Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Exploration of the Shared Gene Signatures and Molecular Mechanisms between Chronic Bronchitis and Antineutrophil Cytoplasmic Antibody-associated Glomerulonephritis: Evidence from Transcriptome Data

Author(s): Xiaojing Cai, Yueqiang Li, Qingquan Liu, Xiang Gao and Junhua Li*

Volume 30, Issue 25, 2024

Published on: 06 June, 2024

Page: [1966 - 1984] Pages: 19

DOI: 10.2174/0113816128297623240521070426

Price: $65

Abstract

Background: Chronic Bronchitis (CB) is a recurrent and persistent pulmonary inflammation disease. Growing evidence suggests an association between CB and Anti-neutrophil Cytoplasmic Antibody-associated Glomerulonephritis (ANCA-GN). However, the precise mechanisms underlying their association remain unclear.

Aims: The purpose of this study was to further explore the molecular mechanism of the occurrence of chronic bronchitis (CB) associated with anti-neutrophil cytoplasmic antibody-associated glomerulonephritis (ANCA- GN).

Objective: Our study aimed to investigate the potential shared pathogenesis of CB-associated ANCA-GN. Methods: Datasets of ANCA (GSE108113 and GSE104948) and CB (GSE151052 and GSE162635) were obtained from the Gene Expression Omnibus (GEO) datasets. Firstly, GSE108113 and GSE151052 were analyzed to identify common differentially expressed genes (DEGs) by Limma package. Based on common DEGs, protein-protein interaction (PPI) network and functional enrichment analyses, including GO, KEGG, and GSEA, were performed. Then, hub genes were identified by degree algorithm and validated in GSE104948 and GSE162635. Further PPI network and functional enrichment analyses were performed on hub genes. Additionally, a competitive ceRNA network was constructed through miRanda and spongeScan. Transcription factors (TFs) were predicted and verified using the TRRUST database. Furthermore, the CIBERSORT algorithm was employed to explore immune cell infiltration. The Drug Gene Interaction Database (DGIDB) was utilized to predict small-molecular compounds of CB and ANCA-GN.

Results: A total of 963 DEGs were identified in the integrated CB dataset, and 610 DEGs were identified in the integrated ANCA-GN dataset. Totally, we identified 22 common DEGs, of which 10 hub genes (LYZ, IRF1, PIK3CG, IL2RG, NT5E, ARG2, HBEGF, NFATC2, ALPL, and FKBP5) were primarily involved in inflammation and immune responses. Focusing on hub genes, we constructed a ceRNA network composed of 323 miRNAs and 348 lncRNAs. Additionally, five TFs (SP1, RELA, NFKB1, HIF1A, and SP3) were identified to regulate the hub genes. Furthermore, immune cell infiltration results revealed immunoregulation in CB and ANCA-GN. Finally, some small-molecular compounds (Daclizumab, Aldesleukin, and NT5E) were predicted to predominantly regulate inflammation and immunity, especially IL-2.

Conclusion: Our study explores the inflammatory-immune pathways underlying CB-associated ANCA-GN and emphasizes the importance of NETs and lymphocyte differentiation, providing novel insights into the shared pathogenesis and therapeutic targets.

[1]
Kitching AR, Anders HJ, Basu N, et al. ANCA-associated vasculitis. Nat Rev Dis Primers 2020; 6(1): 71.
[http://dx.doi.org/10.1038/s41572-020-0204-y] [PMID: 32855422]
[2]
Nakazawa D, Masuda S, Tomaru U, Ishizu A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat Rev Rheumatol 2019; 15(2): 91-101.
[http://dx.doi.org/10.1038/s41584-018-0145-y] [PMID: 30542206]
[3]
Luan J, Xing G. Pathogenesis of antimicrobial peptides LL-37 and CpG-ODN in ANCA associated vasculitis. J Nephrol 2017; 30(1): 63-71.
[http://dx.doi.org/10.1007/s40620-016-0336-z] [PMID: 27476166]
[4]
Galateau F, Loire R, Capron F, et al. Pulmonary lesions in Wegener’s disease. Report of the French Anatomo-clinical Research Group. Study of 40 pulmonary biopsies. Rev Mal Respir 1992; 9(4): 431-42.
[PMID: 1509187]
[5]
Turgeon D, Balter MS, Pagnoux C. Interstitial lung disease in patients with anti-neutrophil cytoplasm antibody-associated vasculitis: An update on pathogenesis and treatment. Curr Opin Pulm Med 2023; 29(5): 436-42.
[http://dx.doi.org/10.1097/MCP.0000000000000979] [PMID: 37395510]
[6]
Konstantinov KN, Ulff-Møller CJ, Tzamaloukas AH. Infections and antineutrophil cytoplasmic antibodies: Triggering mechanisms. Autoimmun Rev 2015; 14(3): 201-3.
[http://dx.doi.org/10.1016/j.autrev.2014.10.020] [PMID: 25448042]
[7]
Tian Y, Zeng T, Tan L, et al. Clinical significance of BPI-ANCA detecting in COPD patients with Pseudomonas aeruginosa colonization. J Clin Lab Anal 2019; 33(6): e22908.
[http://dx.doi.org/10.1002/jcla.22908] [PMID: 31106488]
[8]
Mohammad AJ, Segelmark M. A population-based study showing better renal prognosis for proteinase 3 antineutrophil cytoplasmic antibody (ANCA)-associated nephritis versus myeloperoxidase ANCA-associated nephritis. J Rheumatol 2014; 41(7): 1366-73.
[http://dx.doi.org/10.3899/jrheum.131038] [PMID: 24882836]
[9]
Kronbichler A, Jayne DRW. ANCA renal risk score: Is prediction of end-stage renal disease at baseline possible? Kidney Int 2018; 94(6): 1045-7.
[http://dx.doi.org/10.1016/j.kint.2018.10.001] [PMID: 30466561]
[10]
Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176(2): 231-41.
[http://dx.doi.org/10.1083/jcb.200606027] [PMID: 17210947]
[11]
Tao M, He Y, Li L, et al. Identification and validation of immune-associated NETosis subtypes and biomarkers in anti-neutrophil cytoplasmic antibody associated glomerulonephritis. Front Immunol 2023; 14: 1177968.
[http://dx.doi.org/10.3389/fimmu.2023.1177968] [PMID: 37465687]
[12]
Thiam HR, Wong SL, Wagner DD, Waterman CM. Cellular mechanisms of NETosis. Annu Rev Cell Dev Biol 2020; 36(1): 191-218.
[http://dx.doi.org/10.1146/annurev-cellbio-020520-111016] [PMID: 32663035]
[13]
Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 2010; 207(9): 1853-62.
[http://dx.doi.org/10.1084/jem.20100239] [PMID: 20733033]
[14]
Wang ZL, Shang JC, Li CM, Li M, Xing GQ. Significance of serum peptidylarginine deiminase type 4 in ANCA-associated vasculitis. Beijing Da Xue Xue Bao 2014; 46(2): 200-6.
[PMID: 24743806]
[15]
Guang-Qun LHX. Neutrophil extracellular traps induce production of MPO-ANCA in chronic bronchitis rats. Chin J Immunol 2017; 33: 1458-63.
[16]
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30(1): 207-10.
[http://dx.doi.org/10.1093/nar/30.1.207] [PMID: 11752295]
[17]
Yao M, Zhang C, Gao C, et al. Exploration of the shared gene signatures and molecular mechanisms between systemic lupus erythematosus and pulmonary arterial hypertension: Evidence from transcriptome data. Front Immunol 2021; 12: 658341.
[http://dx.doi.org/10.3389/fimmu.2021.658341] [PMID: 34335565]
[18]
Su W, Zhao Y, Wei Y, Zhang X, Ji J, Yang S. Exploring the pathogenesis of psoriasis complicated with atherosclerosis via microarray data analysis. Front Immunol 2021; 12: 667690.
[http://dx.doi.org/10.3389/fimmu.2021.667690] [PMID: 34122426]
[19]
Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[20]
Shibata S, Tada Y, Hau CS, et al. Adiponectin regulates psoriasiform skin inflammation by suppressing IL-17 production from γδ-T cells. Nat Commun 2015; 6(1): 7687.
[http://dx.doi.org/10.1038/ncomms8687] [PMID: 26173479]
[21]
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545-50.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[22]
Han H, Cho JW, Lee S, et al. TRRUST v2: An expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res 2018; 46(D1): D380-6.
[http://dx.doi.org/10.1093/nar/gkx1013] [PMID: 29087512]
[23]
Wang Z, Zhang Y, Li K. Nuclear miRNAs as transcriptional regulators in processes related to various cancers (Review). Int J Oncol 2024; 64(5): 56.
[http://dx.doi.org/10.3892/ijo.2024.5644] [PMID: 38606502]
[24]
Cao Y, Tang W, Tang W. Immune cell infiltration characteristics and related core genes in lupus nephritis: Results from bioinformatic analysis. BMC Immunol 2019; 20(1): 37.
[http://dx.doi.org/10.1186/s12865-019-0316-x] [PMID: 31638917]
[25]
Griffith M, Griffith OL, Coffman AC, et al. DGIdb: Mining the druggable genome. Nat Methods 2013; 10(12): 1209-10.
[http://dx.doi.org/10.1038/nmeth.2689] [PMID: 24122041]
[26]
Kadowaki T, Yano S, Yamadori I, et al. A case of sinobronchial syndrome complicated with myeloperoxidase antineutrophil cytoplasmic antibody associated vasculitis: Review of the literature. Intern Med 2012; 51(7): 763-7.
[http://dx.doi.org/10.2169/internalmedicine.51.5957] [PMID: 22466835]
[27]
Ha H, Debnath B, Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics 2017; 7(6): 1543-88.
[http://dx.doi.org/10.7150/thno.15625] [PMID: 28529637]
[28]
Sung PS, Hsieh SL. C-type lectins and extracellular vesicles in virus-induced NETosis. J Biomed Sci 2021; 28(1): 46.
[http://dx.doi.org/10.1186/s12929-021-00741-7] [PMID: 34116654]
[29]
Fischer S, Stegmann F, Gnanapragassam VS, Lepenies B. From structure to function – Ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J 2022; 20: 5790-812.
[http://dx.doi.org/10.1016/j.csbj.2022.10.019] [PMID: 36382179]
[30]
Takeuchi A, Saito T. CD4 CTL, a cytotoxic subset of CD4+ T cells, their differentiation and function. Front Immunol 2017; 8: 194.
[http://dx.doi.org/10.3389/fimmu.2017.00194] [PMID: 28280496]
[31]
Behler-Janbeck F, Takano T, Maus R, et al. C-type lectin mincle recognizes glucosyl-diacylglycerol of streptococcus pneumoniae and plays a protective role in pneumococcal pneumonia. PLoS Pathog 2016; 12(12): e1006038.
[http://dx.doi.org/10.1371/journal.ppat.1006038] [PMID: 27923071]
[32]
Schreiber A, Rousselle A, Becker JU, von Mässenhausen A, Linkermann A, Kettritz R. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc Natl Acad Sci USA 2017; 114(45): E9618-25.
[http://dx.doi.org/10.1073/pnas.1708247114] [PMID: 29078325]
[33]
Fiorini G, Crespi S, Rinaldi M, Oberti E, Vigorelli R, Palmieri G. Serum ECP and MPO are increased during exacerbations of chronic bronchitis with airway obstruction. Biomed Pharmacother 2000; 54(5): 274-8.
[http://dx.doi.org/10.1016/S0753-3322(00)80071-2] [PMID: 10917466]
[34]
Söderberg D, Segelmark M. Neutrophil extracellular traps in ANCA-associated vasculitis. Front Immunol 2016; 7: 256.
[http://dx.doi.org/10.3389/fimmu.2016.00256] [PMID: 27446086]
[35]
O’Sullivan KM, Holdsworth SR. Neutrophil extracellular traps: A potential therapeutic target in MPO-ANCA associated vasculitis? Front Immunol 2021; 12: 635188.
[http://dx.doi.org/10.3389/fimmu.2021.635188] [PMID: 33790907]
[36]
Juha M, Molnár A, Jakus Z, Ledó N. NETosis: An emerging therapeutic target in renal diseases. Front Immunol 2023; 14: 1253667.
[http://dx.doi.org/10.3389/fimmu.2023.1253667] [PMID: 37744367]
[37]
d’Alessandro M, Conticini E, Bergantini L, et al. Neutrophil extracellular traps in ANCA-associated vasculitis and interstitial lung disease: A scoping review. Life 2022; 12(2): 317.
[http://dx.doi.org/10.3390/life12020317] [PMID: 35207604]
[38]
Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nat Rev Immunol 2007; 7(9): 678-89.
[http://dx.doi.org/10.1038/nri2156] [PMID: 17717539]
[39]
Di Stefano A, Maestrelli P, Roggeri A, et al. Upregulation of adhesion molecules in the bronchial mucosa of subjects with chronic obstructive bronchitis. Am J Respir Crit Care Med 1994; 149(3): 803-10.
[http://dx.doi.org/10.1164/ajrccm.149.3.7509705] [PMID: 7509705]
[40]
Kuligowski MP, Kwan RYQ, Lo C, et al. Antimyeloperoxidase antibodies rapidly induce α4-integrin–dependent glomerular neutrophil adhesion. Blood 2009; 113(25): 6485-94.
[http://dx.doi.org/10.1182/blood-2008-12-192617] [PMID: 19383970]
[41]
Soehnlein O, Zernecke A, Weber C. Neutrophils launch monocyte extravasation by release of granule proteins. Thromb Haemost 2009; 102(2): 198-205.
[PMID: 19652869]
[42]
Ji J, Ganguly K, Mihai X, et al. Exposure of normal and chronic bronchitis-like mucosa models to aerosolized carbon nanoparticles: Comparison of pro-inflammatory oxidative stress and tissue injury/repair responses. Nanotoxicology 2019; 13(10): 1362-79.
[http://dx.doi.org/10.1080/17435390.2019.1655600] [PMID: 31462114]
[43]
Sanders JSF, van Goor H, Hanemaaijer R, Kallenberg CGM, Stegeman CA. Renal expression of matrix metalloproteinases in human ANCA-associated glomerulonephritis. Nephrol Dial Transplant 2004; 19(6): 1412-9.
[http://dx.doi.org/10.1093/ndt/gfh186] [PMID: 15034162]
[44]
Liu Y, Feng Y, Kong X, et al. A microRNA sponge, LINC02193, promotes neutrophil activation by upregulating ICAM1 and is correlated with ANCA-associated vasculitis. Rheumatology 2023; kead605.
[45]
Rahman SMT, Singh A, Lowe S, et al. Co-imaging of RelA and c-Rel reveals features of NF-κB signaling for ligand discrimination. Cell Rep 2024; 43(3): 113940.
[http://dx.doi.org/10.1016/j.celrep.2024.113940] [PMID: 38483906]
[46]
Huang D, Chen J, Yang L, et al. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat Immunol 2018; 19(10): 1112-25.
[http://dx.doi.org/10.1038/s41590-018-0207-y] [PMID: 30224822]
[47]
Ragland SA, Criss AK. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog 2017; 13(9): e1006512.
[http://dx.doi.org/10.1371/journal.ppat.1006512] [PMID: 28934357]
[48]
Kimura R, Matsuzawa N, Arimura Y, Soejima A, Nakabayashi K, Yamada A. Azurocidin-specific-ANCA-related idiopathic necrotizing crescentic glomerulonephritis. Am J Kidney Dis 2004; 43(4): e17.1-4.
[http://dx.doi.org/10.1053/j.ajkd.2003.12.038] [PMID: 15042565]
[49]
Zhang L, Rice AB, Adler K, et al. Vanadium stimulates human bronchial epithelial cells to produce heparin-binding epidermal growth factor-like growth factor: A mitogen for lung fibroblasts. Am J Respir Cell Mol Biol 2001; 24(2): 123-31.
[http://dx.doi.org/10.1165/ajrcmb.24.2.4096] [PMID: 11159045]
[50]
Ntinopoulou M, Cassimos D, Roupakia E, et al. Ιnterleukin-17A-enriched neutrophil extracellular traps promote immunofibrotic aspects of childhood asthma exacerbation. Biomedicines 2023; 11(8): 2104.
[http://dx.doi.org/10.3390/biomedicines11082104] [PMID: 37626601]
[51]
Gaudin PB, Askin FB, Falk RJ, Jennette JC. The pathologic spectrum of pulmonary lesions in patients with anti-neutrophil cytoplasmic autoantibodies specific for anti-proteinase 3 and anti-myeloperoxidase. Am J Clin Pathol 1995; 104(1): 7-16.
[http://dx.doi.org/10.1093/ajcp/104.1.7] [PMID: 7611186]
[52]
Chrysanthopoulou A, Mitroulis I, Apostolidou E, et al. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J Pathol 2014; 233(3): 294-307.
[http://dx.doi.org/10.1002/path.4359] [PMID: 24740698]
[53]
Fleisch H, Bisaz S. Mechanism of calcification: Inhibitory role of pyrophosphate. Nature 1962; 195(4844): 911.
[http://dx.doi.org/10.1038/195911a0] [PMID: 13893487]
[54]
Bobryshev Y, Orekhov A, Sobenin I, Chistiakov D. Role of bone- type tissue-nonspecific alkaline phosphatase and PHOSPO1 in vascular calcification. Curr Pharm Des 2014; 20(37): 5821-8.
[http://dx.doi.org/10.2174/1381612820666140212193011] [PMID: 24533943]
[55]
Peters E, Geraci S, Heemskerk S, et al. Alkaline phosphatase protects against renal inflammation through dephosphorylation of lipopolysaccharide and adenosine triphosphate. Br J Pharmacol 2015; 172(20): 4932-45.
[http://dx.doi.org/10.1111/bph.13261] [PMID: 26222228]
[56]
Davidson JA, Urban T, Tong S, et al. Alkaline phosphatase, soluble extracellular adenine nucleotides, and adenosine production after infant cardiopulmonary bypass. PLoS One 2016; 11(7): e0158981.
[http://dx.doi.org/10.1371/journal.pone.0158981] [PMID: 27384524]
[57]
Misumi Y, Ogata S, Ohkubo K, Hirose S, Ikehara Y. Primary structure of human placental 5′-nucleotidase and identification of the glycolipid anchor in the mature form. Eur J Biochem 1990; 191(3): 563-9.
[http://dx.doi.org/10.1111/j.1432-1033.1990.tb19158.x] [PMID: 2129526]
[58]
van Heusden C, Grubb B, Button B, Lazarowski E. Airway epithelial nucleotide release contributes to mucociliary clearance. Life 2021; 11(5): 430.
[http://dx.doi.org/10.3390/life11050430] [PMID: 34064654]
[59]
Kling L, Benck U, Breedijk A, et al. Changes in CD73, CD39 and CD26 expression on T-lymphocytes of ANCA-associated vasculitis patients suggest impairment in adenosine generation and turn-over. Sci Rep 2017; 7(1): 11683.
[http://dx.doi.org/10.1038/s41598-017-12011-4] [PMID: 28916770]
[60]
Brunini F, Page TH, Gallieni M, Pusey CD. The role of monocytes in ANCA-associated vasculitides. Autoimmun Rev 2016; 15(11): 1046-53.
[http://dx.doi.org/10.1016/j.autrev.2016.07.031] [PMID: 27491570]
[61]
Whittaker L, Niu N, Temann UA, et al. Interleukin-13 mediates a fundamental pathway for airway epithelial mucus induced by CD4 T cells and interleukin-9. Am J Respir Cell Mol Biol 2002; 27(5): 593-602.
[http://dx.doi.org/10.1165/rcmb.4838] [PMID: 12397019]
[62]
Moran SM, Monach PA, Zgaga L, et al. Urinary soluble CD163 and monocyte chemoattractant protein-1 in the identification of subtle renal flare in anti-neutrophil cytoplasmic antibody-associated vasculitis. Nephrol Dial Transplant 2020; 35(2): 283-91.
[http://dx.doi.org/10.1093/ndt/gfy300] [PMID: 30380100]
[63]
Santana KG, Righetti RF, Breda CNS, et al. Cholesterol-ester transfer protein alters M1 and M2 macrophage polarization and worsens experimental elastase-induced pulmonary emphysema. Front Immunol 2021; 12: 684076.
[http://dx.doi.org/10.3389/fimmu.2021.684076] [PMID: 34367144]
[64]
Kang MJ, Choi JM, Kim BH, et al. IL-18 induces emphysema and airway and vascular remodeling via IFN-γ, IL-17A, and IL-13. Am J Respir Crit Care Med 2012; 185(11): 1205-17.
[http://dx.doi.org/10.1164/rccm.201108-1545OC] [PMID: 22383501]
[65]
Akitsu A, Iwakura Y. Interleukin-17-producing γδ T ( γδ 17) cells in inflammatory diseases. Immunology 2018; 155(4): 418-26.
[http://dx.doi.org/10.1111/imm.12993] [PMID: 30133701]
[66]
Free ME, Stember KG, Hess JJ, et al. Restricted myeloperoxidase epitopes drive the adaptive immune response in MPO-ANCA vasculitis. J Autoimmun 2020; 106: 102306.
[http://dx.doi.org/10.1016/j.jaut.2019.102306] [PMID: 31383567]
[67]
Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of TH17 cells. Nature 2008; 453(7198): 1051-7.
[http://dx.doi.org/10.1038/nature07036] [PMID: 18563156]
[68]
Siddiqui RA, Atta-ur-Rahman, Interleukin-8: An autocrine inflammatory mediator. Curr Pharm Des 1999; 5(4): 241-53.
[http://dx.doi.org/10.2174/1381612805666230109213039]
[69]
Meuth SG, Göbel K, Wiendl H. Immune therapy of multiple sclerosis-future strategies. Curr Pharm Des 2012; 18(29): 4489-97.
[http://dx.doi.org/10.2174/138161212802502198] [PMID: 22612746]
[70]
Busse WW, Israel E, Nelson HS, et al. Daclizumab improves asthma control in patients with moderate to severe persistent asthma: A randomized, controlled trial. Am J Respir Crit Care Med 2008; 178(10): 1002-8.
[http://dx.doi.org/10.1164/rccm.200708-1200OC] [PMID: 18787222]
[71]
Cassell D, Choudhri S, Humphrey R, Martell R, Reynolds T, Shanafelt A. Therapeutic enhancement of IL-2 through molecular design. Curr Pharm Des 2002; 8(24): 2171-83.
[http://dx.doi.org/10.2174/1381612023393260] [PMID: 12369861]
[72]
Mullard A. Restoring IL-2 to its cancer immunotherapy glory. Nat Rev Drug Discov 2021; 20(3): 163-5.
[http://dx.doi.org/10.1038/d41573-021-00034-6] [PMID: 33603157]
[73]
Shen H, Yang E, Guo M, et al. Adjunctive Zoledronate + IL-2 administrations enhance anti-tuberculosis Vγ2Vδ2 T-effector populations, and improve treatment outcome of multidrug-resistant tuberculosis. Emerg Microbes Infect 2022; 11(1): 1790-805.
[http://dx.doi.org/10.1080/22221751.2022.2095930] [PMID: 35765887]
[74]
Jiang S, Liu Y, Lu C, Li Y, Venners SA. Associations of two common polymorphisms in MTHFR gene with blood lipids and therapeutic efficacy of simvastatin. Curr Pharm Des 2022; 28(26): 2167-76.
[http://dx.doi.org/10.2174/1381612828666220623102537] [PMID: 35747958]
[75]
Choi M, Rolle S, Rane M, Haller H, Luft FC, Kettritz R. Extracellular signal-regulated kinase inhibition by statins inhibits neutrophil activation by ANCA. Kidney Int 2003; 63(1): 96-106.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00718.x] [PMID: 12472772]
[76]
Zycinska  K, Wardyn  KA, Zielonka  TM, Krupa  R, Lukas  W. Co-trimoxazole and prevention of relapses of PR3-ANCA positive vasculitis with pulmonary involvement. Eur J Med Res 2009; 14 (Suppl. 4): 265-7.
[http://dx.doi.org/10.1186/2047-783X-14-S4-265] [PMID: 20156769]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy