Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Construction, Features and Regulatory Aspects of Organ-chip for Drug Delivery Applications: Advances and Prospective

Author(s): Babita Gupta, Rishabha Malviya*, Saurabh Srivastava*, Irfan Ahmad, Safia Obaidur Rab and Prerna Uniyal

Volume 30, Issue 25, 2024

Published on: 10 June, 2024

Page: [1952 - 1965] Pages: 14

DOI: 10.2174/0113816128305296240523112043

Price: $65

Abstract

Organ-on-chip is an innovative technique that emerged from tissue engineering and microfluidic technologies. Organ-on-chip devices (OoCs) are anticipated to provide efficient explanations for dealing with challenges in pharmaceutical advancement and individualized illness therapies. Organ-on-chip is an advanced method that can replicate human organs' physiological conditions and functions on a small chip. It possesses the capacity to greatly transform the drug development process by enabling the simulation of diseases and the testing of drugs. Effective integration of this advanced technical platform with common pharmaceutical and medical contexts is still a challenge. Microfluidic technology, a micro-level technique, has become a potent tool for biomedical engineering research. As a result, it has revolutionized disciplines, including physiological material interpreting, compound detection, cell-based assay, tissue engineering, biological diagnostics, and pharmaceutical identification. This article aims to offer an overview of newly developed organ-on-a-chip systems. It includes single-organ platforms, emphasizing the most researched organs, including the heart, liver, blood arteries, and lungs. Subsequently, it provides a concise overview of tumor-on-a-chip systems and emphasizes their use in evaluating anti-cancer medications.

[1]
Migliozzi D, Cornaglia M, Mouchiroud L, et al. Multimodal imaging and high-throughput image-processing for drug screening on living organisms on-chip. J Biomed Opt 2018; 24(2): 1-9.
[http://dx.doi.org/10.1117/1.JBO.24.2.021205] [PMID: 30484295]
[2]
Reardon S. ‘Organs-on-chips’ go mainstream. Nature 2015; 523(7560): 266.
[http://dx.doi.org/10.1038/523266a] [PMID: 26178942]
[3]
Jeon JS, Bersini S, Gilardi M, et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci 2015; 112(1): 214-9.
[http://dx.doi.org/10.1073/pnas.1417115112] [PMID: 25524628]
[4]
Adler M, Ramm S, Hafner M, et al. A quantitative approach to screen for nephrotoxic compounds in vitro. J Am Soc Nephrol 2016; 27(4): 1015-28.
[http://dx.doi.org/10.1681/ASN.2015010060] [PMID: 26260164]
[5]
Oleaga C, Bernabini C, Smith AST, et al. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep 2016; 6(1): 20030.
[http://dx.doi.org/10.1038/srep20030] [PMID: 26837601]
[6]
Maschmeyer I, Lorenz AK, Schimek K, et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 2015; 15(12): 2688-99.
[http://dx.doi.org/10.1039/C5LC00392J] [PMID: 25996126]
[7]
Zhang YS, Aleman J, Shin SR, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci 2017; 114(12): E2293-302.
[http://dx.doi.org/10.1073/pnas.1612906114] [PMID: 28265064]
[8]
Karagiannis P, Yamanaka S. The fate of cell reprogramming. Nat Methods 2014; 11(10): 1006-8.
[http://dx.doi.org/10.1038/nmeth.3109] [PMID: 25264776]
[9]
Huh D, Ingber DE. Microfluidic drug screening chip. Nat Protoc 2011; 6(12): 1751-64.
[10]
Zhang B, Radisic M. Organ-on-a-chip devices advance to market. Lab Chip 2017; 17(14): 2395-420.
[http://dx.doi.org/10.1039/C6LC01554A] [PMID: 28617487]
[11]
Cook D, Brown D, Alexander R, et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: A five-dimensional framework. Nat Rev Drug Discov 2014; 13(6): 419-31.
[http://dx.doi.org/10.1038/nrd4309] [PMID: 24833294]
[12]
Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: A maze of opportunities and challenges. Cell 2015; 163(1): 39-53.
[http://dx.doi.org/10.1016/j.cell.2015.08.068] [PMID: 26406370]
[13]
Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach? JACC Basic Transl Sci 2019; 4(7): 845-54.
[http://dx.doi.org/10.1016/j.jacbts.2019.10.008] [PMID: 31998852]
[14]
Franzen N, van Harten WH, Retèl VP, Loskill P, van den Eijnden- van Raaij J, IJzerman M. Impact of organ-on-a-chip technology on pharmaceutical R&D costs. Drug Discov Today 2019; 24(9): 1720-4.
[http://dx.doi.org/10.1016/j.drudis.2019.06.003] [PMID: 31185290]
[15]
Zhang B, Korolj A, Lai BFL, Radisic M. Advances in organ-on-a-chip engineering. Nat Rev Mater 2018; 3(8): 257-78.
[http://dx.doi.org/10.1038/s41578-018-0034-7]
[16]
Duffy DC, McDonald JC, Schueller OJA, Whitesides GM. Rapid prototyping of microfluidic systems in poly(dimethyl siloxane). Anal Chem 1998; 70(23): 4974-84.
[http://dx.doi.org/10.1021/ac980656z] [PMID: 21644679]
[17]
Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014; 32(8): 760-72.
[http://dx.doi.org/10.1038/nbt.2989] [PMID: 25093883]
[18]
Ma C, Tian C, Zhao L, Wang J. Pneumatic-aided micro-molding for flexible fabrication of homogeneous and heterogeneous cell-laden microgels. Lab Chip 2016; 16(14): 2609-17.
[http://dx.doi.org/10.1039/C6LC00540C] [PMID: 27229899]
[19]
Mu X, Zheng W, Xiao L, Zhang W, Jiang X. Engineering a 3D vascular network in hydrogel for mimicking a nephron. Lab Chip 2013; 13(8): 1612-8.
[http://dx.doi.org/10.1039/c3lc41342j] [PMID: 23455642]
[20]
Jang KJ, Suh KY. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 2010; 10(1): 36-42.
[http://dx.doi.org/10.1039/B907515A] [PMID: 20024048]
[21]
Ingber DE. Reverse engineering human pathophysiology with organs-on-chips. Cell 2016; 164(6): 1105-9.
[http://dx.doi.org/10.1016/j.cell.2016.02.049] [PMID: 26967278]
[22]
Xiao S, Coppeta JR, Rogers HB, et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat Commun 2017; 8(1): 14584.
[http://dx.doi.org/10.1038/ncomms14584] [PMID: 28350383]
[23]
Benam KH, Novak R, Nawroth J, et al. Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip. Cell Syst 2016; 3(5): 456-466.e4.
[http://dx.doi.org/10.1016/j.cels.2016.10.003] [PMID: 27894999]
[24]
Villenave R, Wales SQ, Hamkins-Indik T, et al. Human gut-on-a-chip supports polarized infection of coxsackie B1 virus in vitro. PLoS One 2017; 12(2): e0169412.
[http://dx.doi.org/10.1371/journal.pone.0169412] [PMID: 28146569]
[25]
Kim HJ, Li H, Collins JJ, Ingber DE. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci 2016; 113(1): E7-E15.
[http://dx.doi.org/10.1073/pnas.1522193112] [PMID: 26668389]
[26]
Blundell C, Tess ER, Schanzer ASR, et al. A microphysiological model of the human placental barrier. Lab Chip 2016; 16(16): 3065-73.
[http://dx.doi.org/10.1039/C6LC00259E] [PMID: 27229450]
[27]
Choi Y, Hyun E, Seo J, et al. A microengineered pathophysiological model of early-stage breast cancer. Lab Chip 2015; 15(16): 3350-7.
[http://dx.doi.org/10.1039/C5LC00514K] [PMID: 26158500]
[28]
Zhang B, Montgomery M, Chamberlain MD, et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat Mater 2016; 15(6): 669-78.
[http://dx.doi.org/10.1038/nmat4570] [PMID: 26950595]
[29]
Banik S, Uchil A, Kalsang T, et al. The revolution of PDMS microfluidics in cellular biology. Crit Rev Biotechnol 2023; 43(3): 465-83.
[http://dx.doi.org/10.1080/07388551.2022.2034733] [PMID: 35410564]
[30]
Verpoorte E, De Rooij NF. Microfluidics meets MEMS. Proc IEEE 2003; 91(6): 930-53.
[http://dx.doi.org/10.1109/JPROC.2003.813570]
[31]
Ahmed I, Iqbal HMN, Akram Z. Microfluidics engineering: Recent trends, valorization, and applications. Arab J Sci Eng 2018; 43(1): 23-32.
[http://dx.doi.org/10.1007/s13369-017-2662-4]
[32]
Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chem Soc Rev 2010; 39(3): 1153-82.
[http://dx.doi.org/10.1039/b820557b] [PMID: 20179830]
[33]
Ho CMB, Ng SH, Li KHH, Yoon YJ. 3D printed microfluidics for biological applications. Lab Chip 2015; 15(18): 3627-37.
[http://dx.doi.org/10.1039/C5LC00685F] [PMID: 26237523]
[34]
Tsao CW. Polymer microfluidics: Simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines 2016; 7(12): 225.
[http://dx.doi.org/10.3390/mi7120225] [PMID: 30404397]
[35]
Edington CD, Chen WLK, Geishecker E, et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci Rep 2018; 8(1): 4530.
[http://dx.doi.org/10.1038/s41598-018-22749-0] [PMID: 29540740]
[36]
Becker H, Locascio LE. Polymer microfluidic devices. Talanta 2002; 56(2): 267-87.
[http://dx.doi.org/10.1016/S0039-9140(01)00594-X] [PMID: 18968500]
[37]
Kim S, Kim R, Song J, Yoon J, Park HG. Fully automated multiple standard addition on a centrifugal microfluidic system. Anal Chem 2023; 95(48): 17629-36.
[http://dx.doi.org/10.1021/acs.analchem.3c03313] [PMID: 37976500]
[38]
Yi H, Wu LQ, Ghodssi R, Rubloff GW, Payne GF, Bentley WE. Signal-directed sequential assembly of biomolecules on patterned surfaces. Langmuir 2005; 21(6): 2104-7.
[http://dx.doi.org/10.1021/la047529k] [PMID: 15751993]
[39]
Shi Y, Ye P, Yang K, et al. Application of centrifugal microfluidics in immunoassay, biochemical analysis and molecular diagnosis. Analyst 2021; 146(19): 5800-21.
[http://dx.doi.org/10.1039/D1AN00629K] [PMID: 34570846]
[40]
Ling Y, Rubin J, Deng Y, et al. A cell-laden microfluidic hydrogel. Lab Chip 2007; 7(6): 756-62.
[http://dx.doi.org/10.1039/b615486g] [PMID: 17538718]
[41]
Grover WH, von Muhlen MG, Manalis SR. Teflon films for chemically-inert microfluidic valves and pumps. Lab Chip 2008; 8(6): 913-8.
[http://dx.doi.org/10.1039/b800600h] [PMID: 18497911]
[42]
Chudobova D, Cihalova K, Skalickova S, et al. 3D-printed chip for detection of methicillin-resistant Staphylococcus aureus labeled with gold nanoparticles. Electrophoresis 2015; 36(3): 457-66.
[http://dx.doi.org/10.1002/elps.201400321] [PMID: 25069433]
[43]
Zhu F, Macdonald NP, Cooper JM, Wlodkowic D. Additive manufacturing of lab-on-a-chip devices: Promises and challenges. International Society for Optics and Photonics Melbourne 2013; 8923: 892344.
[44]
King PH, Jones G, Morgan H, de Planque MRR, Zauner KP. Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds. Lab Chip 2014; 14(4): 722-9.
[http://dx.doi.org/10.1039/C3LC51072G] [PMID: 24336841]
[45]
Natu R, Herbertson L, Sena G, Strachan K, Guha S. A systematic analysis of recent technology trends of microfluidic medical devices in the United States. Micromachines 2023; 14(7): 1293.
[http://dx.doi.org/10.3390/mi14071293] [PMID: 37512604]
[46]
Plegue TJ, Kovach KM, Thompson AJ, Potkay JA. Stability of polyethylene glycol and zwitterionic surface modifications in PDMS microfluidic flow chambers. Langmuir 2018; 34(1): 492-502.
[http://dx.doi.org/10.1021/acs.langmuir.7b03095] [PMID: 29231737]
[47]
Cherpinski A, Torres-Giner S, Vartiainen J, Peresin MS, Lahtinen P, Lagaron JM. Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose 2018; 25(2): 1291-307.
[http://dx.doi.org/10.1007/s10570-018-1648-z]
[48]
Mogosanu DE, Verplancke R, Dubruel P, Vanfleteren J. Fabrication of 3-dimensional biodegradable microfluidic environments for tissue engineering applications. Mater Des 2016; 89: 1315-24.
[http://dx.doi.org/10.1016/j.matdes.2015.10.046]
[49]
Roy E, Geissler M, Galas JC, Veres T. Prototyping of microfluidic systems using a commercial thermoplastic elastomer. Microfluid Nanofluidics 2011; 11(3): 235-44.
[http://dx.doi.org/10.1007/s10404-011-0789-2]
[50]
Stucki AO, Stucki JD, Hall SRR, et al. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 2015; 15(5): 1302-10.
[http://dx.doi.org/10.1039/C4LC01252F] [PMID: 25521475]
[51]
Glieberman AL, Pope BD, Zimmerman JF, et al. Synchronized stimulation and continuous insulin sensing in a microfluidic human Islet on a chip designed for scalable manufacturing. Lab Chip 2019; 19(18): 2993-3010.
[http://dx.doi.org/10.1039/C9LC00253G] [PMID: 31464325]
[52]
Ugolini GS, Visone R, Cruz-Moreira D, Mainardi A, Rasponi M. Generation of functional cardiac microtissues in a beating heart-on-a-chip. Methods Cell Biol 2018; 146: 69-84.
[http://dx.doi.org/10.1016/bs.mcb.2018.05.005] [PMID: 30037467]
[53]
Poceviciute R, Ismagilov RF. Human-gut-microbiome on a chip. Nat Biomed Eng 2019; 3(7): 500-1.
[http://dx.doi.org/10.1038/s41551-019-0425-0] [PMID: 31278388]
[54]
Koo Y, Hawkins BT, Yun Y. Three-dimensional (3D) tetra-culture brain on chip platform for organophosphate toxicity screening. Sci Rep 2018; 8(1): 2841.
[http://dx.doi.org/10.1038/s41598-018-20876-2] [PMID: 29434277]
[55]
Pires de Mello CP, Carmona-Moran C, McAleer CW, et al. Microphysiological heart–liver body-on-a-chip system with a skin mimic for evaluating topical drug delivery. Lab Chip 2020; 20(4): 749-59.
[http://dx.doi.org/10.1039/C9LC00861F] [PMID: 31970354]
[56]
Miller PG, Shuler ML. Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnol Bioeng 2016; 113(10): 2213-27.
[http://dx.doi.org/10.1002/bit.25989] [PMID: 27070809]
[57]
Livingston CA, Fabre KM, Tagle DA. Facilitating the commercialization and use of organ platforms generated by the microphysiological systems (Tissue Chip) program through public–private partnerships. Comput Struct Biotechnol J 2016; 14: 207-10.
[http://dx.doi.org/10.1016/j.csbj.2016.04.003] [PMID: 27904714]
[58]
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science 2010; 328(5986): 1662-8.
[http://dx.doi.org/10.1126/science.1188302] [PMID: 20576885]
[59]
Humayun M, Chow CW, Young EWK. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Lab Chip 2018; 18(9): 1298-309.
[http://dx.doi.org/10.1039/C7LC01357D] [PMID: 29651473]
[60]
Bai H, Ingber DE. What can an organ-on-a-chip teach us about human lung pathophysiology? Physiology 2022; 37(5): 242-52.
[http://dx.doi.org/10.1152/physiol.00012.2022] [PMID: 35658627]
[61]
Lee SA, No DY, Kang E, Ju J, Kim DS, Lee SH. Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte–hepatic stellate cell interactions and flow effects. Lab Chip 2013; 13(18): 3529-37.
[http://dx.doi.org/10.1039/c3lc50197c] [PMID: 23657720]
[62]
Bavli D, Prill S, Ezra E, et al. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction. Proc Natl Acad Sci 2016; 113(16): E2231-40.
[http://dx.doi.org/10.1073/pnas.1522556113] [PMID: 27044092]
[63]
Delalat B, Cozzi C, Rasi Ghaemi S, et al. Microengineered bioartificial liver chip for drug toxicity screening. Adv Funct Mater 2018; 28(28): 1801825.
[http://dx.doi.org/10.1002/adfm.201801825]
[64]
Dal Pan GJ. Ongoing challenges in pharmacovigilance. Drug Saf 2014; 37(1): 1-8.
[http://dx.doi.org/10.1007/s40264-013-0123-x]
[65]
Khetani SR, Kanchagar C, Ukairo O, et al. Use of micropatterned cocultures to detect compounds that cause drug-induced liver injury in humans. toxicolog sci 2013; 132(1): 107-17.
[66]
Chung K, Kim Y, Kanodia JS, Gong E, Shvartsman SY, Lu H. A microfluidic array for large-scale ordering and orientation of embryos. Nat Methods 2011; 8(2): 171-6.
[http://dx.doi.org/10.1038/nmeth.1548] [PMID: 21186361]
[67]
Jaeschke H, Adelusi OB, Akakpo JY, et al. Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharm Sin B 2021; 11(12): 3740-55.
[http://dx.doi.org/10.1016/j.apsb.2021.09.023] [PMID: 35024303]
[68]
Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R. Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol 2016; 34(2): 156-70.
[http://dx.doi.org/10.1016/j.tibtech.2015.11.001] [PMID: 26708346]
[69]
Kim HJ, Ingber DE. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol 2013; 5(9): 1130-40.
[http://dx.doi.org/10.1039/c3ib40126j] [PMID: 23817533]
[70]
Singh VK, Romaine PLP, Newman VL. Biologics as countermeasures for acute radiation syndrome: Where are we now? Expert Opin Biol Ther 2015; 15(4): 465-71.
[http://dx.doi.org/10.1517/14712598.2015.986453] [PMID: 25416452]
[71]
Wikswo ME, Khetsuriani N, Fowlkes AL, et al. Increased activity of Coxsackievirus B1 strains associated with severe disease among young infants in the United States, 2007-2008. Clin Infect Dis 2009; 49(5): e44-51.
[http://dx.doi.org/10.1086/605090] [PMID: 19622041]
[72]
Jastrzebska E, Tomecka E, Jesion I. Heart-on-a-chip based on stem cell biology. Biosens Bioelectron 2016; 75: 67-81.
[http://dx.doi.org/10.1016/j.bios.2015.08.012] [PMID: 26298640]
[73]
Marsano A, Conficconi C, Lemme M, et al. Beating heart on a chip: A novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 2016; 16(3): 599-610.
[http://dx.doi.org/10.1039/C5LC01356A] [PMID: 26758922]
[74]
Ahn S, Ardoña HAM, Lind JU, et al. Mussel-inspired 3D fiber scaffolds for heart-on-a-chip toxicity studies of engineered nanomaterials. Anal Bioanal Chem 2018; 410(24): 6141-54.
[http://dx.doi.org/10.1007/s00216-018-1106-7] [PMID: 29744562]
[75]
Kattman SJ, Witty AD, Gagliardi M, et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 2011; 8(2): 228-40.
[http://dx.doi.org/10.1016/j.stem.2010.12.008] [PMID: 21295278]
[76]
Park J, Lee BK, Jeong GS, Hyun JK, Lee CJ, Lee SH. Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab Chip 2015; 15(1): 141-50.
[http://dx.doi.org/10.1039/C4LC00962B] [PMID: 25317977]
[77]
Kilic O, Pamies D, Lavell E, et al. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip 2016; 16(21): 4152-62.
[http://dx.doi.org/10.1039/C6LC00946H] [PMID: 27722368]
[78]
Dauth S, Maoz BM, Sheehy SP, et al. Neurons derived from different brain regions are inherently different in vitro: A novel multiregional brain-on-a-chip. J Neurophysiol 2017; 117(3): 1320-41.
[http://dx.doi.org/10.1152/jn.00575.2016] [PMID: 28031399]
[79]
Luni C, Serena E, Elvassore N. Human-on-chip for therapy development and fundamental science. Curr Opin Biotechnol 2014; 25: 45-50.
[http://dx.doi.org/10.1016/j.copbio.2013.08.015] [PMID: 24484880]
[80]
Weibel D, Whitesides G. Applications of microfluidics in chemical biology. Curr Opin Chem Biol 2006; 10(6): 584-91.
[http://dx.doi.org/10.1016/j.cbpa.2006.10.016] [PMID: 17056296]
[81]
Ingber DE. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet 2022; 23(8): 467-91.
[http://dx.doi.org/10.1038/s41576-022-00466-9] [PMID: 35338360]
[82]
van den Berg A, Mummery CL, Passier R, van der Meer AD. Personalised organs-on-chips: Functional testing for precision medicine. Lab Chip 2019; 19(2): 198-205.
[http://dx.doi.org/10.1039/C8LC00827B] [PMID: 30506070]
[83]
Song JW, Cavnar SP, Walker AC, et al. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 2009; 4(6): e5756.
[http://dx.doi.org/10.1371/journal.pone.0005756] [PMID: 19484126]
[84]
Businaro L, De Ninno A, Schiavoni G, et al. Cross talk between cancer and immune cells: Exploring complex dynamics in a microfluidic environment. Lab Chip 2013; 13(2): 229-39.
[http://dx.doi.org/10.1039/C2LC40887B] [PMID: 23108434]
[85]
Vidi PA, Maleki T, Ochoa M, et al. Disease-on-a-chip: Mimicry of tumor growth in mammary ducts. Lab Chip 2014; 14(1): 172-7.
[http://dx.doi.org/10.1039/C3LC50819F] [PMID: 24202525]
[86]
Torisawa Y, Spina CS, Mammoto T, et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods 2014; 11(6): 663-9.
[http://dx.doi.org/10.1038/nmeth.2938] [PMID: 24793454]
[87]
Choucha Snouber L, Bunescu A, Naudot M, et al. Metabolomics- on-a-chip of hepatotoxicity induced by anticancer drug flutamide and Its active metabolite hydroxyflutamide using HepG2/C3a microfluidic biochips. Toxicol Sci 2013; 132(1): 8-20.
[http://dx.doi.org/10.1093/toxsci/kfs230] [PMID: 22843567]
[88]
McAleer CW, Long CJ, Elbrecht D, et al. Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. Sci Transl Med 2019; 11(497): eaav1386.
[http://dx.doi.org/10.1126/scitranslmed.aav1386] [PMID: 31217335]
[89]
Feng J, Neuzil J, Manz A, Iliescu C, Neuzil P. Microfluidic trends in drug screening and drug delivery. Trends Analyt Chem 2023; 158: 116821.
[http://dx.doi.org/10.1016/j.trac.2022.116821]
[90]
Trietsch SJ, Israëls GD, Joore J, Hankemeier T, Vulto P. Microfluidic titer plate for stratified 3D cell culture. Lab Chip 2013; 13(18): 3548-54.
[http://dx.doi.org/10.1039/c3lc50210d] [PMID: 23887749]
[91]
Santana HS, Palma MSA, Lopes MGM, et al. Microfluidic devices and 3D printing for synthesis and screening of drugs and tissue engineering. Ind Eng Chem Res 2020; 59(9): 3794-810.
[http://dx.doi.org/10.1021/acs.iecr.9b03787]
[92]
Ingber DE. Developmentally inspired human ‘organs on chips’. Development 2018; 145(16): dev156125.
[http://dx.doi.org/10.1242/dev.156125] [PMID: 29776965]
[93]
Chiu K, Racz R, Burkhart K, et al. New science, drug regulation, and emergent public health issues: The work of FDA’s division of applied regulatory science. Front Med 2023; 9: 1109541.
[http://dx.doi.org/10.3389/fmed.2022.1109541] [PMID: 36743666]
[94]
Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol 2011; 21(12): 745-54.
[http://dx.doi.org/10.1016/j.tcb.2011.09.005] [PMID: 22033488]
[95]
Perfetto EM, Burke L, Oehrlein EM, Epstein RS. Patient-focused drug development: A new direction for collaboration. Med Care 2015; 53(1): 9-17.
[http://dx.doi.org/10.1097/MLR.0000000000000273] [PMID: 25494232]
[96]
Sung JH, Kam C, Shuler ML. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 2010; 10(4): 446-55.
[http://dx.doi.org/10.1039/b917763a] [PMID: 20126684]
[97]
Lind JU, Busbee TA, Valentine AD, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater 2017; 16(3): 303-8.
[http://dx.doi.org/10.1038/nmat4782] [PMID: 27775708]
[98]
Zarrintaj P, Saeb MR, Stadler FJ, et al. Human organs-on-chips: A review of the state-of-the-art, current prospects, and future challenges. Adv Biol 2022; 6(1): 2000526.
[http://dx.doi.org/10.1002/adbi.202000526] [PMID: 34837667]
[99]
Zhu J, He J, Verano M, et al. An integrated adipose-tissue-on-chip nanoplasmonic biosensing platform for investigating obesity-associated inflammation. Lab Chip 2018; 18(23): 3550-60.
[http://dx.doi.org/10.1039/C8LC00605A] [PMID: 30302487]
[100]
Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 2016; 110: 45-59.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.003] [PMID: 27710832]
[101]
Yi HG, Jeong YH, Kim Y, et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng 2019; 3(7): 509-19.
[http://dx.doi.org/10.1038/s41551-019-0363-x] [PMID: 31148598]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy