Generic placeholder image

Current Physics

Editor-in-Chief

ISSN (Print): 2772-3348
ISSN (Online): 2772-3356

Research Article

Variations in the Solar Modulation Parameter Over the Last 9.5 Thousand Years and the Tilt of the Geomagnetic Dipole

Author(s): Sergey S. Vasiliev* and Valentin A. Dergachev

Volume 1, 2024

Published on: 12 June, 2024

Article ID: e120624230972 Pages: 10

DOI: 10.2174/0127723348284507240417071143

Price: $65

Abstract

Background: Calculations of the solar modulation parameter (φ) over the past millennia typically use the relationship between the production rate of cosmogenic isotopes, the earth's dipole moment, and the magnitude of φ. The cosmogenic isotopes 14C and 10Be are typically used in these studies. When studying solar modulation, the cyclic change in dipole tilt is usually not taken into account, which affects estimates of past solar activity.

Methods: Tree rings are a reliable basis for obtaining a radiocarbon time scale (IntCal13). However, determining the concentration of 14C in tree rings is a difficult and controversial task. The time scale derived from the 10Be production rate simulation (GICC05) is less reliable. Nevertheless, there is a way to combine the accuracy of the radiocarbon time scale with the reliability of estimates of the 10Be production rate. This method is the synchronization of the radiocarbon and beryllium-10 series.

We have selected the most relevant methods for calculating the solar modulation parameter φ for the Holocene. When calculating φ, 10Be data synchronized with 14C data were used. The latest data on the earth's dipole moment were considered. Empirical Mode Decomposition (EMD) was used in the analysis of φ.

Results: It has been shown that the first two decomposition modes are oscillating components with periods of 710 and 208 years, the amplitudes of which increase with time, reaching a maximum of 2500 BP. From contemplation, it follows that the 710-year oscillations are apparently caused by fluctuations in the tilt of the earth's dipole. After excluding the EMD component associated with the 710-year cyclicity, a corrected series was obtained for the solar modulation parameter, free from the influence of changes in the tilt of the magnetic dipole.

Conclusion: The rate of formation of cosmogenic radionuclides depends on the intensity of penetration of Galactic Cosmic Rays (GCRs) into the earth's atmosphere. Before reaching earth, GCRs must cross the heliosphere, where they are exposed to solar modulation. Adequate consideration of solar modulation parameters is important for the correct interpretation of the rate of production of cosmogenic isotopes and solar activity.

[1]
Usoskin, I.G.; Alanko, K.; Mursula, K.; Kovaltsov, G.A. Heliospheric modulation strength during the neutron monitor era. Sol. Phys., 2002, 207(2), 389-399.
[http://dx.doi.org/10.1023/A:1016266801300]
[2]
Hoyt, D.V.; Schatten, K.H. Group sunspot numbers: A new solar activity reconstruction. Sol. Phys., 1998, 179(1), 189-219.
[http://dx.doi.org/10.1023/A:1005007527816]
[3]
Usoskin, I.G.; Solanki, S.K.; Kovaltsov, G.A. Grand minima and maxima of solar activity: New observational constraints. A & A, 2007, 471, 301-309.
[4]
Eddy, J.A. The maunder minimum. Science, 1976, 192(4245), 1189-1202.
[http://dx.doi.org/10.1126/science.192.4245.1189] [PMID: 17771739]
[5]
Bond, G.; Kromer, B.; Beer, J.; Muscheler, R.; Evans, M.N.; Showers, W.; Hoffmann, S.; Lotti-Bond, R.; Hajdas, I.; Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science, 2001, 294(5549), 2130-2136.
[http://dx.doi.org/10.1126/science.1065680] [PMID: 11739949]
[6]
Beer, J. Neutron monitor records in broader historical context. Space Sci. Rev., 2000, 93(1/2), 107-119.
[http://dx.doi.org/10.1023/A:1026536226656]
[7]
Parker, E.N. The passage of energetic charged particles through interplanetary space. Planet. Space Sci., 1965, 13(1), 9-49.
[http://dx.doi.org/10.1016/0032-0633(65)90131-5]
[8]
Gleeson, L.J.; Axford, W.I. Solar modulation of galactic cosmic rays. Astrophys. J., 1968, 154, 1011-1018.
[http://dx.doi.org/10.1086/149822]
[9]
Fisk, L.A.; Axford, W.I. Solar modulation of galactic cosmic rays, 1. J. Geophys. Res., 1969, 74(21), 4973-4986.
[http://dx.doi.org/10.1029/JA074i021p04973]
[10]
Caballero-Lopez, R.A.; Moraal, H. Limitations of the force field equation to describe cosmic ray modulation. J. Geophys. Res., 2004, 109(A1), 2003JA010098.
[http://dx.doi.org/10.1029/2003JA010098]
[11]
Herbst, K.; Kopp, A.; Heber, B.; Steinhilber, F.; Fichtner, H.; Scherer, K.; Matthiä, D. On the importance of the local interstellar spectrum for the solar modulation parameter. J. Geophys. Res., 2010, 115(D1), 2009JD012557.
[http://dx.doi.org/10.1029/2009JD012557]
[12]
Korte, M.; Constable, C.; Donadini, F.; Holme, R. Reconstructing the Holocene geomagnetic field. Earth Planet. Sci. Lett., 2011, 312(3-4), 497-505.
[http://dx.doi.org/10.1016/j.epsl.2011.10.031]
[13]
McElhinny, M.W.; Senanayake, W.E. Variations in the geomagnetic dipole 1: The past 50,000 years. J. Geomag. Geoelectr., 1982, 34(1), 39-51.
[http://dx.doi.org/10.5636/jgg.34.39]
[14]
Yang, S.; Odah, H.; Shaw, J. Variations in the geomagnetic dipole moment over the last 12 000 years. Geophys. J. Int., 2000, 140(1), 158-162.
[http://dx.doi.org/10.1046/j.1365-246x.2000.00011.x]
[15]
Korhonen, K.; Donadini, F.; Riisager, P.; Pesonen, L.J. GEOMAGIA50: An archeointensity database with PHP and MySQL. Geochem. Geophys. Geosyst., 2008, 9(4), 2007GC001893.
[http://dx.doi.org/10.1029/2007GC001893]
[16]
Knudsen, M.F.; Riisager, P.; Donadini, F.; Snowball, I.; Muscheler, R.; Korhonen, K.; Pesonen, L.J. Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr. Earth Planet. Sci. Lett., 2008, 272(1-2), 319-329.
[http://dx.doi.org/10.1016/j.epsl.2008.04.048]
[17]
Korte, M.; Constable, C.G. Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K. Geochem. Geophys. Geosyst., 2005, 6(2), 2004GC000801.
[http://dx.doi.org/10.1029/2004GC000801]
[18]
Constable, C.; Korte, M.; Panovska, S. Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years. Earth Planet. Sci. Lett., 2016, 453, 78-86.
[http://dx.doi.org/10.1016/j.epsl.2016.08.015]
[19]
Muscheler, R.; Adolphi, F.; Knudsen, M.F. Assessing the differences between the IntCal and Greenland ice-core time scales for the last 14,000 years via the common cosmogenic radionuclide variations. Quat. Sci. Rev., 2014, 106, 81-87.
[http://dx.doi.org/10.1016/j.quascirev.2014.08.017]
[20]
Masarik, J.; Beer, J. Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J. Geophys. Res., 1999, 104(D10), 12099-12111.
[http://dx.doi.org/10.1029/1998JD200091]
[21]
Kovaltsov, G.A.; Usoskin, I.G. A new 3D numerical model of cosmogenic nuclide 10Be production in the atmosphere. Earth Planet. Sci. Lett., 2010, 291(1-4), 182-188.
[http://dx.doi.org/10.1016/j.epsl.2010.01.011]
[22]
Vonmoos, M.; Beer, J.; Muscheler, R. Large variations in Holocene solar activity: Constraints from 10 Be in the Greenland Ice Core Project ice core. J. Geophys. Res., 2006, 111(A10), 2005JA011500.
[http://dx.doi.org/10.1029/2005JA011500]
[23]
Muscheler, R.; Joos, F.; Beer, J.; Müller, S.A.; Vonmoos, M.; Snowball, I. Solar activity during the last 1000yr inferred from radionuclide records. Quat. Sci. Rev., 2007, 26(1-2), 82-97.
[http://dx.doi.org/10.1016/j.quascirev.2006.07.012]
[24]
Steinhilber, F.; Abreu, J.A.; Beer, J. Solar modulation during the Holocene. Astrophysics and Space Sciences Transactions, 2008, 4(1), 1-6.
[http://dx.doi.org/10.5194/astra-4-1-2008]
[25]
Steinhilber, F.; Abreu, J.A.; Beer, J.; Brunner, I.; Christl, M.; Fischer, H.; Heikkilä, U.; Kubik, P.W.; Mann, M.; McCracken, K.G.; Miller, H.; Miyahara, H.; Oerter, H.; Wilhelms, F. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. USA, 2012, 109(16), 5967-5971.
[http://dx.doi.org/10.1073/pnas.1118965109] [PMID: 22474348]
[26]
Roth, R.; Joos, F. A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: Implications of data and model uncertainties. Clim. Past, 2013, 9(4), 1879-1909.
[http://dx.doi.org/10.5194/cp-9-1879-2013]
[27]
Dergachev, V.A.; Vasiliev, S.S. Long-term changes in the concentration of radiocarbon and the nature of the Hallstatt cycle. J. Atmos. Sol. Terr. Phys., 2019, 182, 10-24.
[http://dx.doi.org/10.1016/j.jastp.2018.10.005]
[28]
Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc.- Royal Soc., Math. Phys. Eng. Sci., 1998, 454(1971), 903-995.
[http://dx.doi.org/10.1098/rspa.1998.0193]
[29]
Grootes, P.M.; van der Plicht, H. Hessel De Vries: Radiocarbon pioneer from Groningen. Radiocarbon, 2021, 64(3), 419-433.
[http://dx.doi.org/10.1017/RDC.2021.63]
[30]
Nilsson, A.; Muscheler, R.; Snowball, I. Millennial scale cyclicity in the geodynamo inferred from a dipole tilt reconstruction. Earth Planet. Sci. Lett., 2011, 311(3-4), 299-305.
[http://dx.doi.org/10.1016/j.epsl.2011.09.030]
[31]
Korte, M.; Mandea, M. Magnetic poles and dipole tilt variation over the past decades to millennia. Earth Planets Space, 2008, 60(9), 937-948.
[http://dx.doi.org/10.1186/BF03352849]
[32]
Lomb, N.R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci., 1976, 39(2), 447-462.
[http://dx.doi.org/10.1007/BF00648343]
[33]
Scargle, J.D. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J., 1982, 263, 835-853.
[http://dx.doi.org/10.1086/160554]
[34]
Sunspot Index and Long-term Solar Observations. Available From: http://www.sidc.be/SILSO/home
[35]
Finkel, R.C.; Nishiizumi, K. Beryllium 10 concentrations in the Greenland ice sheet project 2 ice core from 3–40 ka. J. Geophys. Res., 1997, 102(C12), 26699-26706.
[http://dx.doi.org/10.1029/97JC01282]
[36]
Johnsen, S.J.; Dansgaard, W.; White, W.C. The origin of Arctic precipitation under present and glacial conditions. Tellus. Ser. B, 1989, 41, 452-468.
[37]
Mayewski, P.A.; Meeker, L.D.; Twickler, M.S.; Whitlow, S.; Yang, Q.; Lyons, W.B.; Prentice, M. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000 year-long glaciochemical series. J. Geophys. Res., 1997, 102(C12), 26,345-26,366.
[38]
Reimer, P.J. INTCAL04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon, 2004, 46(3), 1029-1058.
[http://dx.doi.org/10.1017/S0033822200032999]
[39]
McCracken, K.G.; McDonald, F.B.; Beer, J.; Raisbeck, G.; Yiou, F. A phenomenological study of the long‐term cosmic ray modulation, 850–1958 AD. J. Geophys. Res., 2004, 109(A12), 2004JA010685.
[http://dx.doi.org/10.1029/2004JA010685]
[40]
Nilsson, A. Assessing Holocene and late Pleistocene geomagnetic dipole field variability; Lund University, 2011.
[41]
Tauxe, L. Essentials of Paleomagnetism: Fifth Web Edition. 2021. Available From: https://earthref.org/MagIC/books/Tauxe/Essentials/
[42]
Amit, H.; Olson, P. Geomagnetic dipole tilt changes induced by core flow. Phys. Earth Planet. Inter., 2008, 166(3-4), 226-238.
[http://dx.doi.org/10.1016/j.pepi.2008.01.007]
[43]
Kudryavtsev, I.V. Possible cause of differences between reconstructions of the heliospheric modulation potential in the past based on data on the 10Be content in the ice of the Antarctic and Greenland. Geomagn. Aeron., 2021, 61(8), 1216-1220.
[http://dx.doi.org/10.1134/S0016793221080132]
[44]
Kudryavtsev, I.V.; Dergachev, V.A.; Nagovitsyn, Y.A. Reconstructions of the heliospheric modulation potential and earth climate variations over the past 20 000 years. Geomagn. Aeron., 2022, 62(7), 851-858.
[http://dx.doi.org/10.1134/S0016793222070155]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy