Abstract
Background: From an industries and academic perspective, there is a need for a method for producing 3-nitro-4-aryl-2H-chromen-2-ones from aryl alkynoate esters that is both economic and environmental benign. In this context, superoxide ion-assisted radical cascade reaction can be an efficient and greener protocol.
Objective: Herein, we have demonstrated an unprecedented methylene blue (MB) visible light photocatalysis for the production of a series of 3-nitro-4-aryl-2H-chromen-2-ones from readily available aryl alkynoate esters and a nitrating agent in solution.
Methods: Synthesis of 3-nitro-4-aryl-2H-chromen-2-ones has been performed in the presence of aryl alkynoate ester, TBAN, DIPEA, solvent, catalyst and molecular oxygen under visible light irradiation at room temperature. The products were purified by column chromatography using silica gel, and the mixture of ethyl acetate/petroleum ether as an eluting solvent and characterized by IR, NMR and mass spectroscopic analysis.
Results: A series of aryl alkynoate esters were successfully nitrated into corresponding 3-nitro-4- aryl-2H-chromen-2-ones with good isolated yields by this protocol, in which the key NO2-radicals formed by the action of superoxide ion (O2−·).
Conclusion: In contrast to the literature-reported methods of synthesis of 3-nitro-4-aryl-2Hchromen- 2-ones, the process described here for making 3-nitro-4-aryl-2H-chromen-2-ones uses methylene blue visible light photocatalysis, is inexpensive, mild, does not require a metal precursor or high temperatures, and is successful when using the direct sunlight.
[http://dx.doi.org/10.1016/S0021-9258(18)33742-6] [PMID: 6811577];
(b) Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S.L.; Lee, K.H. Recent progress in the development of coumarin derivatives as potent anti‐HIV agents. Med. Res. Rev., 2003, 23(3), 322-345.
[http://dx.doi.org/10.1002/med.10034] [PMID: 12647313];
(c) Le Bras, G.; Radanyi, C.; Peyrat, J.F.; Brion, J.D.; Alami, M.; Marsaud, V.; Stella, B.; Renoir, J.M. New novobiocin analogues as antiproliferative agents in breast cancer cells and potential inhibitors of heat shock protein 90. J. Med. Chem., 2007, 50(24), 6189-6200.
[http://dx.doi.org/10.1021/jm0707774] [PMID: 17979263];
(d) Grover, J.; Jachak, S.M. Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Advances, 2015, 5(49), 38892-38905.
[http://dx.doi.org/10.1039/C5RA05643H];
(e) Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem., 2015, 102, 611-630.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.033] [PMID: 26318068];
(f) Utreja, D.; Jain, N.; Sharma, S. Advances in synthesis and potentially bioactive of coumarin derivatives. Curr. Org. Chem., 2018, 22, 2509-2536.;
(g) Gilles, P.; Veryser, C.; Vangrunderbeeck, S.; Ceusters, S.; Van Meervelt, L.; De Borggraeve, W.M. Synthesis of N -acyl sulfamates from fluorosulfates and amides. J. Org. Chem., 2019, 84(2), 1070-1078.
[http://dx.doi.org/10.1021/acs.joc.8b02785] [PMID: 30582333];
(h) James, M.L.; Fulton, R.R.; Henderson, D.J.; Eberl, S.; Meikle, S.R.; Thomson, S.; Allan, R.D.; Dolle, F.; Fulham, M.J.; Kassiou, M. Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET radioligand. Bioorg. Med. Chem., 2005, 13(22), 6188-6194.
[http://dx.doi.org/10.1016/j.bmc.2005.06.030] [PMID: 16039131];
(i) Das, P.; Almond, D.W.; Tumbelty, L.N.; Austin, B.E.; Moura-Letts, G. From heterocycles to carbacycles: Synthesis of carbocyclic nucleoside analogues from enals and hydroxylamines. Org. Lett., 202022(14), 5491-5495.
[http://dx.doi.org/10.1021/acs.orglett.0c01846] [PMID: 32602726];
(j) Haun, G.; Paneque, A.N.; Almond, D.W.; Austin, B.E.; Moura-Letts, G. Synthesis of chromenoisoxazolidines from substituted salicylic nitrones via visible-light photocatalysis. Org. Lett., 2019, 21(5), 1388-1392.
[http://dx.doi.org/10.1021/acs.orglett.9b00097] [PMID: 30779582]
(b) Wang, Y.H.; Avula, B.; Nanayakkara, N.P.D.; Zhao, J.; Khan, I.A. Cassia cinnamon as a source of coumarin in cinnamon-flavored food and food supplements in the United States. J. Agric. Food Chem., 2013, 61(18), 4470-4476.
[http://dx.doi.org/10.1021/jf4005862] [PMID: 23627682];
(c) Stiefel, C.; Schubert, T.; Morlock, G.E. Bioprofiling of cosmetics with focus on streamlined coumarin analysis. ACS Omega, 2017, 2(8), 5242-5250.
[http://dx.doi.org/10.1021/acsomega.7b00562] [PMID: 30023744];
(d) Gualandi, A.; Rodeghiero, G.; Della Rocca, E.; Bertoni, F.; Marchini, M.; Perciaccante, R.; Jansen, T.P.; Ceroni, P.; Cozzi, P.G. Application of coumarin dyes for organic photoredox catalysis. Chem. Commun., 2018, 54(72), 10044-10047.
[http://dx.doi.org/10.1039/C8CC04048F] [PMID: 30039815];
(e) Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J.S.; Lin, W. Coumarin-based small-molecule fluorescent chemosensors. Chem. Rev., 2019, 119(18), 10403-10519.
[http://dx.doi.org/10.1021/acs.chemrev.9b00145] [PMID: 31314507]
[http://dx.doi.org/10.1002/adsc.202100515]
[http://dx.doi.org/10.1021/acs.joc.8b01201] [PMID: 30074780]
[http://dx.doi.org/10.1039/D1CC03415D] [PMID: 34519303]
[http://dx.doi.org/10.1039/D2OB00827K] [PMID: 35608321]
[http://dx.doi.org/10.1021/acs.chemrev.5b00407] [PMID: 26875845]
[http://dx.doi.org/10.1039/D2NJ04414E];
(b) Natarajan, P. Pooja; Meena, Pooja; Meena. 2‐Arylbenzyl methyl ethers as precursors for the tandem synthesis of benzo [c] coumarins over heterogeneous visible‐light photoredox catalysis with graphitic carbon nitride (g‐C3N4). Asian J. Org. Chem., 2023, 12(2), e202200643.
[http://dx.doi.org/10.1002/ajoc.202200643];
(c) Natarajan, P.; Chuskit, D. Priya, Readily available alkylbenzenes as precursors for the one-pot preparation of buta-1,3-dienes under DDQ visible-light photocatalysis in benzotrifluoride. Org. Chem. Front., 2022, 9(5), 1395-1402.
[http://dx.doi.org/10.1039/D1QO01869H];
(d) Natarajan, P.; Chuskit, D. Priya; Manjeet, Transition-metal-free synthesis of trifluoromethylated benzoxazines via a visible-light-promoted tandem difunctionalization of o -vinylanilides with trifluoromethylsulfinate. New J. Chem., 2021, 46(1), 322-327.
[http://dx.doi.org/10.1039/D1NJ04548B];
(e) Natarajan, P. Meena; Partigya; Pooja, Visible-light-induced photocatalytic C H arylation-oxidation of vinylarenes: Facile access to (un)symmetrical 1,2-diarylethane-1,2-diones in water. J. Photochem. Photobiol. Chem., 2023, 436, 114372.
[http://dx.doi.org/10.1016/j.jphotochem.2022.114372]
[http://dx.doi.org/10.1002/slct.201701156];
(b) Natarajan, P.; König, B. Excited‐State 2,3‐Dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ*) initiated organic synthetic transformations under visible‐light irradiation. Eur. J. Org. Chem., 2021, 2021(15), 2145-2161.
[http://dx.doi.org/10.1002/ejoc.202100011];
(c) Shan, X.; Wang, X.; Chen, E.; Liu, J.; Lu, K.; Zhao, X. Visible-light-promoted trifluoromethylthiolation and trifluoromethylselenolation of 1,4-dihydropyridines. J. Org. Chem., 2023, 88(1), 319-328.
[http://dx.doi.org/10.1021/acs.joc.2c02348] [PMID: 36573495];
(d) Yan, C.Y.; Wu, Z.W.; He, X.Y.; Ma, Y.H.; Peng, X.R.; Wang, L.; Yang, Q.Q. Visible-light-induced tandem radical brominative addition/cyclization of activated alkynes with CBr 4 for the synthesis of 3-bromocoumarins. J. Org. Chem., 2023, 88(1), 647-652.
[http://dx.doi.org/10.1021/acs.joc.2c01721] [PMID: 36480338];
(e) Liu, R.; Zhou, N.; Zhao, T.; Zhang, Y.; Wang, K.; Zhao, X.; Lu, K. Visible-light-induced difluoroalkylation of alkenes and alkynes with fluoro-containing hypervalent iodane (III) reagents under photo-catalyst-free conditions. J. Org. Chem., 2023, 88(1), 483-492.
[http://dx.doi.org/10.1021/acs.joc.2c02488] [PMID: 36563003];
(f) Li, Y.; Wise, D.E.; Mitchell, J.K.; Parasram, M. Cascade synthesis of phenanthrenes under photoirradiation. J. Org. Chem., 2023, 88(1), 717-721.
[http://dx.doi.org/10.1021/acs.joc.2c02202] [PMID: 36525632]
[http://dx.doi.org/10.1039/D0QO01182G]
[http://dx.doi.org/10.1016/j.saa.2020.118556] [PMID: 32502811]
[http://dx.doi.org/10.1002/slct.201902946]