mitochondrial diseases: A diagnostic revolution. Trends Genet., 2020, 36(9), 702-717.
[http://dx.doi.org/10.1016/j.tig.2020.06.009] [PMID: 32674947]
[37]
Simon, M.T.; Eftekharian, S.S.; Stover, A.E.; Osborne, A.F.; Braffman, B.H.; Chang, R.C.; Wang, R.Y.; Steenari, M.R.; Tang, S.; Hwu, P.W.L.; Taft, R.J.; Benke, P.J.; Abdenur, J.E. Novel mutations in the mitochondrial complex I assembly gene NDUFAF5 reveal heterogeneous phenotypes. Mol. Genet. Metab., 2019, 126(1), 53-63.
[http://dx.doi.org/10.1016/j.ymgme.2018.11.001] [PMID: 30473481]
[38]
Alston, C.L.; Veling, M.T.; Heidler, J.; Taylor, L.S.; Alaimo, J.T.; Sung, A.Y.; He, L.; Hopton, S.; Broomfield, A.; Pavaine, J.; Diaz, J.; Leon, E.; Wolf, P.; McFarland, R.; Prokisch, H.; Wortmann, S.B.; Bonnen, P.E.; Wittig, I.; Pagliarini, D.J.; Taylor, R.W. Pathogenic bi-allelic mutations in NDUFAF8 cause Leigh syndrome with an isolated complex I deficiency. Am. J. Hum. Genet., 2020, 106(1), 92-101.
[http://dx.doi.org/10.1016/j.ajhg.2019.12.001] [PMID: 31866046]
[39]
Macken, W.L.; Falabella, M.; Pizzamiglio, C.; Woodward, C.E.; Scotchman, E.; Chitty, L.S.; Polke, J.M.; Bugiardini, E.; Hanna, M.G.; Vandrovcova, J.; Chandler, N.; Labrum, R.; Pitceathly, R.D.S. Enhanced mitochondrial genome analysis: Bioinformatic and long-read sequencing advances and their diagnostic implications. Expert Rev. Mol. Diagn., 2023, 23(9), 797-814.
[http://dx.doi.org/10.1080/14737159.2023.2241365] [PMID: 37642407]
[40]
Mu, W.; Li, B.; Wu, S.; Chen, J.; Sain, D.; Xu, D.; Black, M.H.; Karam, R.; Gillespie, K.; Farwell Hagman, K.D.; Guidugli, L.; Pronold, M.; Elliott, A.; Lu, H.M. Detection of structural variation using target captured next-generation sequencing data for genetic diagnostic testing. Genet. Med., 2019, 21(7), 1603-1610.
[http://dx.doi.org/10.1038/s41436-018-0397-6] [PMID: 30563988]
[41]
Gusic, M.; Prokisch, H. Genetic basis of mitochondrial diseases. FEBS Lett., 2021, 595(8), 1132-1158.
[http://dx.doi.org/10.1002/1873-3468.14068] [PMID: 33655490]
[42]
Mizuguchi, T.; Suzuki, T.; Abe, C.; Umemura, A.; Tokunaga, K.; Kawai, Y.; Nakamura, M.; Nagasaki, M.; Kinoshita, K.; Okamura, Y.; Miyatake, S.; Miyake, N.; Matsumoto, N. A 12-kb structural variation in progressive myoclonic epilepsy was newly identified by long-read whole-genome sequencing. J. Hum. Genet., 2019, 64(5), 359-368.
[http://dx.doi.org/10.1038/s10038-019-0569-5] [PMID: 30760880]
[43]
Clark, M.M.; Hildreth, A.; Batalov, S.; Ding, Y.; Chowdhury, S.; Watkins, K.; Ellsworth, K.; Camp, B.; Kint, C.I.; Yacoubian, C.; Farnaes, L.; Bainbridge, M.N.; Beebe, C.; Braun, J.J.A.; Bray, M.; Carroll, J.; Cakici, J.A.; Caylor, S.A.; Clarke, C.; Creed, M.P.; Friedman, J.; Frith, A.; Gain, R.; Gaughran, M.; George, S.; Gilmer, S.; Gleeson, J.; Gore, J.; Grunenwald, H.; Hovey, R.L.; Janes, M.L.; Lin, K.; McDonagh, P.D.; McBride, K.; Mulrooney, P.; Nahas, S.; Oh, D.; Oriol, A.; Puckett, L.; Rady, Z.; Reese, M.G.; Ryu, J.; Salz, L.; Sanford, E.; Stewart, L.; Sweeney, N.; Tokita, M.; Van Der Kraan, L.; White, S.; Wigby, K.; Williams, B.; Wong, T.; Wright, M.S.; Yamada, C.; Schols, P.; Reynders, J.; Hall, K.; Dimmock, D.; Veeraraghavan, N.; Defay, T.; Kingsmore, S.F. Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation. Sci. Transl. Med., 2019, 11(489), eaat6177.
[http://dx.doi.org/10.1126/scitranslmed.aat6177] [PMID: 31019026]
[44]
Ferri, L.; Dionisi-Vici, C.; Taurisano, R.; Vaz, F.M.; Guerrini, R.; Morrone, A. When silence is noise: Infantile-onset Barth syndrome caused by a synonymous substitution affectingTAZ gene transcription. Clin. Genet., 2016, 90(5), 461-465.
[http://dx.doi.org/10.1111/cge.12756] [PMID: 26853223]
[45]
Mertes, C.; Scheller, I.; Yépez, V.A.; Çelik, M.H.; Liang, Y.; Kremer, L.S.; Gusic, M.; Prokisch, H.; Gagneur, J. Detection of aberrant splicing events in RNA-seq data with FRASER. bioRxiv, 2019.
[http://dx.doi.org/10.1101/2019.12.18.866830]
[46]
Kremer, L.S.; Bader, D.M.; Mertes, C.; Kopajtich, R.; Pichler, G.; Iuso, A.; Haack, T.B.; Graf, E.; Schwarzmayr, T.; Terrile, C.; Koňaříková, E.; Repp, B.; Kastenmüller, G.; Adamski, J.; Lichtner, P.; Leonhardt, C.; Funalot, B.; Donati, A.; Tiranti, V.; Lombes, A.; Jardel, C.; Gläser, D.; Taylor, R.W.; Ghezzi, D.; Mayr, J.A.; Rötig, A.; Freisinger, P.; Distelmaier, F.; Strom, T.M.; Meitinger, T.; Gagneur, J.; Prokisch, H. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat. Commun., 2017, 8(1), 15824.
[http://dx.doi.org/10.1038/ncomms15824] [PMID: 28604674]
[47]
Li, M.; Zhao, L.; Page-McCaw, P.S.; Chen, W. Zebrafish genome engineering using the CRISPR–Cas9 system. Trends Genet., 2016, 32(12), 815-827.
[http://dx.doi.org/10.1016/j.tig.2016.10.005] [PMID: 27836208]
[48]
Cummings, B.B.; Marshall, J.L.; Tukiainen, T.; Lek, M.; Donkervoort, S.; Foley, A.R.; Bolduc, V.; Waddell, L.B.; Sandaradura, S.A.; O’Grady, G.L.; Estrella, E.; Reddy, H.M.; Zhao, F.; Weisburd, B.; Karczewski, K.J.; O’Donnell-Luria, A.H.; Birnbaum, D.; Sarkozy, A.; Hu, Y.; Gonorazky, H.; Claeys, K.; Joshi, H.; Bournazos, A.; Oates, E.C.; Ghaoui, R.; Davis, M.R.; Laing, N.G.; Topf, A.; Kang, P.B.; Beggs, A.H.; North, K.N.; Straub, V.; Dowling, J.J.; Muntoni, F.; Clarke, N.F.; Cooper, S.T.; Bönnemann, C.G.; MacArthur, D.G. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci. Transl. Med., 2017, 9(386), eaal5209.
[http://dx.doi.org/10.1126/scitranslmed.aal5209] [PMID: 28424332]
[49]
Wilmer, M.J.; Kluijtmans, L.A.J.; van der Velden, T.J.; Willems, P.H.; Scheffer, P.G.; Masereeuw, R.; Monnens, L.A.; van den Heuvel, L.P.; Levtchenko, E.N. Cysteamine restores glutathione redox status in cultured cystinotic proximal tubular epithelial cells. Biochim. Biophys. Acta Mol. Basis Dis., 2011, 1812(6), 643-651.
[http://dx.doi.org/10.1016/j.bbadis.2011.02.010] [PMID: 21371554]
[50]
Ferraro, N.M.; Strober, B.J.; Einson, J.; Abell, N.S.; Aguet, F.; Barbeira, A.N.; Brandt, M.; Bucan, M.; Castel, S.E.; Davis, J.R.; Greenwald, E.; Hess, G.T.; Hilliard, A.T.; Kember, R.L.; Kotis, B.; Park, Y.; Peloso, G.; Ramdas, S.; Scott, A.J.; Smail, C.; Tsang, E.K.; Zekavat, S.M.; Ziosi, M.; Aradhana; Ardlie, K.G.; Assimes, T.L.; Bassik, M.C.; Brown, C.D.; Correa, A.; Hall, I.; Im, H.K.; Li, X.; Natarajan, P.; Lappalainen, T.; Mohammadi, P.; Montgomery, S.B.; Battle, A.; Aguet, F.; Anand, S.; Ardlie, K.G.; Gabriel, S.; Getz, G.A.; Graubert, A.; Hadley, K.; Handsaker, R.E.; Huang, K.H.; Kashin, S.; Li, X.; MacArthur, D.G.; Meier, S.R.; Nedzel, J.L.; Nguyen, D.T.; Segrè, A.V.; Todres, E.; Balliu, B.; Barbeira, A.N.; Battle, A.; Bonazzola, R.; Brown, A.; Brown, C.D.; Castel, S.E.; Conrad, D.F.; Cotter, D.J.; Cox, N.; Das, S.; de Goede, O.M.; Dermitzakis, E.T.; Einson, J.; Engelhardt, B.E.; Eskin, E.; Eulalio, T.Y.; Ferraro, N.M.; Flynn, E.D.; Fresard, L.; Gamazon, E.R.; Garrido-Martín, D.; Gay, N.R.; Gloudemans, M.J.; Guigó, R.; Hame, A.R.; He, Y.; Hoffman, P.J.; Hormozdiari, F.; Hou, L.; Im, H.K.; Jo, B.; Kasela, S.; Kellis, M.; Kim-Hellmuth, S.; Kwong, A.; Lappalainen, T.; Li, X.; Liang, Y.; Mangul, S.; Mohammadi, P.; Montgomery, S.B.; Muñoz-Aguirre, M.; Nachun, D.C.; Nobel, A.B.; Oliva, M.; Park, Y.S.; Park, Y.; Parsana, P.; Rao, A.S.; Reverter, F.; Rouhana, J.M.; Sabatti, C.; Saha, A.; Stephens, M.; Stranger, B.E.; Strober, B.J.; Teran, N.A.; Viñuela, A.; Wang, G.; Wen, X.; Wright, F.; Wucher, V.; Zou, Y.; Ferreira, P.G.; Li, G.; Melé, M.; Yeger-Lotem, E.; Barcus, M.E.; Bradbury, D.; Krubit, T.; McLean, J.A.; Qi, L.; Robinson, K.; Roche, N.V.; Smith, A.M.; Sobin, L.; Tabor, D.E.; Undale, A.; Bridge, J.; Brigham, L.E.; Foster, B.A.; Gillard, B.M.; Hasz, R.; Hunter, M.; Johns, C.; Johnson, M.; Karasik, E.; Kopen, G.; Leinweber, W.F.; McDonald, A.; Moser, M.T.; Myer, K.; Ramsey, K.D.; Roe, B.; Shad, S.; Thomas, J.A.; Walters, G.; Washington, M.; Wheeler, J.; Jewell, S.D.; Rohrer, D.C.; Valley, D.R.; Davis, D.A.; Mash, D.C.; Branton, P.A.; Barker, L.K.; Gardiner, H.M.; Mosavel, M.; Siminoff, L.A.; Flicek, P.; Haeussler, M.; Juettemann, T.; Kent, W.J.; Lee, C.M.; Powell, C.C.; Rosenbloom, K.R.; Ruffier, M.; Sheppard, D.; Taylor, K.; Trevanion, S.J.; Zerbino, D.R.; Abell, N.S.; Akey, J.; Chen, L.; Demanelis, K.; Doherty, J.A.; Feinberg, A.P.; Hansen, K.D.; Hickey, P.F.; Jasmine, F.; Jiang, L.; Kaul, R.; Kibriya, M.G.; Li, J.B.; Li, Q.; Lin, S.; Linder, S.E.; Pierce, B.L.; Rizzardi, L.F.; Skol, A.D.; Smith, K.S.; Snyder, M.; Stamatoyannopoulos, J.; Tang, H.; Wang, M.; Carithers, L.J.; Guan, P.; Koester, S.E.; Little, A.R.; Moore, H.M.; Nierras, C.R.; Rao, A.K.; Vaught, J.B.; Volpi, S. Transcriptomic signatures across human tissues identify functional rare genetic variation. Science, 2020, 369(6509), eaaz5900.
[http://dx.doi.org/10.1126/science.aaz5900] [PMID: 32913073]
[51]
Aguet, F.; Anand, S.; Ardlie, K.G.; Gabriel, S.; Getz, G.A.; Graubert, A.; Hadley, K.; Handsaker, R.E.; Huang, K.H.; Kashin, S.; Li, X.; MacArthur, D.G.; Meier, S.R.; Nedzel, J.L.; Nguyen, D.T.; Segrè, A.V.; Todres, E.; Balliu, B.; Barbeira, A.N.; Battle, A.; Bonazzola, R.; Brown, A.; Brown, C.D.; Castel, S.E.; Conrad, D.F.; Cotter, D.J.; Cox, N.; Das, S.; de Goede, O.M.; Dermitzakis, E.T.; Einson, J.; Engelhardt, B.E.; Eskin, E.; Eulalio, T.Y.; Ferraro, N.M.; Flynn, E.D.; Fresard, L.; Gamazon, E.R.; Garrido-Martín, D.; Gay, N.R.; Gloudemans, M.J.; Guigó, R.; Hame, A.R.; He, Y.; Hoffman, P.J.; Hormozdiari, F.; Hou, L.; Im, H.K.; Jo, B.; Kasela, S.; Kellis, M.; Kim-Hellmuth, S.; Kwong, A.; Lappalainen, T.; Li, X.; Liang, Y.; Mangul, S.; Mohammadi, P.; Montgomery, S.B.; Muñoz-Aguirre, M.; Nachun, D.C.; Nobel, A.B.; Oliva, M.; Park, Y.S.; Park, Y.; Parsana, P.; Rao, A.S.; Reverter, F.; Rouhana, J.M.; Sabatti, C.; Saha, A.; Stephens, M.; Stranger, B.E.; Strober, B.J.; Teran, N.A.; Viñuela, A.; Wang, G.; Wen, X.; Wright, F.; Wucher, V.; Zou, Y.; Ferreira, P.G.; Li, G.; Melé, M.; Yeger-Lotem, E.; Barcus, M.E.; Bradbury, D.; Krubit, T.; McLean, J.A.; Qi, L.; Robinson, K.; Roche, N.V.; Smith, A.M.; Sobin, L.; Tabor, D.E.; Undale, A.; Bridge, J.; Brigham, L.E.; Foster, B.A.; Gillard, B.M.; Hasz, R.; Hunter, M.; Johns, C.; Johnson, M.; Karasik, E.; Kopen, G.; Leinweber, W.F.; McDonald, A.; Moser, M.T.; Myer, K.; Ramsey, K.D.; Roe, B.; Shad, S.; Thomas, J.A.; Walters, G.; Washington, M.; Wheeler, J.; Jewell, S.D.; Rohrer, D.C.; Valley, D.R.; Davis, D.A.; Mash, D.C.; Branton, P.A.; Barker, L.K.; Gardiner, H.M.; Mosavel, M.; Siminoff, L.A.; Flicek, P.; Haeussler, M.; Juettemann, T.; Kent, W.J.; Lee, C.M.; Powell, C.C.; Rosenbloom, K.R.; Ruffier, M.; Sheppard, D.; Taylor, K.; Trevanion, S.J.; Zerbino, D.R.; Abell, N.S.; Akey, J.; Chen, L.; Demanelis, K.; Doherty, J.A.; Feinberg, A.P.; Hansen, K.D.; Hickey, P.F.; Jasmine, F.; Jiang, L.; Kaul, R.; Kibriya, M.G.; Li, J.B.; Li, Q.; Lin, S.; Linder, S.E.; Pierce, B.L.; Rizzardi, L.F.; Skol, A.D.; Smith, K.S.; Snyder, M.; Stamatoyannopoulos, J.; Tang, H.; Wang, M.; Carithers, L.J.; Guan, P.; Koester, S.E.; Little, A.R.; Moore, H.M.; Nierras, C.R.; Rao, A.K.; Vaught, J.B.; Volpi, S. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science, 2020, 369(6509), 1318-1330.
[http://dx.doi.org/10.1126/science.aaz1776] [PMID: 32913098]
[52]
Papatheodorou, I.; Moreno, P.; Manning, J.; Fuentes, A.M.; George, N.; Fexova, S.; Fonseca, N.A.; Füllgrabe, A.; Green, M.; Huang, N.; Huerta, L.; Iqbal, H.; Jianu, M.; Mohammed, S.; Zhao, L.; Jarnuczak, A.F.; Jupp, S.; Marioni, J.; Meyer, K.; Petryszak, R.; Prada Medina, C.A.; Talavera-López, C.; Teichmann, S.; Vizcaino, J.A.; Brazma, A. Expression Atlas update: From tissues to single cells. Nucleic Acids Res., 2020, 48(D1), D77-D83.
[PMID: 31665515]
[53]
Gonorazky, H.D.; Naumenko, S.; Ramani, A.K.; Nelakuditi, V.; Mashouri, P.; Wang, P.; Kao, D.; Ohri, K.; Viththiyapaskaran, S.; Tarnopolsky, M.A.; Mathews, K.D.; Moore, S.A.; Osorio, A.N.; Villanova, D.; Kemaladewi, D.U.; Cohn, R.D.; Brudno, M.; Dowling, J.J. Expanding the boundaries of RNA sequencing as a diagnostic tool for rare mendelian disease. Am. J. Hum. Genet., 2019, 104(3), 466-483.
[http://dx.doi.org/10.1016/j.ajhg.2019.01.012] [PMID: 30827497]
[54]
Aicher, J.K.; Jewell, P.; Vaquero-Garcia, J.; Barash, Y.; Bhoj, E.J. Mapping RNA splicing variations in clinically accessible and nonaccessible tissues to facilitate Mendelian disease diagnosis using RNA-seq. Genet. Med., 2020, 22(7), 1181-1190.
[http://dx.doi.org/10.1038/s41436-020-0780-y] [PMID: 32225167]
[55]
Mertes, C.; Scheller, I. F. Detection of aberrant splicing events in RNA-seq data using FRASER. Nat Commun., 2021, 12, 529.
[56]
Graves, P.R.; Haystead, T.A.J. Molecular biologist’s guide to proteomics. Microbiol. Mol. Biol. Rev., 2002, 66(1), 39-63.
[http://dx.doi.org/10.1128/MMBR.66.1.39-63.2002] [PMID: 11875127]
[57]
McArdle, A.J.; Menikou, S. What is proteomics? Arch Dis Child Educ Pract Ed. , 2021, 106(3), 178-181.
[58]
Stenton, S.L.; Kremer, L.S.; Kopajtich, R.; Ludwig, C.; Prokisch, H. The diagnosis of inborn errors of metabolism by an integrative “multi-omics” approach: A perspective encompassing genomics, transcriptomics, and proteomics. J. Inherit. Metab. Dis., 2020, 43(1), 25-35.
[http://dx.doi.org/10.1002/jimd.12130] [PMID: 31119744]
[59]
Sahni, N.; Yi, S.; Taipale, M.; Fuxman Bass, J.I.; Coulombe-Huntington, J.; Yang, F.; Peng, J.; Weile, J.; Karras, G.I.; Wang, Y.; Kovács, I.A.; Kamburov, A.; Krykbaeva, I.; Lam, M.H.; Tucker, G.; Khurana, V.; Sharma, A.; Liu, Y.Y.; Yachie, N.; Zhong, Q.; Shen, Y.; Palagi, A.; San-Miguel, A.; Fan, C.; Balcha, D.; Dricot, A.; Jordan, D.M.; Walsh, J.M.; Shah, A.A.; Yang, X.; Stoyanova, A.K.; Leighton, A.; Calderwood, M.A.; Jacob, Y.; Cusick, M.E.; Salehi-Ashtiani, K.; Whitesell, L.J.; Sunyaev, S.; Berger, B.; Barabási, A.L.; Charloteaux, B.; Hill, D.E.; Hao, T.; Roth, F.P.; Xia, Y.; Walhout, A.J.M.; Lindquist, S.; Vidal, M. Widespread macromolecular interaction perturbations in human genetic disorders. Cell, 2015, 161(3), 647-660.
[http://dx.doi.org/10.1016/j.cell.2015.04.013] [PMID: 25910212]
[60]
Lake, N.J.; Webb, B.D.; Stroud, D.A.; Richman, T.R.; Ruzzenente, B.; Compton, A.G.; Mountford, H.S.; Pulman, J.; Zangarelli, C.; Rio, M.; Boddaert, N.; Assouline, Z.; Sherpa, M.D.; Schadt, E.E.; Houten, S.M.; Byrnes, J.; McCormick, E.M.; Zolkipli-Cunningham, Z.; Haude, K.; Zhang, Z.; Retterer, K.; Bai, R.; Calvo, S.E.; Mootha, V.K.; Christodoulou, J.; Rötig, A.; Filipovska, A.; Cristian, I.; Falk, M.J.; Metodiev, M.D.; Thorburn, D.R. Biallelic mutations in MRPS34 lead to instability of the small mitoribosomal subunit and leigh syndrome. Am. J. Hum. Genet., 2017, 101(2), 239-254.
[http://dx.doi.org/10.1016/j.ajhg.2017.07.005] [PMID: 28777931]
[61]
Borna, N. N.; Kishita, Y.; Kohda, M.; Lim, S. C.; Shimura, M.; Wu, Y.; Mogushi, K.; Yatsuka, Y.; Harashima, H.; Hisatomi, Y. Mitochondrial ribosomal protein PTCD3 mutations cause oxidative phosphorylation defects with Leigh syndrome. Neurogenetics, 2019, 20, 9-25.
[62]
Filipovska, A.; Rackham, O. Pentatricopeptide repeats. RNA Biol., 2013, 10(9), 1426-1432.
[http://dx.doi.org/10.4161/rna.24769] [PMID: 23635770]
[63]
Guarani, V.; Paulo, J.; Zhai, B.; Huttlin, E.L.; Gygi, S.P.; Harper, J.W. TIMMDC1/C3orf1 functions as a membrane-embedded mitochondrial complex I assembly factor through association with the MCIA complex. Mol. Cell. Biol., 2014, 34(5), 847-861.
[http://dx.doi.org/10.1128/MCB.01551-13] [PMID: 24344204]
[64]
Boenzi, S.; Diodato, D. Biomarkers for mitochondrial energy metabolism diseases. Essays Biochem., 2018, 62(3), 443-454.
[http://dx.doi.org/10.1042/EBC20170111] [PMID: 29980631]
[65]
Smuts, I.; van der Westhuizen, F.H.; Louw, R.; Mienie, L.J.; Engelke, U.F.H.; Wevers, R.A.; Mason, S.; Koekemoer, G.; Reinecke, C.J. Disclosure of a putative biosignature for respiratory chain disorders through a metabolomics approach. Metabolomics, 2013, 9(2), 379-391.
[http://dx.doi.org/10.1007/s11306-012-0455-z]
[66]
Thomas, R.H.; Hunter, A.; Butterworth, L.; Feeney, C.; Graves, T.D.; Holmes, S.; Hossain, P.; Lowndes, J.; Sharpe, J.; Upadhyaya, S.; Varhaug, K.N.; Votruba, M.; Wheeler, R.; Staley, K.; Rahman, S. Research priorities for mitochondrial disorders: Current landscape and patient and professional views. J. Inherit. Metab. Dis., 2022, 45(4), 796-803.
[http://dx.doi.org/10.1002/jimd.12521] [PMID: 35543492]
[67]
Sharma, R.; Reinstadler, B.; Engelstad, K.; Skinner, O.S.; Stackowitz, E.; Haller, R.G.; Clish, C.B.; Pierce, K.; Walker, M.A.; Fryer, R.; Oglesbee, D.; Mao, X.; Shungu, D.C.; Khatri, A.; Hirano, M.; De Vivo, D.C.; Mootha, V.K. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J. Clin. Invest., 2021, 131(2), e136055.
[http://dx.doi.org/10.1172/JCI136055] [PMID: 33463549]
[68]
Esterhuizen, K.; van der Westhuizen, F.H.; Louw, R. Metabolomics of mitochondrial disease. Mitochondrion, 2017, 35, 97-110.
[http://dx.doi.org/10.1016/j.mito.2017.05.012] [PMID: 28576558]
[69]
Coene, K.L.M.; Kluijtmans, L.A.J.; van der Heeft, E.; Engelke, U.F.H.; de Boer, S.; Hoegen, B.; Kwast, H.J.T.; van de Vorst, M.; Huigen, M.C.D.G.; Keularts, I.M.L.W.; Schreuder, M.F.; van Karnebeek, C.D.M.; Wortmann, S.B.; de Vries, M.C.; Janssen, M.C.H.; Gilissen, C.; Engel, J.; Wevers, R.A. Next-generation metabolic screening: Targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients. J. Inherit. Metab. Dis., 2018, 41(3), 337-353.
[http://dx.doi.org/10.1007/s10545-017-0131-6] [PMID: 29453510]
[70]
Landsverk, M.L.; Zhang, V.W.; Wong, L.J.C.; Andersson, H.C. A SUCLG1 mutation in a patient with mitochondrial DNA depletion and congenital anomalies. Mol. Genet. Metab. Rep., 2014, 1, 451-454.
[http://dx.doi.org/10.1016/j.ymgmr.2014.09.007] [PMID: 27896121]
[71]
Tort, F.; García-Silva, M.T.; Ferrer-Cortès, X.; Navarro-Sastre, A.; Garcia-Villoria, J.; Coll, M.J.; Vidal, E.; Jiménez-Almazán, J.; Dopazo, J.; Briones, P.; Elpeleg, O.; Ribes, A. Exome sequencing identifies a new mutation in SERAC1 in a patient with 3-methylglutaconic aciduria. Mol. Genet. Metab., 2013, 110(1-2), 73-77.
[http://dx.doi.org/10.1016/j.ymgme.2013.04.021] [PMID: 23707711]
[72]
Shayota, B.J. Biomarkers of mitochondrial disorders. Neurotherapeutics, 2024, 21(1), e00325.
[http://dx.doi.org/10.1016/j.neurot.2024.e00325] [PMID: 38295557]
[73]
Knottnerus, S.J.G.; Pras-Raves, M.L.; van der Ham, M.; Ferdinandusse, S.; Houtkooper, R.H.; Schielen, P.C.J.I.; Visser, G.; Wijburg, F.A.; de Sain-van der Velden, M.G.M. Prediction of VLCAD deficiency phenotype by a metabolic fingerprint in newborn screening bloodspots. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(6), 165725.
[http://dx.doi.org/10.1016/j.bbadis.2020.165725] [PMID: 32061778]
[74]
Merritt, J.L., II; Norris, M.; Kanungo, S. Fatty acid oxidation disorders. Ann. Transl. Med., 2018, 6(24), 473.
[http://dx.doi.org/10.21037/atm.2018.10.57] [PMID: 30740404]
[75]
Maguolo, A.; Rodella, G.; Dianin, A.; Nurti, R.; Monge, I.; Rigotti, E.; Cantalupo, G.; Salviati, L.; Tucci, S.; Pellegrini, F.; Molinaro, G.; Lupi, F.; Tonin, P.; Pasini, A.; Campostrini, N.; Ion Popa, F.; Teofoli, F.; Vincenzi, M.; Camilot, M.; Piacentini, G.; Bordugo, A. Diagnosis, genetic characterization and clinical follow up of mitochondrial fatty acid oxidation disorders in the new era of expanded newborn screening: A single centre experience. Mol. Genet. Metab. Rep., 2020, 24, 100632.
[http://dx.doi.org/10.1016/j.ymgmr.2020.100632] [PMID: 32793418]
[76]
Zytkovicz, T.H.; Fitzgerald, E.F.; Marsden, D.; Larson, C.A.; Shih, V.E.; Johnson, D.M.; Strauss, A.W.; Comeau, A.M.; Eaton, R.B.; Grady, G.F. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: A two-year summary from the new england newborn screening program. Clin. Chem., 2001, 47(11), 1945-1955.
[http://dx.doi.org/10.1093/clinchem/47.11.1945] [PMID: 11673361]
[77]
Andersen, L. W.; Mackenhauer, J.; Roberts, J. C.; Berg, K. M.; Cocchi, M. N.; Donnino, M. W. Etiology and therapeutic approach to elevated lactate levels. Mayo Clin Proc, 2013, 88(10), 1127-1140.
[78]
Fitzsimons, P.E.; Alston, C.L.; Bonnen, P.E.; Hughes, J.; Crushell, E.; Geraghty, M.T.; Tetreault, M.; O’Reilly, P.; Twomey, E.; Sheikh, Y.; Walsh, R.; Waterham, H.R.; Ferdinandusse, S.; Wanders, R.J.A.; Taylor, R.W.; Pitt, J.J.; Mayne, P.D. Clinical, biochemical, and genetic features of four patients with short-chain enoyl-CoA hydratase (ECHS1) deficiency. Am. J. Med. Genet. A., 2018, 176(5), 1115-1127.
[http://dx.doi.org/10.1002/ajmg.a.38658] [PMID: 29575569]
[79]
Ibrahim, A.Z.; Thirumal Kumar, D.; Abunada, T.; Younes, S.; George Priya Doss, C.; Zaki, O.K.; Zayed, H. Investigating the structural impacts of a novel missense variant identified with whole exome sequencing in an Egyptian patient with propionic acidemia. Mol. Genet. Metab. Rep., 2020, 25, 100645.
[http://dx.doi.org/10.1016/j.ymgmr.2020.100645] [PMID: 32995289]
[80]
Aboulmaouahib, B.; Kastenmüller, G.; Suhre, K.; Zöllner, S.; Weissensteiner, H.; Prehn, C.; Adamski, J.; Gieger, C.; Wang-Sattler, R.; Lichtner, P.; Strauch, K.; Flaquer, A. First mitochondrial genome-wide association study with metabolomics. Hum. Mol. Genet., 2022, 31(19), 3367-3376.
[http://dx.doi.org/10.1093/hmg/ddab312] [PMID: 34718574]
[81]
Mai, M.; Tönjes, A.; Kovacs, P.; Stumvoll, M.; Fiedler, G.M.; Leichtle, A.B. Serum levels of acylcarnitines are altered in prediabetic conditions. PLoS One, 2013, 8(12), e82459.
[http://dx.doi.org/10.1371/journal.pone.0082459] [PMID: 24358186]
[82]
Hirano, M.; Emmanuele, V.; Quinzii, C.M. Emerging therapies for mitochondrial diseases. Essays Biochem., 2018, 62(3), 467-481.
[http://dx.doi.org/10.1042/EBC20170114] [PMID: 29980632]
[83]
El-Hattab, A.W.; Zarante, A.M.; Almannai, M.; Scaglia, F. Therapies for mitochondrial diseases and current clinical trials. Mol. Genet. Metab., 2017, 122(3), 1-9.
[http://dx.doi.org/10.1016/j.ymgme.2017.09.009] [PMID: 28943110]
[84]
Hidalgo-Gutiérrez, A.; González-García, P.; Díaz-Casado, M.E.; Barriocanal-Casado, E.; López-Herrador, S.; Quinzii, C.M.; López, L.C. Metabolic targets of coenzyme Q10 in mitochondria. Antioxidants, 2021, 10(4), 520.
[http://dx.doi.org/10.3390/antiox10040520] [PMID: 33810539]
[85]
Potgieter, M.; Pretorius, E.; Pepper, M.S. Primary and secondary coenzyme Q10 deficiency: The role of therapeutic supplementation. Nutr. Rev., 2013, 71(3), 180-188.
[http://dx.doi.org/10.1111/nure.12011] [PMID: 23452285]
[86]
Klopstock, T.; Yu-Wai-Man, P.; Dimitriadis, K.; Rouleau, J.; Heck, S.; Bailie, M.; Atawan, A.; Chattopadhyay, S.; Schubert, M.; Garip, A.; Kernt, M.; Petraki, D.; Rummey, C.; Leinonen, M.; Metz, G.; Griffiths, P.G.; Meier, T.; Chinnery, P.F. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain, 2011, 134(9), 2677-2686.
[http://dx.doi.org/10.1093/brain/awr170] [PMID: 21788663]
[87]
Klopstock, T.; Metz, G.; Yu-Wai-Man, P.; Büchner, B.; Gallenmüller, C.; Bailie, M.; Nwali, N.; Griffiths, P.G.; von Livonius, B.; Reznicek, L.; Rouleau, J.; Coppard, N.; Meier, T.; Chinnery, P.F. Persistence of the treatment effect of idebenone in Leber’s hereditary optic neuropathy. Brain, 2013, 136(2), e230-e230.
[http://dx.doi.org/10.1093/brain/aws279] [PMID: 23388409]
[88]
Rudolph, G.; Dimitriadis, K.; Büchner, B.; Heck, S.; Al-Tamami, J.; Seidensticker, F.; Rummey, C.; Leinonen, M.; Meier, T.; Klopstock, T. Effects of idebenone on color vision in patients with leber hereditary optic neuropathy. J. Neuroophthalmol., 2013, 33(1), 30-36.
[http://dx.doi.org/10.1097/WNO.0b013e318272c643] [PMID: 23263355]
[89]
Blanchet, L.; Smeitink, J.A.M.; van Emst - de Vries, S.E.; Vogels, C.; Pellegrini, M.; Jonckheere, A.I.; Rodenburg, R.J.T.; Buydens, L.M.C.; Beyrath, J.; Willems, P.H.G.M.; Koopman, W.J.H. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning. Sci. Rep., 2015, 5(1), 8035.
[http://dx.doi.org/10.1038/srep08035] [PMID: 25620325]
[90]
Pfeffer, G.; Majamaa, K.; Turnbull, D.M.; Thorburn, D.; Chinnery, P.F. Treatment for mitochondrial disorders. Cochrane Database Syst. Rev., 2012, 2012(4), CD004426.
[PMID: 22513923]
[91]
Singh, A.; Faccenda, D.; Campanella, M. Pharmacological advances in mitochondrial therapy. EBioMedicine, 2021, 65, 103244.
[http://dx.doi.org/10.1016/j.ebiom.2021.103244] [PMID: 33647769]
[92]
Shrader, W.D.; Amagata, A.; Barnes, A.; Enns, G.M.; Hinman, A.; Jankowski, O.; Kheifets, V.; Komatsuzaki, R.; Lee, E.; Mollard, P.; Murase, K.; Sadun, A.A.; Thoolen, M.; Wesson, K.; Miller, G. α-Tocotrienol quinone modulates oxidative stress response and the biochemistry of aging. Bioorg. Med. Chem. Lett., 2011, 21(12), 3693-3698.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.085] [PMID: 21600768]
[93]
Chen, X.; Sun, L.G.; Zhao, Y. NCMCMDA: MiRNA–disease association prediction through neighborhood constraint matrix completion. Brief. Bioinform., 2021, 22(1), 485-496.
[http://dx.doi.org/10.1093/bib/bbz159] [PMID: 31927572]
[94]
Janssen, M.C.H.; Koene, S.; de Laat, P.; Hemelaar, P.; Pickkers, P.; Spaans, E.; Beukema, R.; Beyrath, J.; Groothuis, J.; Verhaak, C.; Smeitink, J. The KHENERGY study: Safety and efficacy of KH 176 in mitochondrial m.3243A>G spectrum disorders. Clin. Pharmacol. Ther., 2019, 105(1), 101-111.
[http://dx.doi.org/10.1002/cpt.1197] [PMID: 30058726]
[95]
Smeitink, J.; van Maanen, R.; de Boer, L.; Ruiterkamp, G.; Renkema, H. A randomised placebo-controlled, double-blind phase II study to explore the safety, efficacy, and pharmacokinetics of sonlicromanol in children with genetically confirmed mitochondrial disease and motor symptoms (“KHENERGYC”). BMC Neurol., 2022, 22(1), 158.
[http://dx.doi.org/10.1186/s12883-022-02685-3] [PMID: 35477351]
[96]
Marangon, K.; Devaraj, S.; Tirosh, O.; Packer, L.; Jialal, I. Comparison of the effect of α-lipoic acid and α-tocopherol supplementation on measures of oxidative stress. Free Radic. Biol. Med., 1999, 27(9-10), 1114-1121.
[http://dx.doi.org/10.1016/S0891-5849(99)00155-0] [PMID: 10569644]
[97]
Parikh, S.; Saneto, R.; Falk, M.J.; Anselm, I.; Cohen, B.H.; Haas, R.; Medicine Society, T.M. A modern approach to the treatment of mitochondrial disease. Curr. Treat. Options Neurol., 2009, 11(6), 414-430.
[http://dx.doi.org/10.1007/s11940-009-0046-0] [PMID: 19891905]
[98]
Anthony, R.M.; MacLeay, J.M.; Gross, K.L. Alpha-lipoic acid as a nutritive supplement for humans and animals: An overview of its use in dog food. Animals (Basel), 2021, 11(5), 1454.
[http://dx.doi.org/10.3390/ani11051454] [PMID: 34069383]
[99]
Salehi, B.; Berkay Yılmaz, Y.; Antika, G.; Boyunegmez Tumer, T.; Fawzi Mahomoodally, M.; Lobine, D.; Akram, M.; Riaz, M.; Capanoglu, E.; Sharopov, F.; Martins, N.; Cho, W.C.; Sharifi-Rad, J. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules, 2019, 9(8), 356.
[http://dx.doi.org/10.3390/biom9080356] [PMID: 31405030]
[100]
Tarnopolsky, M.A. The mitochondrial cocktail: Rationale for combined nutraceutical therapy in mitochondrial cytopathies. Adv. Drug Deliv. Rev., 2008, 60(13-14), 1561-1567.
[http://dx.doi.org/10.1016/j.addr.2008.05.001] [PMID: 18647623]
[101]
Kastaniotis, A.J.; Autio, K.J.R.; R Nair, R. Mitochondrial fatty acids and neurodegenerative disorders. Neuroscientist, 2021, 27(2), 143-158.
[http://dx.doi.org/10.1177/1073858420936162] [PMID: 32644907]
[102]
Sato, Y.; Nakagawa, M.; Higuchi, I.; Osame, M.; Naito, E.; Oizumi, K. Mitochondrial myopathy and familial thiamine deficiency. Muscle Nerve, 2000, 23(7), 1069-1075.
[http://dx.doi.org/10.1002/1097-4598(200007)23:7<1069::AID-MUS9>3.0.CO;2-0] [PMID: 10883001]
[103]
Mermigkis, C.; Bouloukaki, I.; Mastorodemos, V.; Plaitakis, A.; Alogdianakis, V.; Siafakas, N.; Schiza, S. Medical treatment with thiamine, coenzyme Q, vitamins E and C, and carnitine improved obstructive sleep apnea in an adult case of Leigh disease. Sleep Breath., 2013, 17(4), 1129-1135.
[http://dx.doi.org/10.1007/s11325-013-0816-5] [PMID: 23389837]
[104]
Berlin, S.; Goette, A.; Summo, L.; Lossie, J.; Gebauer, A.; Al-Saady, N.; Calo, L.; Naccarelli, G.; Schunck, W.H.; Fischer, R.; Camm, A.J.; Dobrev, D. Assessment of OMT-28, a synthetic analog of omega-3 epoxyeicosanoids, in patients with persistent atrial fibrillation: Rationale and design of the PROMISE-AF phase II study. Int. J. Cardiol. Heart Vasc., 2020, 29, 100573.
[http://dx.doi.org/10.1016/j.ijcha.2020.100573] [PMID: 32685659]
[105]
Whitaker, R.M.; Corum, D.; Beeson, C.C.; Schnellmann, R.G. Mitochondrial biogenesis as a pharmacological target: A new approach to acute and chronic diseases. Annu. Rev. Pharmacol. Toxicol., 2016, 56(1), 229-249.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103155] [PMID: 26566156]
[106]
Giordano, C.; Iommarini, L.; Giordano, L.; Maresca, A.; Pisano, A.; Valentino, M.L.; Caporali, L.; Liguori, R.; Deceglie, S.; Roberti, M.; Fanelli, F.; Fracasso, F.; Ross-Cisneros, F.N.; D’Adamo, P.; Hudson, G.; Pyle, A.; Yu-Wai-Man, P.; Chinnery, P.F.; Zeviani, M.; Salomao, S.R.; Berezovsky, A.; Belfort, R., Jr; Ventura, D.F.; Moraes, M.; Moraes Filho, M.; Barboni, P.; Sadun, F.; De Negri, A.; Sadun, A.A.; Tancredi, A.; Mancini, M.; d’Amati, G.; Loguercio Polosa, P.; Cantatore, P.; Carelli, V. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber’s hereditary optic neuropathy. Brain, 2014, 137(2), 335-353.
[http://dx.doi.org/10.1093/brain/awt343] [PMID: 24369379]
[107]
Steele, H.; Gomez-Duran, A.; Pyle, A.; Hopton, S.; Newman, J.; Stefanetti, R.J.; Charman, S.J.; Parikh, J.D.; He, L.; Viscomi, C.; Jakovljevic, D.G.; Hollingsworth, K.G.; Robinson, A.J.; Taylor, R.W.; Bottolo, L.; Horvath, R.; Chinnery, P.F. Metabolic effects of bezafibrate in mitochondrial disease. EMBO Mol. Med., 2020, 12(3), e11589.
[http://dx.doi.org/10.15252/emmm.201911589] [PMID: 32107855]
[108]
Reisman, S.A.; Gahir, S.S.; Lee, C.Y.I.; Proksch, J.W.; Sakamoto, M.; Ward, K.W. Pharmacokinetics and pharmacodynamics of the novel Nrf2 activator omaveloxolone in primates. Drug Des. Devel. Ther., 2019, 13, 1259-1270.
[http://dx.doi.org/10.2147/DDDT.S193889] [PMID: 31118567]
[109]
Russell, O.M.; Gorman, G.S.; Lightowlers, R.N.; Turnbull, D.M. Mitochondrial diseases: Hope for the future. Cell, 2020, 181(1), 168-188.
[http://dx.doi.org/10.1016/j.cell.2020.02.051] [PMID: 32220313]
[110]
Bishop, D.J.; Botella, J.; Genders, A.J.; Lee, M.J.C.; Saner, N.J.; Kuang, J.; Yan, X.; Granata, C. High-intensity exercise and mitochondrial biogenesis: Current controversies and future research directions. Physiology, 2019, 34(1), 56-70.
[http://dx.doi.org/10.1152/physiol.00038.2018] [PMID: 30540234]
[111]
Tarnopolsky, M.A. Exercise as a therapeutic strategy for primary mitochondrial cytopathies. J. Child Neurol., 2014, 29(9), 1225-1234.
[http://dx.doi.org/10.1177/0883073814538512] [PMID: 25008908]
[112]
Schaefer, P.M.; Rathi, K.; Butic, A.; Tan, W.; Mitchell, K.; Wallace, D.C. Mitochondrial mutations alter endurance exercise response and determinants in mice. Proc. Natl. Acad. Sci. USA, 2022, 119(18), e2200549119.
[http://dx.doi.org/10.1073/pnas.2200549119] [PMID: 35482926]
[113]
Chen, L.; Qin, Y.; Liu, B.; Gao, M.; Li, A.; Li, X.; Gong, G. PGC-1α-mediated mitochondrial quality control: Molecular mechanisms and implications for heart failure. Front. Cell Dev. Biol., 2022, 10, 871357.
[http://dx.doi.org/10.3389/fcell.2022.871357]
[114]
Scarpulla, R.C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev., 2008, 88(2), 611-638.
[http://dx.doi.org/10.1152/physrev.00025.2007] [PMID: 18391175]
[115]
Hong, S.; Kim, S.; Kim, K.; Lee, H. Clinical approaches for mitochondrial diseases. Cells, 2023, 12(20), 2494.
[http://dx.doi.org/10.3390/cells12202494] [PMID: 37887337]
[116]
Tiberi, J.; Segatto, M.; Fiorenza, M.T.; La Rosa, P. Apparent opportunities and hidden pitfalls: The conflicting results of restoring nrf2-regulated redox metabolism in friedreich’s ataxia pre-clinical models and clinical trials. Biomedicines, 2023, 11(5), 1293.
[http://dx.doi.org/10.3390/biomedicines11051293] [PMID: 37238963]
[117]
Wang, L.; Shan, H.; Wang, B.; Wang, N.; Zhou, Z.; Pan, C.; Wang, F. Puerarin attenuates osteoarthritis via upregulating AMP-activated protein kinase/proliferator-activated receptor-γ coactivator-1 signaling pathway in osteoarthritis rats. Pharmacology, 2018, 102(3-4), 117-125.
[http://dx.doi.org/10.1159/000490418] [PMID: 29961054]
[118]
Puigserver, P.; Spiegelman, B.M. Peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1 α): Transcriptional coactivator and metabolic regulator. Endocr. Rev., 2003, 24(1), 78-90.
[http://dx.doi.org/10.1210/er.2002-0012] [PMID: 12588810]
[119]
Viscomi, C.; Bottani, E.; Civiletto, G.; Cerutti, R.; Moggio, M.; Fagiolari, G.; Schon, E.A.; Lamperti, C.; Zeviani, M. In vivo correction of COX deficiency by activation of the AMPK/PGC-1α axis. Cell Metab., 2011, 14(1), 80-90.
[http://dx.doi.org/10.1016/j.cmet.2011.04.011] [PMID: 21723506]
[120]
Dillon, L.M.; Hida, A.; Garcia, S.; Prolla, T.A.; Moraes, C.T. Long-term bezafibrate treatment improves skin and spleen phenotypes of the mtDNA mutator mouse. PLoS One, 2012, 7(9), e44335.
[http://dx.doi.org/10.1371/journal.pone.0044335] [PMID: 22962610]
[121]
Fernandez-Marcos, P.J.; Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr., 2011, 93(4), 884S-890S.
[http://dx.doi.org/10.3945/ajcn.110.001917] [PMID: 21289221]
[122]
Yatsuga, S.; Suomalainen, A. Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice. Hum. Mol. Genet., 2012, 21(3), 526-535.
[http://dx.doi.org/10.1093/hmg/ddr482] [PMID: 22012983]
[123]
Jeppesen, T.D.; Schwartz, M.; Olsen, D.B.; Wibrand, F.; Krag, T.; Dunø, M.; Hauerslev, S.; Vissing, J. Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy. Brain, 2006, 129(12), 3402-3412.
[http://dx.doi.org/10.1093/brain/awl149] [PMID: 16815877]
[124]
Corton, J.M.; Gillespie, J.G.; Hawley, S.A.; Hardie, D.G. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem., 1995, 229(2), 558-565.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20498.x] [PMID: 7744080]
[125]
Golubitzky, A.; Dan, P.; Weissman, S.; Link, G.; Wikstrom, J.D.; Saada, A. Screening for active small molecules in mitochondrial complex I deficient patient’s fibroblasts, reveals AICAR as the most beneficial compound. PLoS One, 2011, 6(10), e26883.
[http://dx.doi.org/10.1371/journal.pone.0026883] [PMID: 22046392]
[126]
El-Mir, M.Y.; Nogueira, V.; Fontaine, E.; Avéret, N.; Rigoulet, M.; Leverve, X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem., 2000, 275(1), 223-228.
[http://dx.doi.org/10.1074/jbc.275.1.223] [PMID: 10617608]
[127]
Owen, M.R.; Doran, E.; Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J., 2000, 348(3), 607-614.
[http://dx.doi.org/10.1042/bj3480607] [PMID: 10839993]
[128]
Marini, C.; Cossu, V.; Bauckneht, M.; Lanfranchi, F.; Raffa, S.; Orengo, A.M.; Ravera, S.; Bruno, S.; Sambuceti, G. Metformin and cancer glucose metabolism: At the bench or at the bedside? Biomolecules, 2021, 11(8), 1231.
[http://dx.doi.org/10.3390/biom11081231] [PMID: 34439897]
[129]
Madiraju, A.K.; Erion, D.M.; Rahimi, Y.; Zhang, X.M.; Braddock, D.T.; Albright, R.A.; Prigaro, B.J.; Wood, J.L.; Bhanot, S.; MacDonald, M.J.; Jurczak, M.J.; Camporez, J.P.; Lee, H.Y.; Cline, G.W.; Samuel, V.T.; Kibbey, R.G.; Shulman, G.I. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature, 2014, 510(7506), 542-546.
[http://dx.doi.org/10.1038/nature13270] [PMID: 24847880]
[130]
Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; Musi, N.; Hirshman, M.F.; Goodyear, L.J.; Moller, D.E. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest., 2001, 108(8), 1167-1174.
[http://dx.doi.org/10.1172/JCI13505] [PMID: 11602624]
[131]
Kra, G.; Daddam, J.R.; Gabay, H.; Yosefi, S.; Zachut, M. Antioxidant resveratrol increases lipolytic and reduces lipogenic gene expression under in vitro heat stress conditions in dedifferentiated adipocyte-derived progeny cells from dairy cows. Antioxidants, 2021, 10(6), 905.
[http://dx.doi.org/10.3390/antiox10060905] [PMID: 34205039]
[132]
Mizuguchi, Y.; Hatakeyama, H.; Sueoka, K.; Tanaka, M.; Goto, Y. Low dose resveratrol ameliorates mitochondrial respiratory dysfunction and enhances cellular reprogramming. Mitochondrion, 2017, 34, 43-48.
[http://dx.doi.org/10.1016/j.mito.2016.12.006] [PMID: 28093354]
[133]
De Paepe, B.; Vandemeulebroecke, K.; Smet, J.; Vanlander, A.; Seneca, S.; Lissens, W.; Van Hove, J.L.K.; Deschepper, E.; Briones, P.; Van Coster, R. Effect of resveratrol on cultured skin fibroblasts from patients with oxidative phosphorylation defects. Phytother. Res., 2014, 28(2), 312-316.
[http://dx.doi.org/10.1002/ptr.4988] [PMID: 23620374]
[134]
Tang, J.X.; Thompson, K.; Taylor, R.W.; Oláhová, M. Mitochondrial OXPHOS biogenesis: Co-regulation of protein synthesis, import, and assembly pathways. Int. J. Mol. Sci., 2020, 21(11), 3820.
[http://dx.doi.org/10.3390/ijms21113820] [PMID: 32481479]
[135]
Zhang, Y.; Xu, H. Translational regulation of mitochondrial biogenesis. Biochem. Soc. Trans., 2016, 44(6), 1717-1724.
[http://dx.doi.org/10.1042/BST20160071C] [PMID: 27913682]
[136]
Sa, B.K.; Kim, C.; Kim, M.B.; Hwang, J.K. Panduratin A prevents tumor necrosis factor-alpha-induced muscle atrophy in L6 rat skeletal muscle cells. J. Med. Food, 2017, 20(11), 1047-1054.
[http://dx.doi.org/10.1089/jmf.2017.3970] [PMID: 28933980]
[137]
Tengan, C.H.; Moraes, C.T. NO control of mitochondrial function in normal and transformed cells. Biochim. Biophys. Acta Bioenerg., 2017, 1858(8), 573-581.
[http://dx.doi.org/10.1016/j.bbabio.2017.02.009] [PMID: 28216426]
[138]
Bonaldo, P.; Sandri, M. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech., 2013, 6(1), 25-39.
[http://dx.doi.org/10.1242/dmm.010389] [PMID: 23268536]
[139]
Kim, M.B.; Kim, T.; Kim, C.; Hwang, J.K. Standardized Kaempferia parviflora extract enhances exercise performance through activation of mitochondrial biogenesis. J. Med. Food, 2018, 21(1), 30-38.
[http://dx.doi.org/10.1089/jmf.2017.3989] [PMID: 29125913]
[140]
Vaughan, R.A.; Mermier, C.M.; Bisoffi, M.; Trujillo, K.A.; Conn, C.A. Dietary stimulators of the PGC-1 superfamily and mitochondrial biosynthesis in skeletal muscle. A mini-review. J. Physiol. Biochem., 2014, 70(1), 271-284.
[http://dx.doi.org/10.1007/s13105-013-0301-4] [PMID: 24338337]
[141]
Tatsuta, T.; Langer, T. Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J., 2008, 27(2), 306-314.
[http://dx.doi.org/10.1038/sj.emboj.7601972] [PMID: 18216873]
[142]
Pellegrino, M.W.; Nargund, A.M.; Haynes, C.M. Signaling the mitochondrial unfolded protein response. Biochimica et Biophysica Acta (BBA)-. Molecular Cell Research, 2013, 1833, 410-416.
[143]
Sugiura, A.; McLelland, G.L.; Fon, E.A.; McBride, H.M. A new pathway for mitochondrial quality control: Mitochondrial-derived vesicles. EMBO J., 2014, 33(19), 2142-2156.
[http://dx.doi.org/10.15252/embj.201488104] [PMID: 25107473]
[144]
Wredenberg, A.; Wibom, R.; Wilhelmsson, H.; Graff, C.; Wiener, H.H.; Burden, S.J.; Oldfors, A.; Westerblad, H.; Larsson, N.G. Increased mitochondrial mass in mitochondrial myopathy mice. Proc. Natl. Acad. Sci. USA, 2002, 99(23), 15066-15071.
[http://dx.doi.org/10.1073/pnas.232591499] [PMID: 12417746]
[145]
Puigserver, P.; Wu, Z.; Park, C.W.; Graves, R.; Wright, M.; Spiegelman, B.M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998, 92(6), 829-839.
[http://dx.doi.org/10.1016/S0092-8674(00)81410-5] [PMID: 9529258]
[146]
Scarpulla, R. C. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta, 2002, 1-14.
[147]
Khan, N. A.; Nikkanen, J.; Yatsuga, S.; Jackson, C.; Wang, L.; Pradhan, S.; Kivelä, R.; Pessia, A.; Velagapudi, V.; Suomalainen, A. mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metabolism, 2017, 26, 419-428.
[148]
Johnson, S.C.; Kaeberlein, M. Rapamycin in aging and disease: Maximizing efficacy while minimizing side effects. Oncotarget, 2016, 7(29), 44876-44878.
[http://dx.doi.org/10.18632/oncotarget.10381] [PMID: 27384492]
[149]
Rahman, M.A.; Akter, S.; Dorotea, D.; Mazumder, A.; Uddin, M.N.; Hannan, M.A.; Hossen, M.J.; Ahmed, M.S.; Kim, W.; Kim, B.; Uddin, M.J. Renoprotective potentials of small molecule natural products targeting mitochondrial dysfunction. Front. Pharmacol., 2022, 13, 925993.
[http://dx.doi.org/10.3389/fphar.2022.925993] [PMID: 35910356]
[150]
Jacoby, E.; Bar-Yosef, O.; Gruber, N.; Lahav, E.; Varda-Bloom, N.; Bolkier, Y.; Bar, D.; Blumkin, M.B.Y.; Barak, S.; Eisenstein, E.; Ahonniska-Assa, J.; Silberg, T.; Krasovsky, T.; Bar, O.; Erez, N.; Bielorai, B.; Golan, H.; Dekel, B.; Besser, M.J.; Pozner, G.; Khoury, H.; Jacobs, A.; Campbell, J.; Herskovitz, E.; Sher, N.; Yivgi-Ohana, N.; Anikster, Y.; Toren, A. Mitochondrial augmentation of hematopoietic stem cells in children with single large-scale mitochondrial DNA deletion syndromes. Sci. Transl. Med., 2022, 14(676), eabo3724.
[http://dx.doi.org/10.1126/scitranslmed.abo3724] [PMID: 36542693]
[151]
Emani, S.M.; McCully, J.D. Mitochondrial transplantation: Applications for pediatric patients with congenital heart disease. Transl. Pediatr., 2018, 7(2), 169-175.
[http://dx.doi.org/10.21037/tp.2018.02.02] [PMID: 29770298]
[152]
Rossi, A.; Asthana, A.; Riganti, C.; Sedrakyan, S.; Byers, L.N.; Robertson, J.; Senger, R.S.; Montali, F.; Grange, C.; Dalmasso, A.; Porporato, P.E.; Palles, C.; Thornton, M.E.; Da Sacco, S.; Perin, L.; Ahn, B.; McCully, J.; Orlando, G.; Bussolati, B. Mitochondria transplantation mitigates damage in an in vitro model of renal tubular injury and in an ex vivo model of DCD renal transplantation. Ann. Surg., 2023, 278(6), e1313-e1326.
[http://dx.doi.org/10.1097/SLA.0000000000006005] [PMID: 37450698]
[153]
Alemany, V.S.; Nomoto, R.; Saeed, M.Y.; Celik, A.; Regan, W.L.; Matte, G.S.; Recco, D.P.; Emani, S.M.; Del Nido, P.J.; McCully, J.D. Mitochondrial transplantation preserves myocardial function and viability in pediatric and neonatal pig hearts donated after circulatory death. J. Thorac. Cardiovasc. Surg., 2023, 167(1), e6-e21.
[PMID: 37211245]
[154]
Guariento, A.; Piekarski, B.L.; Doulamis, I.P.; Blitzer, D.; Ferraro, A.M.; Harrild, D.M.; Zurakowski, D.; del Nido, P.J.; McCully, J.D.; Emani, S.M. Autologous mitochondrial transplantation for cardiogenic shock in pediatric patients following ischemia-reperfusion injury. J. Thorac. Cardiovasc. Surg., 2021, 162(3), 992-1001.
[http://dx.doi.org/10.1016/j.jtcvs.2020.10.151] [PMID: 33349443]
[155]
Wai, T.; Ao, A.; Zhang, X.; Cyr, D.; Dufort, D.; Shoubridge, E.A. The role of mitochondrial DNA copy number in mammalian fertility. Biol. Reprod., 2010, 83(1), 52-62.
[http://dx.doi.org/10.1095/biolreprod.109.080887] [PMID: 20130269]
[156]
Somuncu, B.; Ekmekcioglu, A.; Antmen, F.M.; Ertuzun, T.; Deniz, E.; Keskin, N.; Park, J.; Yazici, I.E.; Simsek, B.; Erman, B.; Yin, W.; Erman, B.; Muftuoglu, M. Targeting mitochondrial DNA polymerase gamma for selective inhibition of MLH1 deficient colon cancer growth. PLoS One, 2022, 17(6), e0268391.
[http://dx.doi.org/10.1371/journal.pone.0268391] [PMID: 35657956]
[157]
Bacman, S.R.; Gammage, P.; Minczuk, M.; Moraes, C.T. Manipulation of mitochondrial genes and mtDNA heteroplasmy; Elsevier, 2020, pp. 441-487.
[http://dx.doi.org/10.1016/bs.mcb.2019.12.004]
[158]
Falabella, M.; Minczuk, M.; Hanna, M.G.; Viscomi, C.; Pitceathly, R.D.S. Gene therapy for primary mitochondrial diseases: Experimental advances and clinical challenges. Nat. Rev. Neurol., 2022, 18(11), 689-698.
[http://dx.doi.org/10.1038/s41582-022-00715-9] [PMID: 36257993]
[159]
Barrera-Paez, J.D.; Moraes, C.T. Mitochondrial genome engineering coming-of-age. Trends Genet., 2022, 38(8), 869-880.
[http://dx.doi.org/10.1016/j.tig.2022.04.011]
[160]
Vigne, E.; Dedieu, J-F.; Brie, A.; Gillardeaux, A.; Briot, D.; Benihoud, K.; Latta-Mahieu, M.; Saulnier, P.; Perricaudet, M.; Yeh, P. Genetic manipulations of adenovirus type 5 fiber resulting in liver tropism attenuation. Gene Ther., 2003, 10(2), 153-162.
[http://dx.doi.org/10.1038/sj.gt.3301845] [PMID: 12571644]
[161]
Miyagawa, Y.; Marino, P.; Verlengia, G.; Uchida, H.; Goins, W.F.; Yokota, S.; Geller, D.A.; Yoshida, O.; Mester, J.; Cohen, J.B.; Glorioso, J.C. Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity. Proc. Natl. Acad. Sci. USA, 2015, 112(13), E1632-E1641.
[http://dx.doi.org/10.1073/pnas.1423556112] [PMID: 25775541]
[162]
Orefice, N.S. Development of new strategies using extracellular vesicles loaded with exogenous nucleic acid. Pharmaceutics, 2020, 12(8), 705.
[http://dx.doi.org/10.3390/pharmaceutics12080705] [PMID: 32722622]
[163]
Vignal, C.; Uretsky, S.; Fitoussi, S.; Galy, A.; Blouin, L.; Girmens, J.F.; Bidot, S.; Thomasson, N.; Bouquet, C.; Valero, S.; Meunier, S.; Combal, J.P.; Gilly, B.; Katz, B.; Sahel, J.A. Safety of rAAV2/2-ND4 gene therapy for Leber hereditary optic neuropathy. Ophthalmology, 2018, 125(6), 945-947.
[http://dx.doi.org/10.1016/j.ophtha.2017.12.036] [PMID: 29426586]
[164]
Chang, J.C.; Ryan, M.R.; Stark, M.C.; Liu, S.; Purushothaman, P.; Bolan, F.; Johnson, C.A.; Champe, M.; Meng, H.; Lawlor, M.W.; Halawani, S.; Ngaba, L.V.; Lynch, D.R.; Davis, C.; Gonzalo-Gil, E.; Lutz, C.; Urbinati, F.; Medicherla, B.; Fonck, C. AAV8 gene therapy reverses cardiac pathology and prevents early mortality in a mouse model of Friedreich’s ataxia. Mol. Ther. Methods Clin. Dev., 2024, 32(1), 101193.
[http://dx.doi.org/10.1016/j.omtm.2024.101193] [PMID: 38352270]
[165]
Begum, A.A.; Toth, I.; Hussein, W.M.; Moyle, P.M. Advances in targeted gene delivery. Curr. Drug Deliv., 2019, 16(7), 588-608.
[http://dx.doi.org/10.2174/1567201816666190529072914] [PMID: 31142250]
[166]
Gammage, P.A.; Gaude, E.; Van Haute, L.; Rebelo-Guiomar, P.; Jackson, C.B.; Rorbach, J.; Pekalski, M.L.; Robinson, A.J.; Charpentier, M.; Concordet, J.P.; Frezza, C.; Minczuk, M. Near-complete elimination of mutant mtDNA by iterative or dynamic dose- controlled treatment with mtZFNs. Nucleic Acids Res., 2016, 44(16), 7804-7816.
[http://dx.doi.org/10.1093/nar/gkw676] [PMID: 27466392]
[167]
Bacman, S.R.; Kauppila, J.H.K.; Pereira, C.V.; Nissanka, N.; Miranda, M.; Pinto, M.; Williams, S.L.; Larsson, N.G.; Stewart, J.B.; Moraes, C.T. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med., 2018, 24(11), 1696-1700.
[http://dx.doi.org/10.1038/s41591-018-0166-8] [PMID: 30250143]
[168]
Gammage, P.A.; Viscomi, C.; Simard, M.L.; Costa, A.S.H.; Gaude, E.; Powell, C.A.; Van Haute, L.; McCann, B.J.; Rebelo-Guiomar, P.; Cerutti, R.; Zhang, L.; Rebar, E.J.; Zeviani, M.; Frezza, C.; Stewart, J.B.; Minczuk, M. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat. Med., 2018, 24(11), 1691-1695.
[http://dx.doi.org/10.1038/s41591-018-0165-9] [PMID: 30250142]
[169]
Hendel, A.; Fine, E.J.; Bao, G.; Porteus, M.H. Quantifying on- and off-target genome editing. Trends Biotechnol., 2015, 33(2), 132-140.
[http://dx.doi.org/10.1016/j.tibtech.2014.12.001] [PMID: 25595557]
[170]
Jo, A.; Ham, S.; Lee, G.H.; Lee, Y.I.; Kim, S.; Lee, Y.S.; Shin, J.H.; Lee, Y. Efficient mitochondrial genome editing by CRISPR/Cas9. BioMed Res. Int., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/305716] [PMID: 26448933]
[171]
Prakash, R.; Kannan, A. Mitochondrial DNA modification by CRISPR/Cas system: Challenges and future direction. Prog. Mol. Biol. Transl. Sci., 2021, 178, 193-211.
[http://dx.doi.org/10.1016/bs.pmbts.2020.12.009] [PMID: 33685597]
[172]
Bayona-Bafaluy, M.P.; Blits, B.; Battersby, B.J.; Shoubridge, E.A.; Moraes, C.T. Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc. Natl. Acad. Sci. USA, 2005, 102(40), 14392-14397.
[http://dx.doi.org/10.1073/pnas.0502896102] [PMID: 16179392]
[173]
Tanaka, M.; Borgeld, H-J.; Zhang, J.; Muramatsu, S.; Gong, J-S.; Yoneda, M.; Maruyama, W.; Naoi, M.; Ibi, T.; Sahashi, K.; Shamoto, M.; Fuku, N.; Kurata, M.; Yamada, Y.; Nishizawa, K.; Akao, Y.; Ohishi, N.; Miyabayashi, S.; Umemoto, H.; Muramatsu, T.; Furukawa, K.; Kikuchi, A.; Nakano, I.; Ozawa, K.; Yagi, K. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J. Biomed. Sci., 2002, 9(6 Pt 1), 534-541.
[PMID: 12372991]
[174]
Alexeyev, M.F.; Venediktova, N.; Pastukh, V.; Shokolenko, I.; Bonilla, G.; Wilson, G.L. Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene Ther., 2008, 15(7), 516-523.
[http://dx.doi.org/10.1038/gt.2008.11] [PMID: 18256697]
[175]
Fukui, H.; Moraes, C.T. Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum. Mol. Genet., 2009, 18(6), 1028-1036.
[http://dx.doi.org/10.1093/hmg/ddn437] [PMID: 19095717]
[176]
Wang, X.; Pickrell, A.M.; Rossi, S.G.; Pinto, M.; Dillon, L.M.; Hida, A.; Rotundo, R.L.; Moraes, C.T. Transient systemic mtDNA damage leads to muscle wasting by reducing the satellite cell pool. Hum. Mol. Genet., 2013, 22(19), 3976-3986.
[http://dx.doi.org/10.1093/hmg/ddt251] [PMID: 23760083]
[177]
Mutti, C.; Silva-Pinheiro, P.; Minczuk, M. Fixing the powerhouse: Genetic engineering of mitochondrial DNA. Biochemist, 2022, 44(4), 9-13.
[http://dx.doi.org/10.1042/bio_2022_120]
[178]
Bacman, S.R.; Williams, S.L.; Hernandez, D.; Moraes, C.T. Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a ‘differential multiple cleavage-site’ model. Gene Ther., 2007, 14(18), 1309-1318.
[http://dx.doi.org/10.1038/sj.gt.3302981] [PMID: 17597792]
[179]
Wang, G.; Shimada, E.; Koehler, C.M.; Teitell, M.A. PNPASE and RNA trafficking into mitochondria. Biochim Biophys Acta., 2012, 1819, 998-1007.
[180]
Shepherd, D.L.; Hathaway, Q.A.; Pinti, M.V.; Nichols, C.E.; Durr, A.J.; Sreekumar, S.; Hughes, K.M.; Stine, S.M.; Martinez, I.; Hollander, J.M. Exploring the mitochondrial microRNA import pathway through polynucleotide phosphorylase (PNPase). J. Mol. Cell. Cardiol., 2017, 110, 15-25.
[http://dx.doi.org/10.1016/j.yjmcc.2017.06.012] [PMID: 28709769]
[181]
Sato, R.; Arai-Ichinoi, N.; Kikuchi, A.; Matsuhashi, T.; Numata-Uematsu, Y.; Uematsu, M.; Fujii, Y.; Murayama, K.; Ohtake, A.; Abe, T.; Kure, S. Novel biallelic mutations in thePNPT1 gene encoding a mitochondrial- RNA -import protein PNPASE cause delayed myelination. Clin. Genet., 2018, 93(2), 242-247.
[http://dx.doi.org/10.1111/cge.13068] [PMID: 28594066]
[182]
Wang, G.; Chen, H.W.; Oktay, Y.; Zhang, J.; Allen, E.L.; Smith, G.M.; Fan, K.C.; Hong, J.S.; French, S.W.; McCaffery, J.M.; Lightowlers, R.N.; Morse, H.C., III; Koehler, C.M.; Teitell, M.A. PNPASE regulates RNA import into mitochondria. Cell, 2010, 142(3), 456-467.
[http://dx.doi.org/10.1016/j.cell.2010.06.035] [PMID: 20691904]
[183]
Hussain, S.R.A.; Yalvac, M.E.; Khoo, B.; Eckardt, S.; McLaughlin, K.J. Adapting CRISPR/Cas9 system for targeting mitochondrial genome. Front. Genet., 2021, 12, 627050.
[http://dx.doi.org/10.3389/fgene.2021.627050] [PMID: 33889176]
[184]
Mok, B.Y.; de Moraes, M.H.; Zeng, J.; Bosch, D.E.; Kotrys, A.V.; Raguram, A.; Hsu, F.; Radey, M.C.; Peterson, S.B.; Mootha, V.K.; Mougous, J.D.; Liu, D.R. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature, 2020, 583(7817), 631-637.
[http://dx.doi.org/10.1038/s41586-020-2477-4] [PMID: 32641830]
[185]
Moraes, C.T.; Bacman, S.R.; Williams, S.L. Manipulating mitochondrial genomes in the clinic: playing by different rules. Trends Cell Biol., 2014, 24(4), 209-211.
[http://dx.doi.org/10.1016/j.tcb.2014.02.002] [PMID: 24679453]
[186]
Peranteau, W.H.; Flake, A.W. The future of in utero gene therapy. Mol. Diagn. Ther., 2020, 24(2), 135-142.
[http://dx.doi.org/10.1007/s40291-020-00445-y] [PMID: 32020561]
[187]
Sharma, H.; Singh, D.; Mahant, A.; Sohal, S.K.; Kesavan, A.K.; Samiksha Development of mitochondrial replacement therapy: A review. Heliyon, 2020, 6(9), e04643.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04643] [PMID: 32984570]
[188]
Smeets, H.J.M. Preventing the transmission of mitochondrial DNA disorders: Selecting the good guys or kicking out the bad guys. Reprod. Biomed. Online, 2013, 27(6), 599-610.
[http://dx.doi.org/10.1016/j.rbmo.2013.08.007] [PMID: 24135157]
[189]
Tachibana, M.; Amato, P.; Sparman, M.; Woodward, J.; Sanchis, D.M.; Ma, H.; Gutierrez, N.M.; Tippner-Hedges, R.; Kang, E.; Lee, H.S.; Ramsey, C.; Masterson, K.; Battaglia, D.; Lee, D.; Wu, D.; Jensen, J.; Patton, P.; Gokhale, S.; Stouffer, R.; Mitalipov, S. Towards germline gene therapy of inherited mitochondrial diseases. Nature, 2013, 493(7434), 627-631.
[http://dx.doi.org/10.1038/nature11647] [PMID: 23103867]
[190]
Sendra, L.; García-Mares, A.; Herrero, M.J.; Aliño, S.F. Mitochondrial dna replacement techniques to prevent human mitochondrial diseases. Int. J. Mol. Sci., 2021, 22(2), 551.
[http://dx.doi.org/10.3390/ijms22020551] [PMID: 33430493]
[191]
Greenfield, A.; Braude, P.; Flinter, F.; Lovell-Badge, R.; Ogilvie, C.; Perry, A.C.F. Assisted reproductive technologies to prevent human mitochondrial disease transmission. Nat. Biotechnol., 2017, 35(11), 1059-1068.
[http://dx.doi.org/10.1038/nbt.3997] [PMID: 29121011]
[192]
Gorman, G.S.; McFarland, R.; Stewart, J.; Feeney, C.; Turnbull, D.M. Mitochondrial donation: From test tube to clinic. Lancet, 2018, 392(10154), 1191-1192.
[http://dx.doi.org/10.1016/S0140-6736(18)31868-3] [PMID: 30319102]
[193]
Aryamvally, A.; Myers, M.F.; Huang, T.; Slone, J.; Pilipenko, V.; Hartmann, J.E. Mitochondrial replacement therapy: Genetic counselors’ experiences, knowledge, and opinions. J. Genet. Couns., 2021, 30(3), 828-837.
[http://dx.doi.org/10.1002/jgc4.1382] [PMID: 33469959]
[194]
Fan, X-Y.; Yin, S.; Luo, S-M. SQSTM1 and its MAP1LC3B-binding domain induce forced mitophagy to degrade mitochondrial carryover during mitochondrial replacement therapy. Autophagy, 2022, 19(1), 363-364.
[PMID: 35574946]
[195]
Fan, X.Y.; Guo, L.; Chen, L.N.; Yin, S.; Wen, J.; Li, S.; Ma, J.Y.; Jing, T.; Jiang, M.X.; Sun, X.H.; Chen, M.; Wang, F.; Wang, Z.B.; Zhang, C.F.; Wang, X.H.; Ge, Z.J.; Hu, C.; Zeng, L.; Shen, W.; Sun, Q.Y.; Ou, X.H.; Luo, S.M. Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy. Nat. Biomed. Eng., 2022, 6(4), 339-350.
[http://dx.doi.org/10.1038/s41551-022-00881-7] [PMID: 35437313]
[196]
Hellebrekers, D.M.E.I.; Wolfe, R.; Hendrickx, A.T.M.; de Coo, I.F.M.; de Die, C.E.; Geraedts, J.P.M.; Chinnery, P.F.; Smeets, H.J.M. PGD and heteroplasmic mitochondrial DNA point mutations: A systematic review estimating the chance of healthy offspring. Hum. Reprod. Update, 2012, 18(4), 341-349.
[http://dx.doi.org/10.1093/humupd/dms008] [PMID: 22456975]
[197]
Poulton, J.; Steffann, J.; Burgstaller, J.; McFarland, R. 243rd ENMC international workshop: Developing guidelines for management of reproductive options for families with maternally inherited mtDNA disease, Amsterdam, the Netherlands, 22–24 March 2019. Neuromuscul. Disord., 2019, 29(9), 725-733.
[http://dx.doi.org/10.1016/j.nmd.2019.08.004] [PMID: 31501000]
[198]
Keshavan, N.; Minczuk, M.; Viscomi, C.; Rahman, S. Gene therapy for mitochondrial disorders. J. Inherit. Metab. Dis., 2024, 47(1), 145-175.
[http://dx.doi.org/10.1002/jimd.12699] [PMID: 38171948]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy