Generic placeholder image

Journal of Photocatalysis

Editor-in-Chief

ISSN (Print): 2665-976X
ISSN (Online): 2665-9778

Research Article

Superoxide Ion-Assisted Radical Cascade Reaction: Synthesis of 3-nitro-4-aryl-2H-chromen-2-ones from Aryl Alkynoate Esters under Methylene Blue Visible Light Photocatalysis

Author(s): Palani Natarajan*, Meena and Partigya

Volume 4, 2024

Published on: 11 June, 2024

Article ID: e110624230919 Pages: 12

DOI: 10.2174/012665976X295034240529130434

Price: $65

Abstract

Background: From an industries and academic perspective, there is a need for a method for producing 3-nitro-4-aryl-2H-chromen-2-ones from aryl alkynoate esters that is both economic and environmental benign. In this context, superoxide ion-assisted radical cascade reaction can be an efficient and greener protocol.

Objective: Herein, we have demonstrated an unprecedented methylene blue (MB) visible light photocatalysis for the production of a series of 3-nitro-4-aryl-2H-chromen-2-ones from readily available aryl alkynoate esters and a nitrating agent in solution.

Methods: Synthesis of 3-nitro-4-aryl-2H-chromen-2-ones has been performed in the presence of aryl alkynoate ester, TBAN, DIPEA, solvent, catalyst and molecular oxygen under visible light irradiation at room temperature. The products were purified by column chromatography using silica gel, and the mixture of ethyl acetate/petroleum ether as an eluting solvent and characterized by IR, NMR and mass spectroscopic analysis.

Results: A series of aryl alkynoate esters were successfully nitrated into corresponding 3-nitro-4- aryl-2H-chromen-2-ones with good isolated yields by this protocol, in which the key NO2-radicals formed by the action of superoxide ion (O2−·).

Conclusion: In contrast to the literature-reported methods of synthesis of 3-nitro-4-aryl-2Hchromen- 2-ones, the process described here for making 3-nitro-4-aryl-2H-chromen-2-ones uses methylene blue visible light photocatalysis, is inexpensive, mild, does not require a metal precursor or high temperatures, and is successful when using the direct sunlight.

[1]
(a) Fasco, M.J.; Hildebrandt, E.F.; Suttie, J.W. Evidence that warfarin anticoagulant action involves two distinct reductase activities. J. Biol. Chem., 1982, 257(19), 11210-11212.
[http://dx.doi.org/10.1016/S0021-9258(18)33742-6] [PMID: 6811577];
(b) Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S.L.; Lee, K.H. Recent progress in the development of coumarin derivatives as potent anti‐HIV agents. Med. Res. Rev., 2003, 23(3), 322-345.
[http://dx.doi.org/10.1002/med.10034] [PMID: 12647313];
(c) Le Bras, G.; Radanyi, C.; Peyrat, J.F.; Brion, J.D.; Alami, M.; Marsaud, V.; Stella, B.; Renoir, J.M. New novobiocin analogues as antiproliferative agents in breast cancer cells and potential inhibitors of heat shock protein 90. J. Med. Chem., 2007, 50(24), 6189-6200.
[http://dx.doi.org/10.1021/jm0707774] [PMID: 17979263];
(d) Grover, J.; Jachak, S.M. Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Advances, 2015, 5(49), 38892-38905.
[http://dx.doi.org/10.1039/C5RA05643H];
(e) Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem., 2015, 102, 611-630.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.033] [PMID: 26318068];
(f) Utreja, D.; Jain, N.; Sharma, S. Advances in synthesis and potentially bioactive of coumarin derivatives. Curr. Org. Chem., 2018, 22, 2509-2536.;
(g) Gilles, P.; Veryser, C.; Vangrunderbeeck, S.; Ceusters, S.; Van Meervelt, L.; De Borggraeve, W.M. Synthesis of N -acyl sulfamates from fluorosulfates and amides. J. Org. Chem., 2019, 84(2), 1070-1078.
[http://dx.doi.org/10.1021/acs.joc.8b02785] [PMID: 30582333];
(h) James, M.L.; Fulton, R.R.; Henderson, D.J.; Eberl, S.; Meikle, S.R.; Thomson, S.; Allan, R.D.; Dolle, F.; Fulham, M.J.; Kassiou, M. Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET radioligand. Bioorg. Med. Chem., 2005, 13(22), 6188-6194.
[http://dx.doi.org/10.1016/j.bmc.2005.06.030] [PMID: 16039131];
(i) Das, P.; Almond, D.W.; Tumbelty, L.N.; Austin, B.E.; Moura-Letts, G. From heterocycles to carbacycles: Synthesis of carbocyclic nucleoside analogues from enals and hydroxylamines. Org. Lett., 202022(14), 5491-5495.
[http://dx.doi.org/10.1021/acs.orglett.0c01846] [PMID: 32602726];
(j) Haun, G.; Paneque, A.N.; Almond, D.W.; Austin, B.E.; Moura-Letts, G. Synthesis of chromenoisoxazolidines from substituted salicylic nitrones via visible-light photocatalysis. Org. Lett., 2019, 21(5), 1388-1392.
[http://dx.doi.org/10.1021/acs.orglett.9b00097] [PMID: 30779582]
[2]
(a) Floc’h, F.; Mauger, F.; Desmurs, J-R.; Gard, A.; Bagneris, F.; Carlton, B. Coumarin in plants and fruits: Implications in perfumery. Perfum. Flavor., 2002, 27, 32-36.;
(b) Wang, Y.H.; Avula, B.; Nanayakkara, N.P.D.; Zhao, J.; Khan, I.A. Cassia cinnamon as a source of coumarin in cinnamon-flavored food and food supplements in the United States. J. Agric. Food Chem., 2013, 61(18), 4470-4476.
[http://dx.doi.org/10.1021/jf4005862] [PMID: 23627682];
(c) Stiefel, C.; Schubert, T.; Morlock, G.E. Bioprofiling of cosmetics with focus on streamlined coumarin analysis. ACS Omega, 2017, 2(8), 5242-5250.
[http://dx.doi.org/10.1021/acsomega.7b00562] [PMID: 30023744];
(d) Gualandi, A.; Rodeghiero, G.; Della Rocca, E.; Bertoni, F.; Marchini, M.; Perciaccante, R.; Jansen, T.P.; Ceroni, P.; Cozzi, P.G. Application of coumarin dyes for organic photoredox catalysis. Chem. Commun., 2018, 54(72), 10044-10047.
[http://dx.doi.org/10.1039/C8CC04048F] [PMID: 30039815];
(e) Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J.S.; Lin, W. Coumarin-based small-molecule fluorescent chemosensors. Chem. Rev., 2019, 119(18), 10403-10519.
[http://dx.doi.org/10.1021/acs.chemrev.9b00145] [PMID: 31314507]
[3]
Singh, J.; Sharma, A. Visible light mediated synthesis of oxindoles. Adv. Synth. Catal., 2021, 363(18), 4284-4308.
[http://dx.doi.org/10.1002/adsc.202100515]
[4]
Liu, W.; Zhang, Y.; Guo, H. Nitration and cyclization of arene-alkynes: An access to 9-nitrophenathrenes. J. Org. Chem., 2018, 83(17), 10518-10524.
[http://dx.doi.org/10.1021/acs.joc.8b01201] [PMID: 30074780]
[5]
Sau, S.; Mal, P. 3-Nitro-coumarin synthesis via nitrative cyclization of aryl alkynoates using tert -butyl nitrite. Chem. Commun., 2021, 57(73), 9228-9231.
[http://dx.doi.org/10.1039/D1CC03415D] [PMID: 34519303]
[6]
Natarajan, P.; Priya; Chuskit, D. Persulfate-nitrogen doped graphene mixture as an oxidant for the synthesis of 3-nitro-4-aryl-2 H -chromen-2-ones from aryl alkynoate esters and nitrite. Org. Biomol. Chem., 2022, 20(22), 4616-4624.
[http://dx.doi.org/10.1039/D2OB00827K] [PMID: 35608321]
[7]
Sawyer, D.T. Oxygen Chemistry; Oxford University Press, 1991, pp. 26-28.
[8]
Afanas’ev, I.B. Superoxide Ion: Chemistry and Biological Implications; CRC Press, 1991, pp. 2-8.
[9]
Hayyan, M.; Hashim, M.A.; AlNashef, I.M. Superoxide Ion: Generation and chemical implications. Chem. Rev., 2016, 116(5), 3029-3085.
[http://dx.doi.org/10.1021/acs.chemrev.5b00407] [PMID: 26875845]
[10]
(a) Natarajan, P. Partigya; Pooja, A photocatalyst-free method for the synthesis of 6-alkyl(aryl)phenanthridines under visible light irradiation. New J. Chem., 2022, 46(47), 22862-22868.
[http://dx.doi.org/10.1039/D2NJ04414E];
(b) Natarajan, P. Pooja; Meena, Pooja; Meena. 2‐Arylbenzyl methyl ethers as precursors for the tandem synthesis of benzo [c] coumarins over heterogeneous visible‐light photoredox catalysis with graphitic carbon nitride (g‐C3N4). Asian J. Org. Chem., 2023, 12(2), e202200643.
[http://dx.doi.org/10.1002/ajoc.202200643];
(c) Natarajan, P.; Chuskit, D. Priya, Readily available alkylbenzenes as precursors for the one-pot preparation of buta-1,3-dienes under DDQ visible-light photocatalysis in benzotrifluoride. Org. Chem. Front., 2022, 9(5), 1395-1402.
[http://dx.doi.org/10.1039/D1QO01869H];
(d) Natarajan, P.; Chuskit, D. Priya; Manjeet, Transition-metal-free synthesis of trifluoromethylated benzoxazines via a visible-light-promoted tandem difunctionalization of o -vinylanilides with trifluoromethylsulfinate. New J. Chem., 2021, 46(1), 322-327.
[http://dx.doi.org/10.1039/D1NJ04548B];
(e) Natarajan, P. Meena; Partigya; Pooja, Visible-light-induced photocatalytic C H arylation-oxidation of vinylarenes: Facile access to (un)symmetrical 1,2-diarylethane-1,2-diones in water. J. Photochem. Photobiol. Chem., 2023, 436, 114372.
[http://dx.doi.org/10.1016/j.jphotochem.2022.114372]
[11]
(a) Chaudhary, R.; Natarajan, P. Visible light photoredox activation of sulfonyl chlorides: applications in organic synthesis. ChemistrySelect, 2017, 2(22), 6458-6479.
[http://dx.doi.org/10.1002/slct.201701156];
(b) Natarajan, P.; König, B. Excited‐State 2,3‐Dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ*) initiated organic synthetic transformations under visible‐light irradiation. Eur. J. Org. Chem., 2021, 2021(15), 2145-2161.
[http://dx.doi.org/10.1002/ejoc.202100011];
(c) Shan, X.; Wang, X.; Chen, E.; Liu, J.; Lu, K.; Zhao, X. Visible-light-promoted trifluoromethylthiolation and trifluoromethylselenolation of 1,4-dihydropyridines. J. Org. Chem., 2023, 88(1), 319-328.
[http://dx.doi.org/10.1021/acs.joc.2c02348] [PMID: 36573495];
(d) Yan, C.Y.; Wu, Z.W.; He, X.Y.; Ma, Y.H.; Peng, X.R.; Wang, L.; Yang, Q.Q. Visible-light-induced tandem radical brominative addition/cyclization of activated alkynes with CBr 4 for the synthesis of 3-bromocoumarins. J. Org. Chem., 2023, 88(1), 647-652.
[http://dx.doi.org/10.1021/acs.joc.2c01721] [PMID: 36480338];
(e) Liu, R.; Zhou, N.; Zhao, T.; Zhang, Y.; Wang, K.; Zhao, X.; Lu, K. Visible-light-induced difluoroalkylation of alkenes and alkynes with fluoro-containing hypervalent iodane (III) reagents under photo-catalyst-free conditions. J. Org. Chem., 2023, 88(1), 483-492.
[http://dx.doi.org/10.1021/acs.joc.2c02488] [PMID: 36563003];
(f) Li, Y.; Wise, D.E.; Mitchell, J.K.; Parasram, M. Cascade synthesis of phenanthrenes under photoirradiation. J. Org. Chem., 2023, 88(1), 717-721.
[http://dx.doi.org/10.1021/acs.joc.2c02202] [PMID: 36525632]
[12]
Patel, R.I.; Sharma, A.; Sharma, S.; Sharma, A. Visible light-mediated applications of methylene blue in organic synthesis. Org. Chem. Front., 2021, 8(7), 1694-1718.
[http://dx.doi.org/10.1039/D0QO01182G]
[13]
Yang, J.; Cao, Y.; Zhang, N. Spectrophotometric method for superoxide anion radical detection in a visible light (400–780 nm) system. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 239, 118556.
[http://dx.doi.org/10.1016/j.saa.2020.118556] [PMID: 32502811]
[14]
Kumar, T.U.; Bobde, Y.; Pulya, S.; Rangan, K.; Ghosh, B.; Bhattacharya, A. Fused chromeno‐thieno/furo‐pyridines as potential analogs of lamellarin D and their anticancer activity evaluation. ChemistrySelect, 2019, 4(36), 10726-10730.
[http://dx.doi.org/10.1002/slct.201902946]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy