Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Mini-Review Article

Pharmaceutical Applications and Advances with Zetasizer: An Essential Analytical Tool for Size and Zeta Potential Analysis

Author(s): Sonakshi Garg, Preeti Patel, Ghanshyam Das Gupta and Balak Das Kurmi*

Volume 16, Issue 3, 2024

Published on: 13 June, 2024

Page: [139 - 154] Pages: 16

DOI: 10.2174/0118764029301470240603051432

Price: $65

Abstract

Zetasizer is an advanced device that measures various properties of particles or molecules suspended in a liquid medium. It is extensively used for evaluating the size of nanoparticles, colloids, and biomolecular particles, and for determining particle charge. There are several analytical techniques by which the size, zeta potential, and molecular weight can be determined, like Dynamic Light Scattering (DLS) that measures the size of particles in dispersed systems, which can range from sub-nanometers to several micrometers in diameter. Electrophoretic Light Scattering (ELS) analyzes the mobility and charge of particles, also known as the zeta potential. Static Light Scattering (SLS) determines the molecular weight of particles in a solution. The Zetasizer is part of the Zetasizer Advance range of benchtop systems available for laboratory use. The Zetasizer Ultra model offers unique measurement capabilities, such as Multi-angle Dynamic Light Scattering (MADLS) and particle concentration. These features offer a deeper understanding of samples, making the Zetasizer a vital instrument in numerous scientific and industrial applications. In this review, we have discussed Zetasizer’s principles for the determination of particle size, zeta potential, and molecular weight, along with its qualification and applications in different formulations.

Next »
Graphical Abstract

[1]
Inam, F.; Peijs, T. Nanocomposites. Re-aggregation of carbon nanotubes in two-component epoxy system. J. Nanostruct. Poly., 2006, 2(3), 87-95.
[2]
Malvern Instruments Ltd Available from: https://www.chem.uci.edu/~dmitryf/manuals/Malvern%20Zetasizer%20ZS%20DLS%20user%20manual.pdf (Accessed August 2023).
[4]
Jia, Z.; Li, J.; Gao, L.; Yang, D.; Kanaev, A. Dynamic light scattering: A powerful tool for in situ nanoparticle sizing. Colloids and Interfaces, 2023, 7(1), 15.
[http://dx.doi.org/10.3390/colloids7010015]
[5]
Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys. Rev., 2016, 8(4), 409-427.
[http://dx.doi.org/10.1007/s12551-016-0218-6] [PMID: 28510011]
[6]
Arkhipov, V.P.; Arkhipov, R.V.; Kuzina, N.; Petrova, E.V.; Filippov, A. Aggregation properties of triton x-100 in a mixture of ordinary and heavy water. Appl. Magn. Reson., 2023, 54(3), 415-425.
[http://dx.doi.org/10.1007/s00723-023-01529-8]
[7]
Puskás, I.; Szemjonov, A.; Fenyvesi, É.; Malanga, M.; Szente, L. Aspects of determining the molecular weight of cyclodextrin polymers and oligomers by static light scattering. Carbohydr. Polym., 2013, 94(1), 124-128.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.025] [PMID: 23544520]
[8]
Beckman Coulter Life Sciences. Available from: https://www.beckman.com/support/faq/scientific/what-is-static-light-scattering (Accessed October 2023).
[9]
Varenne, F.; Botton, J.; Merlet, C.; Vachon, J-J.; Geiger, S.; Infante, I.C.; Chehimi, M.M.; Vauthier, C. Standardization and validation of a protocol of zeta potential measurements by electrophoretic light scattering for nanomaterial characterization. Colloids Surf. A Physicochem. Eng. Asp., 2015, 486, 218-231.
[http://dx.doi.org/10.1016/j.colsurfa.2015.08.044]
[10]
Malvern Panalytical-A spectris company Available from: https://www.malvernpanalytical.com/en/products/technology/lightscattering/electrophoretic-light-scattering ,(Accessed October 2023).
[11]
[14]
The United States Pharmacopeial Convention. Available from: https://www.bioglobax.com/wp-content/uploads/2020/02/USP_1058_analytical_instrument_qualification.pdf (Accessed August 2023).
[16]
Pharmaceutical Guidance Available from: https://pharmaguidances.com/analytical-instrument-qualification/ (Accessed August 2023).
[17]
[18]
Alshehri, S.; Hussain, A.; Altamimi, M.A.; Ramzan, M. In vitro, ex vivo, and in vivo studies of binary ethosomes for transdermal delivery of acyclovir: A comparative assessment. J. Drug Deliv. Sci. Technol., 2021, 62, 102390.
[http://dx.doi.org/10.1016/j.jddst.2021.102390]
[19]
Abdel-Raouf, N.; Al-Enazi, N.M.; Ibraheem, I.B.M.; Alharbi, R.M.; Alkhulaifi, M.M. Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi J. Biol. Sci., 2019, 26(6), 1207-1215.
[http://dx.doi.org/10.1016/j.sjbs.2018.01.007] [PMID: 31516350]
[20]
Teng, Z.; Luo, Y.; Wang, T.; Zhang, B.; Wang, Q. Development and application of nanoparticles synthesized with folic acid conjugated soy protein. J. Agric. Food Chem., 2013, 61(10), 2556-2564.
[http://dx.doi.org/10.1021/jf4001567] [PMID: 23414105]
[21]
Saçmacı, Ş.; Saçmacı, M. Application of a new functionalized magnetic graphane oxide for aluminum determination at trace levels in honey samples by the zetasizer system. Microchem. J., 2020, 157, 104962.
[http://dx.doi.org/10.1016/j.microc.2020.104962]
[22]
Granata, G.; Stracquadanio, S.; Leonardi, M.; Napoli, E.; Consoli, G.M.L.; Cafiso, V.; Stefani, S.; Geraci, C. Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chem., 2018, 269, 286-292.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.140] [PMID: 30100436]
[23]
Cho, D.; Lee, S.; Frey, M.W. Characterizing zeta potential of functional nanofibers in a microfluidic device. J. Colloid Interface Sci., 2012, 372(1), 252-260.
[http://dx.doi.org/10.1016/j.jcis.2012.01.007] [PMID: 22305420]
[24]
Betz, G.; Aeppli, A.; Menshutina, N.; Leuenberger, H. In vivo comparison of various liposome formulations for cosmetic application. Int. J. Pharm., 2005, 296(1-2), 44-54.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.032] [PMID: 15885454]
[26]
Singh, B.; Bandopadhyay, S.; Kapil, R. Self-emulsifying drug delivery systems (SEDDS): formulation development, characterization, and applications. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(5), 427-521.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i5.10]
[27]
Morsy, S.M. Role of surfactants in nanotechnology and their applications. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(5), 237-260.
[28]
Ahmad, I.; Akhter, S.; Ahmad, M.Z.; Shamim, M.; Rizvi, M.A.; Khar, R.K.; Ahmad, F.J. Collagen loaded nano-sized surfactant based dispersion for topical application: formulation development, characterization and safety study. Pharm. Dev. Technol., 2014, 19(4), 460-467.
[http://dx.doi.org/10.3109/10837450.2013.795167] [PMID: 23675949]
[29]
Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: formation, properties and applications. Soft Matter, 2016, 12(11), 2826-2841.
[http://dx.doi.org/10.1039/C5SM02958A] [PMID: 26924445]
[30]
Schreiner, T.B.; Santamaria-Echart, A.; Ribeiro, A.; Peres, A.M.; Dias, M.M.; Pinho, S.P.; Barreiro, M.F. Formulation and optimization of nanoemulsions using the natural surfactant saponin from Quillaja bark. Molecules, 2020, 25(7), 1538.
[http://dx.doi.org/10.3390/molecules25071538] [PMID: 32230976]
[32]
Nikumbh, K.V.; Sevankar, S.G.; Patil, M.P. Formulation development, in vitro and in vivo evaluation of microemulsion-based gel loaded with ketoprofen. Drug Deliv., 2015, 22(4), 509-515.
[http://dx.doi.org/10.3109/10717544.2013.859186] [PMID: 24266589]
[33]
Rizwan, S.B.; Boyd, B.J. Cubosomes: structure, preparation and use as an antigen delivery system. Subunit Vaccine Delivery; Springer, 2014, pp. 125-140.
[http://dx.doi.org/10.1007/978-1-4939-1417-3_7]
[34]
Wikipedia. Available from: https://en.wikipedia.org/wiki/Cubosome (Accessed October 2023).
[35]
Rapalli, V.K.; Banerjee, S.; Khan, S.; Jha, P.N.; Gupta, G.; Dua, K.; Hasnain, M.S.; Nayak, A.K.; Dubey, S.K.; Singhvi, G. QbD-driven formulation development and evaluation of topical hydrogel containing ketoconazole loaded cubosomes. Mater. Sci. Eng. C, 2021, 119, 111548.
[http://dx.doi.org/10.1016/j.msec.2020.111548] [PMID: 33321612]
[36]
Mohammadi-Samani, S.; Ghasemiyeh, P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[37]
Üner, M.; Yener, G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine, 2007, 2(3), 289-300.
[http://dx.doi.org/10.2147/IJN.S2.3.289] [PMID: 18019829]
[38]
Keck, C.M.; Kovačević, A.; Müller, R.H.; Savić, S.; Vuleta, G.; Milić, J. Formulation of solid lipid nanoparticles (SLN): The value of different alkyl polyglucoside surfactants. Int. J. Pharm., 2014, 474(1-2), 33-41.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.008] [PMID: 25108048]
[39]
Javed, S.; Mangla, B.; Almoshari, Y.; Sultan, M.H.; Ahsan, W. Nanostructured lipid carrier system: A compendium of their formulation development approaches, optimization strategies by quality by design, and recent applications in drug delivery. Nanotechnol. Rev., 2022, 11(1), 1744-1777.
[http://dx.doi.org/10.1515/ntrev-2022-0109]
[40]
Syed Azhar, S.N.A.; Ashari, S.E.; Zainuddin, N.; Hassan, M. Nanostructured lipid carriers-hydrogels system for drug delivery: Nanohybrid technology perspective. Molecules, 2022, 27(1), 289.
[http://dx.doi.org/10.3390/molecules27010289] [PMID: 35011520]
[41]
Shah, N.; Gohil, D.; Patel, S. Nanostructured Lipid Carriers (NLCs): A Modern Versatile Drug Delivery Vehicle. In: Nanocarriers: Drug Delivery System; SpringerLink, 2021; pp. 107-124.
[http://dx.doi.org/10.1007/978-981-33-4497-6_4]
[42]
Verma, P.; Pathak, K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(3), 274-282.
[http://dx.doi.org/10.4103/0110-5558.72415] [PMID: 22247858]
[43]
Gupta, P.; Jha, A.K.; Prasad, M.; Kushwaha, P. Soft Malleable Vesicles: Versatile carriers for efficient topical delivery of fungal therapeutics. Drug Res., 2021, 71(2), 54-61.
[http://dx.doi.org/10.1055/a-1286-5750] [PMID: 33137836]
[44]
Zhu, X.; Li, F.; Peng, X.; Zeng, K. Formulation and evaluation of lidocaine base ethosomes for transdermal delivery. Anesth. Analg., 2013, 117(2), 352-357.
[http://dx.doi.org/10.1213/ANE.0b013e3182937b74] [PMID: 23744957]
[45]
Li, X.; Wang, H.; Zou, X.; Su, H.; Li, C. Methotrexate-loaded folic acid of solid-phase synthesis conjugated gold nanoparticles targeted treatment for rheumatoid arthritis. Eur. J. Pharm. Sci., 2022, 170, 106101.
[http://dx.doi.org/10.1016/j.ejps.2021.106101]
[46]
Mishra, K.K.; Kaur, C.D.; Gupta, A. Development of itraconazole loaded ultra-deformable transethosomes containing oleic-acid for effective treatment of dermatophytosis: Box-Behnken design, ex-vivo and in-vivo studies. J. Drug Deliv. Sci. Technol., 2022, 67, 102998.
[http://dx.doi.org/10.1016/j.jddst.2021.102998]
[47]
Haeri, A.; Alinaghian, B.; Daeihamed, M.; Dadashzadeh, S. Preparation and characterization of stable nanoliposomal formulation of fluoxetine as a potential adjuvant therapy for drug-resistant tumors. Iran. J. Pharm. Res., 2014, 13(Suppl.), 3-14.
[PMID: 24711824]
[48]
55. Malvern Panalytical- A spectris company, Manual: Zetasizer nano accessories guide. Available from: https://www.cif.iastate.edu/sites/default/files/uploads/Other_Inst/Particle%20Size/Accessories%20and%20Cells%20Guide.pdf (Accessed May 2024).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy