Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Role of Polyphenols to Attenuate Depressive Disorders and Cognitive Impairments Associated with Diabetes Mellitus – A Comprehensive Review

In Press, (this is not the final "Version of Record"). Available online 06 June, 2024
Author(s): Sejuti Ray Chowdhury, Sourav Ghosh*, Monosiz Rahaman and Srabona Dutta
Published on: 06 June, 2024

Article ID: e060624230792

DOI: 10.2174/0122103155295956240529155913

Price: $95

Abstract

Diabetes Mellitus and its associated brain disorders become more prevalent across the globe. Several comorbidity factors are associated with diabetic mellitus as well as the nervous system. Static molecular variations in the Central Nervous System (CNS) due to Hyperglycemia may be a major cause of psychiatric disorders. Carbohydrates and proteins imbalance as metabolic parameters impact the downregulation of neurotransmitters in the brain region. Glucose metabolism has a key role in brain physiology as well as in neuro-energetics, transmission, and defensive mechanisms of the brain. Several studies revealed that CNS-acting medications overstated the glucose homeostasis associated with brain functioning as well as pharmacological effects. Polyphenols are an assembly of plant-derived composites with anti-inflammatory properties working on the inflammatory markers as well as antioxidant possessions that decrease the oxidative stress that is accompanied by a low pervasiveness of metabolic conditions categorized by insulin resistance. Those Natural products influenced the molecular signaling pathway, which is directly related to depression, cognitive impairment and neurotransmission. Currently, there are not any exact pharmacotherapies accessible for CNS form-induced diabetes. However, around some prebiotics, probiotics with natural remedies show promise in treating these central nervous system difficulties. Consequently, proof-based research concluded the translational study with a clinical setting understanding the connotation among brain glucose homeostasis and central nervous system complications is warranted, and the progress of pharmacologically dynamic therapy for active treatment of comorbidities diseases related to diabetes mellitus.

[1]
Mohan, V.; Pradeepa, R. Epidemiology of type 2 diabetes in India. Indian J. Ophthalmol., 2021, 69(11), 2932-2938.
[http://dx.doi.org/10.4103/ijo.IJO_1627_21] [PMID: 34708726]
[2]
Atlas, D. IDF Diabetes Atlas; 7th ed. ; International Diabetes Federation: Brussels, Belgium, 2015, 27, pp. 188-207.
[3]
Butterfield, D.A.; Di Domenico, F.; Barone, E. Elevated risk of type 2 diabetes for development of Alzheimer disease: A key role for oxidative stress in brain. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(9), 1693-1706.
[http://dx.doi.org/10.1016/j.bbadis.2014.06.010] [PMID: 24949886]
[4]
Ducat, L.; Philipson, L.H.; Anderson, B.J. The mental health comorbidities of diabetes. JAMA, 2014, 312(7), 691-692.
[http://dx.doi.org/10.1001/jama.2014.8040] [PMID: 25010529]
[5]
Lin, E.H.B.; Rutter, C.M.; Katon, W.; Heckbert, S.R.; Ciechanowski, P.; Oliver, M.M.; Ludman, E.J.; Young, B.A.; Williams, L.H.; McCulloch, D.K.; Von Korff, M. Depression and advanced complications of diabetes: A prospective cohort study. Diabetes Care, 2010, 33(2), 264-269.
[http://dx.doi.org/10.2337/dc09-1068] [PMID: 19933989]
[6]
de Groot, M.; Anderson, R.; Freedland, K.E.; Clouse, R.E.; Lustman, P.J. Association of depression and diabetes complications: A meta-analysis. Psychosom. Med., 2001, 63(4), 619-630.
[http://dx.doi.org/10.1097/00006842-200107000-00015] [PMID: 11485116]
[7]
Lustman, P.J.; Anderson, R.J.; Freedland, K.E.; de Groot, M.; Carney, R.M.; Clouse, R.E. Depression and poor glycemic control: A meta-analytic review of the literature. Diabetes Care, 2000, 23(7), 934-942.
[http://dx.doi.org/10.2337/diacare.23.7.934] [PMID: 10895843]
[8]
Talbot, K.; Wang, H.Y.; Kazi, H.; Han, L.Y.; Bakshi, K.P.; Stucky, A.; Fuino, R.L.; Kawaguchi, K.R.; Samoyedny, A.J.; Wilson, R.S.; Arvanitakis, Z.; Schneider, J.A.; Wolf, B.A.; Bennett, D.A.; Trojanowski, J.Q.; Arnold, S.E. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest., 2012, 122(4), 1316-1338.
[http://dx.doi.org/10.1172/JCI59903] [PMID: 22476197]
[9]
Bruening, J.C. Role of brain insulin receptor and control of body weight and reproduction. Exp. Clin. Endocrinol. Diabetes, 2006, 114(8), H1.
[http://dx.doi.org/10.1055/s-2006-954676]
[10]
Grillo, C.A.; Piroli, G.G.; Lawrence, R.C.; Wrighten, S.A.; Green, A.J.; Wilson, S.P.; Sakai, R.R.; Kelly, S.J.; Wilson, M.A.; Mott, D.D.; Reagan, L.P. Hippocampal insulin resistance impairs spatial learning and synaptic plasticity. Diabetes, 2015, 64(11), 3927-3936.
[http://dx.doi.org/10.2337/db15-0596] [PMID: 26216852]
[11]
Figlewicz, D.P.; Evans, S.B.; Murphy, J.; Hoen, M.; Baskin, D.G. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res., 2003, 964(1), 107-115.
[http://dx.doi.org/10.1016/S0006-8993(02)04087-8] [PMID: 12573518]
[12]
Woods, C.A.; Guttman, Z.R.; Huang, D.; Kolaric, R.A.; Rabinowitsch, A.I.; Jones, K.T.; Cabeza de Vaca, S.; Sclafani, A.; Carr, K.D. Insulin receptor activation in the nucleus accumbens reflects nutritive value of a recently ingested meal. Physiol. Behav., 2016, 159, 52-63.
[http://dx.doi.org/10.1016/j.physbeh.2016.03.013] [PMID: 26988281]
[13]
Grillo, C.A.; Piroli, G.G.; Kaigler, K.F.; Wilson, S.P.; Wilson, M.A.; Reagan, L.P. Downregulation of hypothalamic insulin receptor expression elicits depressive-like behaviors in rats. Behav. Brain Res., 2011, 222(1), 230-235.
[http://dx.doi.org/10.1016/j.bbr.2011.03.052] [PMID: 21458499]
[14]
Kleinridders, A.; Cai, W.; Cappellucci, L.; Ghazarian, A.; Collins, W.R.; Vienberg, S.G.; Pothos, E.N.; Kahn, C.R. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc. Natl. Acad. Sci. USA, 2015, 112(11), 3463-3468.
[http://dx.doi.org/10.1073/pnas.1500877112] [PMID: 25733901]
[15]
Cai, W.; Xue, C.; Sakaguchi, M.; Konishi, M.; Shirazian, A.; Ferris, H.A.; Li, M.E.; Yu, R.; Kleinridders, A.; Pothos, E.N.; Kahn, C.R. Insulin regulates astrocyte gliotransmission and modulates behavior. J. Clin. Invest., 2018, 128(7), 2914-2926.
[http://dx.doi.org/10.1172/JCI99366] [PMID: 29664737]
[16]
Mansur, R.B.; Fries, G.R.; Subramaniapillai, M.; Frangou, S.; De Felice, F.G.; Rasgon, N.; McEwen, B.; Brietzke, E.; McIntyre, R.S. Expression of dopamine signaling genes in the post-mortem brain of individuals with mental illnesses is moderated by body mass index and mediated by insulin signaling genes. J. Psychiatr. Res., 2018, 107, 128-135.
[http://dx.doi.org/10.1016/j.jpsychires.2018.10.020] [PMID: 30391805]
[17]
Hill, A.S.; Sahay, A.; Hen, R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology, 2015, 40(10), 2368-2378.
[http://dx.doi.org/10.1038/npp.2015.85] [PMID: 25833129]
[18]
Lindqvist, A.; Mohapel, P.; Bouter, B.; Frielingsdorf, H.; Pizzo, D.; Brundin, P.; Erlanson-Albertsson, C. High‐fat diet impairs hippocampal neurogenesis in male rats. Eur. J. Neurol., 2006, 13(12), 1385-1388.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01500.x] [PMID: 17116226]
[19]
Papazoglou, I.K.; Jean, A.; Gertler, A.; Taouis, M.; Vacher, C.M. Hippocampal GSK3β as a molecular link between obesity and depression. Mol. Neurobiol., 2015, 52(1), 363-374.
[http://dx.doi.org/10.1007/s12035-014-8863-x] [PMID: 25169083]
[20]
Bonato, J.M.; Bassani, T.B.; Milani, H.; Vital, M.A.B.F.; de Oliveira, R.M.W. Pioglitazone reduces mortality, prevents depressive-like behavior, and impacts hippocampal neurogenesis in the 6-OHDA model of Parkinson’s disease in rats. Exp. Neurol., 2018, 300, 188-200.
[http://dx.doi.org/10.1016/j.expneurol.2017.11.009] [PMID: 29162435]
[21]
Pipatpiboon, N.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. PPARγ agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. Endocrinology, 2012, 153(1), 329-338.
[http://dx.doi.org/10.1210/en.2011-1502] [PMID: 22109891]
[22]
Detka, J.; Kurek, A.; Basta-Kaim, A.; Kubera, M.; Lasoń, W.; Budziszewska, B. Neuroendocrine link between stress, depression and diabetes. Pharmacol. Rep., 2013, 65(6), 1591-1600.
[http://dx.doi.org/10.1016/S1734-1140(13)71520-2] [PMID: 24553007]
[23]
Labouèbe, G.; Liu, S.; Dias, C.; Zou, H.; Wong, J.C.Y.; Karunakaran, S.; Clee, S.M.; Phillips, A.G.; Boutrel, B.; Borgland, S.L. Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids. Nat. Neurosci., 2013, 16(3), 300-308.
[http://dx.doi.org/10.1038/nn.3321] [PMID: 23354329]
[24]
Stouffer, M.A.; Woods, C.A.; Patel, J.C.; Lee, C.R.; Witkovsky, P.; Bao, L.; Machold, R.P.; Jones, K.T.; de Vaca, S.C.; Reith, M.E.A.; Carr, K.D.; Rice, M.E. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat. Commun., 2015, 6(1), 8543.
[http://dx.doi.org/10.1038/ncomms9543] [PMID: 26503322]
[25]
Mirza, S.; Hossain, M.; Mathews, C.; Martinez, P.; Pino, P.; Gay, J.L.; Rentfro, A.; McCormick, J.B.; Fisher-Hoch, S.P. Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: A cross-sectional study. Cytokine, 2012, 57(1), 136-142.
[http://dx.doi.org/10.1016/j.cyto.2011.09.029] [PMID: 22035595]
[26]
Johnson, L.A.; Edwards, M.; Gamboa, A.; Hall, J.; Robinson, M.; O’Bryant, S.E. Depression, inflammation, and memory loss among Mexican Americans: Analysis of the HABLE cohort. Int. Psychogeriatr., 2017, 29(10), 1693-1699.
[http://dx.doi.org/10.1017/S1041610217001016] [PMID: 28629481]
[27]
Postal, M.; Lapa, A.T.; Sinicato, N.A.; de Oliveira Peliçari, K.; Peres, F.A.; Costallat, L.T.L.; Fernandes, P.T.; Marini, R.; Appenzeller, S. Depressive symptoms are associated with tumor necrosis factor alpha in systemic lupus erythematosus. J. Neuroinflammation, 2016, 13(1), 5.
[http://dx.doi.org/10.1186/s12974-015-0471-9] [PMID: 26732584]
[28]
Kaster, M.P.; Gadotti, V.M.; Calixto, J.B.; Santos, A.R.S.; Rodrigues, A.L.S. Depressive-like behavior induced by tumor necrosis factor-α in mice. Neuropharmacology, 2012, 62(1), 419-426.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.018] [PMID: 21867719]
[29]
Morgan, J.A.; Singhal, G.; Corrigan, F.; Jaehne, E.J.; Jawahar, M.C.; Baune, B.T. Exercise related anxiety-like behaviours are mediated by TNF receptor signaling, but not depression-like behaviours. Brain Res., 2018, 1695, 10-17.
[http://dx.doi.org/10.1016/j.brainres.2018.05.032] [PMID: 29800552]
[30]
Bomfim, T.R.; Forny-Germano, L.; Sathler, L.B.; Brito-Moreira, J.; Houzel, J.C.; Decker, H.; Silverman, M.A.; Kazi, H.; Melo, H.M.; McClean, P.L.; Holscher, C.; Arnold, S.E.; Talbot, K.; Klein, W.L.; Munoz, D.P.; Ferreira, S.T.; De Felice, F.G. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease–associated Aβ oligomers. J. Clin. Invest., 2012, 122(4), 1339-1353.
[http://dx.doi.org/10.1172/JCI57256] [PMID: 22476196]
[31]
Clarke, J.R.; Lyra e Silva, N.M.; Figueiredo, C.P.; Frozza, R.L.; Ledo, J.H.; Beckman, D.; Katashima, C.K.; Razolli, D.; Carvalho, B.M.; Frazão, R.; Silveira, M.A.; Ribeiro, F.C.; Bomfim, T.R.; Neves, F.S.; Klein, W.L.; Medeiros, R.; LaFerla, F.M.; Carvalheira, J.B.; Saad, M.J.; Munoz, D.P.; Velloso, L.A.; Ferreira, S.T.; De Felice, F.G. Alzheimer‐associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol. Med., 2015, 7(2), 190-210.
[http://dx.doi.org/10.15252/emmm.201404183] [PMID: 25617315]
[32]
Lourenco, M.V.; Clarke, J.R.; Frozza, R.L.; Bomfim, T.R.; Forny-Germano, L.; Batista, A.F.; Sathler, L.B.; Brito-Moreira, J.; Amaral, O.B.; Silva, C.A.; Freitas-Correa, L.; Espírito-Santo, S.; Campello-Costa, P.; Houzel, J.C.; Klein, W.L.; Holscher, C.; Carvalheira, J.B.; Silva, A.M.; Velloso, L.A.; Munoz, D.P.; Ferreira, S.T.; De Felice, F.G. TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s β-amyloid oligomers in mice and monkeys. Cell Metab., 2013, 18(6), 831-843.
[http://dx.doi.org/10.1016/j.cmet.2013.11.002] [PMID: 24315369]
[33]
Dong, J.; Jimi, E.; Zeiss, C.; Hayden, M.S.; Ghosh, S. Constitutively active NF-κB triggers systemic TNFα-dependent inflammation and localized TNFα-independent inflammatory disease. Genes Dev., 2010, 24(16), 1709-1717.
[http://dx.doi.org/10.1101/gad.1958410] [PMID: 20713516]
[34]
Gupta, S.; Bi, R.; Kim, C.; Chiplunkar, S.; Yel, L.; Gollapudi, S. Role of NF-κB signaling pathway in increased tumor necrosis factor-α-induced apoptosis of lymphocytes in aged humans. Cell Death Differ., 2005, 12(2), 177-183.
[http://dx.doi.org/10.1038/sj.cdd.4401557] [PMID: 15647756]
[35]
Faulenbach, M.; Uthoff, H.; Schwegler, K.; Spinas, G.A.; Schmid, C.; Wiesli, P. Effect of psychological stress on glucose control in patients with Type 2 diabetes. Diabet. Med., 2012, 29(1), 128-131.
[http://dx.doi.org/10.1111/j.1464-5491.2011.03431.x] [PMID: 21883440]
[36]
Viseu, J.; Leal, R.; de Jesus, S.N.; Pinto, P.; Pechorro, P.; Greenglass, E. Relationship between economic stress factors and stress, anxiety, and depression: Moderating role of social support. Psychiatry Res., 2018, 268, 102-107.
[http://dx.doi.org/10.1016/j.psychres.2018.07.008] [PMID: 30015107]
[37]
Aguilera, G. HPA axis responsiveness to stress: Implications for healthy aging. Exp. Gerontol., 2011, 46(2-3), 90-95.
[http://dx.doi.org/10.1016/j.exger.2010.08.023] [PMID: 20833240]
[38]
Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci., 2006, 8(4), 383-395.
[http://dx.doi.org/10.31887/DCNS.2006.8.4/ssmith] [PMID: 17290797]
[39]
Rasgon, N.L.; McEwen, B.S. Insulin resistance—a missing link no more. Mol. Psychiatry, 2016, 21(12), 1648-1652.
[http://dx.doi.org/10.1038/mp.2016.162] [PMID: 27698431]
[40]
Carroll, B.J.; Cassidy, F.; Naftolowitz, D.; Tatham, N.E.; Wilson, W.H.; Iranmanesh, A.; Liu, P.Y.; Veldhuis, J.D. Pathophysiology of hypercortisolism in depression. Acta Psychiatr. Scand., 2007, 115(s433), 90-103.
[http://dx.doi.org/10.1111/j.1600-0447.2007.00967.x] [PMID: 17280575]
[41]
Oltmanns, K.M.; Dodt, B.; Schultes, B.; Raspe, H.H.; Schweiger, U.; Born, J.; Fehm, H.L.; Peters, A. Cortisol correlates with metabolic disturbances in a population study of type 2 diabetic patients. Eur. J. Endocrinol., 2006, 154(2), 325-331.
[http://dx.doi.org/10.1530/eje.1.02074] [PMID: 16452548]
[42]
Chong, A.C.N.; Vogt, M.C.; Hill, A.S.; Brüning, J.C.; Zeltser, L.M. Central insulin signaling modulates hypothalamus–pituitary–adrenal axis responsiveness. Mol. Metab., 2015, 4(2), 83-92.
[http://dx.doi.org/10.1016/j.molmet.2014.12.001] [PMID: 25685696]
[43]
Jacobson, L.; Sapolsky, R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr. Rev., 1991, 12(2), 118-134.
[http://dx.doi.org/10.1210/edrv-12-2-118] [PMID: 2070776]
[44]
López, J.F.; Chalmers, D.T.; Little, K.Y.; Watson, S.J.A.E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol. Psychiatry, 1998, 43(8), 547-573.
[http://dx.doi.org/10.1016/S0006-3223(97)00484-8] [PMID: 9564441]
[45]
Wessels, A.M.; Scheltens, P.; Barkhof, F.; Heine, R.J. Hyperglycaemia as a determinant of cognitive decline in patients with type 1 diabetes. Eur. J. Pharmacol., 2008, 585(1), 88-96.
[http://dx.doi.org/10.1016/j.ejphar.2007.11.080] [PMID: 18396273]
[46]
Fukui, K.; Omoi, N.O.; Hayasaka, T.; Shinnkai, T.; Suzuki, S.; Abe, K.; Urano, S. Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann. N. Y. Acad. Sci., 2002, 959(1), 275-284.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb02099.x] [PMID: 11976202]
[47]
Comin, D.; Gazarini, L.; Zanoni, J.N.; Milani, H.; de Oliveira, R.M.W. Vitamin E improves learning performance and changes the expression of nitric oxide-producing neurons in the brains of diabetic rats. Behav. Brain Res., 2010, 210(1), 38-45.
[http://dx.doi.org/10.1016/j.bbr.2010.02.001] [PMID: 20138920]
[48]
Srivastava, S.K.; Ramana, K.V.; Bhatnagar, A. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr. Rev., 2005, 26(3), 380-392.
[http://dx.doi.org/10.1210/er.2004-0028] [PMID: 15814847]
[49]
Malone, M.A.; Schocken, D.D.; Hanna, S.K.; Liang, X.; Malone, J.I. Diabetes-induced bradycardia is an intrinsic metabolic defect reversed by carnitine. Metabolism, 2007, 56(8), 1118-1123.
[http://dx.doi.org/10.1016/j.metabol.2007.04.005] [PMID: 17618959]
[50]
Wright, E., Jr; Scism-Bacon, J.L.; Glass, L.C. Oxidative stress in type 2 diabetes: The role of fasting and postprandial glycaemia. Int. J. Clin. Pract., 2006, 60(3), 308-314.
[http://dx.doi.org/10.1111/j.1368-5031.2006.00825.x] [PMID: 16494646]
[51]
Ahmad, F.; He, Z.; King, G. Molecular targets of diabetic cardiovascular complications. Curr. Drug Targets, 2005, 6(4), 487-494.
[http://dx.doi.org/10.2174/1389450054021990] [PMID: 16026267]
[52]
Toth, C.; Schmidt, A.M.; Tuor, U.I.; Francis, G.; Foniok, T.; Brussee, V.; Kaur, J.; Yan, S.F.; Martinez, J.A.; Barber, P.A.; Buchan, A.; Zochodne, D.W. Diabetes, leukoencephalopathy and rage. Neurobiol. Dis., 2006, 23(2), 445-461.
[http://dx.doi.org/10.1016/j.nbd.2006.03.015] [PMID: 16815028]
[53]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[54]
Aragno, M.; Mastrocola, R.; Medana, C.; Restivo, F.; Catalano, M.G.; Pons, N.; Danni, O.; Boccuzzi, G. Up-regulation of advanced glycated products receptors in the brain of diabetic rats is prevented by antioxidant treatment. Endocrinology, 2005, 146(12), 5561-5567.
[http://dx.doi.org/10.1210/en.2005-0712] [PMID: 16166220]
[55]
Kalmijn, S.; Janssen, J.A.M.J.L.; Pols, H.A.P.; Lamberts, S.W.J.; Breteler, M.M.B. A prospective study on circulating insulin-like growth factor I (IGF-I), IGF-binding proteins, and cognitive function in the elderly. J. Clin. Endocrinol. Metab., 2000, 85(12), 4551-4555.
[http://dx.doi.org/10.1210/jcem.85.12.7033] [PMID: 11134107]
[56]
Holmes, C. Review: Systemic inflammation and A lzheimer’s disease. Neuropathol. Appl. Neurobiol., 2013, 39(1), 51-68.
[http://dx.doi.org/10.1111/j.1365-2990.2012.01307.x] [PMID: 23046210]
[57]
McCusker, R.H.; Kelley, K.W. Immune–neural connections: How the immune system’s response to infectious agents influences behavior. J. Exp. Biol., 2013, 216(1), 84-98.
[http://dx.doi.org/10.1242/jeb.073411] [PMID: 23225871]
[58]
Janelidze, S.; Hertze, J.; Nägga, K.; Nilsson, K.; Nilsson, C.; Wennström, M.; van Westen, D.; Blennow, K.; Zetterberg, H.; Hansson, O. Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiol. Aging, 2017, 51, 104-112.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.11.017] [PMID: 28061383]
[59]
Dhanda, S.; Sandhir, R. Blood-brain barrier permeability is exacerbated in experimental model of hepatic encephalopathy via mmp-9 activation and downregulation of tight junction proteins. Mol. Neurobiol., 2018, 55(5), 3642-3659.
[PMID: 28523565]
[60]
Nadeau, S.; Rivest, S. Role of microglial-derived tumor necrosis factor in mediating CD14 transcription and nuclear factor kappa B activity in the brain during endotoxemia. J. Neurosci., 2000, 20(9), 3456-3468.
[http://dx.doi.org/10.1523/JNEUROSCI.20-09-03456.2000] [PMID: 10777809]
[61]
Marioni, R.E.; Deary, I.J.; Strachan, M.W.; Lowe, G.D.; Rumley, A.; Murray, G.D.; Price, J.F. Blood rheology and cognition in the edinburgh type 2 diabetes study. Age Ageing, 2010, 39(3), 354-359.
[http://dx.doi.org/10.1093/ageing/afq021] [PMID: 20197283]
[62]
Weller, R.O.; Massey, A.; Kuo, Y.M.; Roher, A. Cerebral amyloid angiopathy: Accumulation of A beta in interstitial fluid drainage pathways in Alzheimer’s disease. Ann. N. Y. Acad. Sci., 2000, 903(1), 110-117.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06356.x] [PMID: 10818495]
[63]
Andero, R.; Choi, D.C.; Ressler, K.J. BDNF-TrkB receptor regulation of distributed adult neural plasticity, memory formation, and psychiatric disorders. Prog. Mol. Biol. Transl. Sci., 2014, 122, 169-192.
[http://dx.doi.org/10.1016/B978-0-12-420170-5.00006-4] [PMID: 24484701]
[64]
Mohammadi, A.; Amooeian, V.G.; Rashidi, E. Dysfunction in brain-derived neurotrophic factor signaling pathway and susceptibility to schizophrenia, parkinson’s and alzheimer’s diseases. Curr. Gene Ther., 2018, 18(1), 45-63.
[http://dx.doi.org/10.2174/1566523218666180302163029] [PMID: 29512462]
[65]
Yan, T.; Xu, M.; Wan, S.; Wang, M.; Wu, B.; Xiao, F.; Bi, K.; Jia, Y. Schisandra chinensis produces the antidepressant-like effects in repeated corticosterone-induced mice via the BDNF/TrkB/CREB signaling pathway. Psychiatry Res., 2016, 243, 135-142.
[http://dx.doi.org/10.1016/j.psychres.2016.06.037] [PMID: 27387555]
[66]
Tao, W.; Dong, Y.; Su, Q.; Wang, H.; Chen, Y.; Xue, W.; Chen, C.; Xia, B.; Duan, J.; Chen, G. Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway. Behav. Brain Res., 2016, 308, 177-186.
[http://dx.doi.org/10.1016/j.bbr.2016.04.039] [PMID: 27113683]
[67]
Chen, W.; Liang, T.; Zuo, W.; Wu, X.; Shen, Z.; Wang, F.; Li, C.; Zheng, Y.; Peng, G. Neuroprotective effect of 1-Deoxynojirimycin on cognitive impairment, β-amyloid deposition, and neuroinflammation in the SAMP8 mice. Biomed. Pharmacother., 2018, 106, 92-97.
[http://dx.doi.org/10.1016/j.biopha.2018.06.106] [PMID: 29957471]
[68]
Tang, L.; Kang, Y.T.; Yin, B.; Sun, L.J.; Fan, X.S. Effects of weight-bearing ladder and aerobic treadmill exercise on learning and memory ability of diabetic rats and its mechanism. Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih, 2017, 33(5), 436-440.
[PMID: 29926589]
[69]
Zirpel, L.; Janowiak, M.A.; Veltri, C.A.; Parks, T.N. AMPA receptor-mediated, calcium-dependent CREB phosphorylation in a subpopulation of auditory neurons surviving activity deprivation. J. Neurosci., 2000, 20(16), 6267-6275.
[http://dx.doi.org/10.1523/JNEUROSCI.20-16-06267.2000] [PMID: 10934277]
[70]
Srivastava, P.; Dhuriya, Y.K.; Kumar, V.; Srivastava, A.; Gupta, R.; Shukla, R.K.; Yadav, R.S.; Dwivedi, H.N.; Pant, A.B.; Khanna, V.K. PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus: Neuroprotective role of curcumin. Neurotoxicology, 2018, 67, 190-205.
[http://dx.doi.org/10.1016/j.neuro.2018.04.018] [PMID: 29723552]
[71]
Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci., 2015, 6(6), 1164-1178.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[72]
Zhou, X.; Wang, S.; Ding, X.; Qin, L.; Mao, Y.; Chen, L.; Li, W.; Ying, C. Zeaxanthin improves diabetes-induced cognitive deficit in rats through activiting PI3K/AKT signaling pathway. Brain Res. Bull., 2017, 132, 190-198.
[http://dx.doi.org/10.1016/j.brainresbull.2017.06.001] [PMID: 28599877]
[73]
Xiang, Q.; Zhang, J.; Li, C.Y.; Wang, Y.; Zeng, M.J.; Cai, Z.X.; Tian, R.B.; Jia, W.; Li, X.H. Insulin resistance-induced hyperglycemia decreased the activation of Akt/CREB in hippocampus neurons: Molecular evidence for mechanism of diabetes-induced cognitive dysfunction. Neuropeptides, 2015, 54, 9-15.
[http://dx.doi.org/10.1016/j.npep.2015.08.009] [PMID: 26344332]
[74]
Jiang, B.; Xiong, Z.; Yang, J.; Wang, W.; Wang, Y.; Hu, Z.L.; Wang, F.; Chen, J.G. Antidepressant‐like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. Br. J. Pharmacol., 2012, 166(6), 1872-1887.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01902.x] [PMID: 22335772]
[75]
Zhang, Y.; Shao, F.; Wang, Q.; Xie, X.; Wang, W. Neuroplastic correlates in the mPFC underlying the impairment of stress-coping ability and cognitive flexibility in adult rats exposed to chronic mild stress during adolescence. Neural Plast., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/9382797] [PMID: 28182105]
[76]
Yuan, S.; Jiang, X.; Zhou, X.; Zhang, Y.; Teng, T.; Xie, P. Inosine alleviates depression-like behavior and increases the activity of the ERK-CREB signaling in adolescent male rats. Neuroreport, 2018, 29(14), 1223-1229.
[http://dx.doi.org/10.1097/WNR.0000000000001101] [PMID: 30028377]
[77]
Liu, P.; Zou, L.; Jiao, Q.; Chi, T.; Ji, X.; Qi, Y.; Xu, Q.; Wang, L. Xanthoceraside attenuates learning and memory deficits via improving insulin signaling in STZ-induced AD rats. Neurosci. Lett., 2013, 543, 115-120.
[http://dx.doi.org/10.1016/j.neulet.2013.02.065] [PMID: 23562514]
[78]
Liu, D.; Xie, K.; Yang, X.; Gu, J.; Ge, L.; Wang, X.; Wang, Z. Resveratrol reverses the effects of chronic unpredictable mild stress on behavior, serum corticosterone levels and BDNF expression in rats. Behav. Brain Res., 2014, 264, 9-16.
[http://dx.doi.org/10.1016/j.bbr.2014.01.039] [PMID: 24503118]
[79]
Sato, K.; Suematsu, A.; Nakashima, T.; Takemoto-Kimura, S.; Aoki, K.; Morishita, Y.; Asahara, H.; Ohya, K.; Yamaguchi, A.; Takai, T.; Kodama, T.; Chatila, T.A.; Bito, H.; Takayanagi, H. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat. Med., 2006, 12(12), 1410-1416.
[http://dx.doi.org/10.1038/nm1515] [PMID: 17128269]
[80]
Bossuyt, J.; Bers, D.M. Visualizing CaMKII and CaM activity: A paradigm of compartmentalized signaling. J. Mol. Med., 2013, 91(8), 907-916.
[http://dx.doi.org/10.1007/s00109-013-1060-y] [PMID: 23775230]
[81]
Wei, F.; Qiu, C.S.; Liauw, J.; Robinson, D.A.; Ho, N.; Chatila, T.; Zhuo, M. Calcium–calmodulin-dependent protein kinase IV is required for fear memory. Nat. Neurosci., 2002, 5(6), 573-579.
[http://dx.doi.org/10.1038/nn0602-855] [PMID: 12006982]
[82]
Gong, B.; Pan, Y.; Zhao, W.; Knable, L.; Vempati, P.; Begum, S.; Ho, L.; Wang, J.; Yemul, S.; Barnum, S.; Bilski, A.; Gong, B.Y.; Pasinetti, G.M. IVIG immunotherapy protects against synaptic dysfunction in Alzheimer’s disease through complement anaphylatoxin C5a-mediated AMPA-CREB-C/EBP signaling pathway. Mol. Immunol., 2013, 56(4), 619-629.
[http://dx.doi.org/10.1016/j.molimm.2013.06.016] [PMID: 23911420]
[83]
Yan, X.; Liu, J.; Ye, Z.; Huang, J.; He, F.; Xiao, W.; Hu, X.; Luo, Z. CaMKII-mediated CREB phosphorylation is involved in ca2+-induced BDNF mRNA transcription and neurite outgrowth promoted by electrical stimulation. PLoS One, 2016, 11(9), e0162784.
[http://dx.doi.org/10.1371/journal.pone.0162784] [PMID: 27611779]
[84]
Gomez-Pinilla, F.; Ying, Z.; Zhuang, Y. Brain and spinal cord interaction: Protective effects of exercise prior to spinal cord injury. PLoS One, 2012, 7(2), e32298.
[http://dx.doi.org/10.1371/journal.pone.0032298] [PMID: 22384207]
[85]
Cui, W.; Bai, Y.; Luo, P.; Miao, L.; Cai, L. Preventive and therapeutic effects of MG132 by activating Nrf2-ARE signaling pathway on oxidative stress-induced cardiovascular and renal injury. Oxid. Med. Cell. Longev., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/306073] [PMID: 23533688]
[86]
Song, Y.; Ding, W.; Bei, Y.; Xiao, Y.; Tong, H.D.; Wang, L.B.; Ai, L.Y. Insulin is a potential antioxidant for diabetes-associated cognitive decline via regulating Nrf2 dependent antioxidant enzymes. Biomed. Pharmacother., 2018, 104, 474-484.
[http://dx.doi.org/10.1016/j.biopha.2018.04.097] [PMID: 29793180]
[87]
Zhang, S.; Yuan, L.; Zhang, L.; Li, C.; Li, J. Prophylactic use of troxerutin can delay the development of diabetic cognitive dysfunction and improve the expression of Nrf2 in the hippocampus on STZ diabetic rats. Behav. Neurol., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/8678539] [PMID: 29849815]
[88]
Risner, M.E.; Saunders, A.M.; Altman, J F B.; Ormandy, G.C.; Craft, S.; Foley, I.M.; Zvartau-Hind, M.E.; Hosford, D.A.; Roses, A.D. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J., 2006, 6(4), 246-254.
[http://dx.doi.org/10.1038/sj.tpj.6500369] [PMID: 16446752]
[89]
Claxton, A.; Baker, L.D.; Hanson, A.; Trittschuh, E.H.; Cholerton, B.; Morgan, A.; Callaghan, M.; Arbuckle, M.; Behl, C.; Craft, S. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J. Alzheimers Dis., 2015, 44(3), 897-906.
[http://dx.doi.org/10.3233/JAD-141791] [PMID: 25374101]
[90]
Alagiakrishnan, K.; Sankaralingam, S.; Ghosh, M.; Mereu, L.; Senior, P. Antidiabetic drugs and their potential role in treating mild cognitive impairment and Alzheimer’s disease. Discov. Med., 2013, 16(90), 277-286.
[PMID: 24333407]
[91]
Moosavi, F.; Hosseini, R.; Saso, L.; Firuzi, O. Modulation of neurotrophic signaling pathways by polyphenols. Drug Des. Devel. Ther., 2015, 10, 23-42.
[PMID: 26730179]
[92]
Ali, F. Bioavailability and pharmaco-therapeutic potential of luteolin in overcoming Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2019, 18(52), 352-362.
[http://dx.doi.org/10.2174/1871527318666190319141835]
[93]
Nabavi, S.F.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, K.; Nabavi, S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull., 2015, 119(Pt A), 1-11.
[http://dx.doi.org/10.1016/j.brainresbull.2015.09.002] [PMID: 26361743]
[94]
Lin, C.W.; Wu, M.J.; Liu, I.Y.C.; Su, J.D.; Yen, J.H. Neurotrophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression. J. Agric. Food Chem., 2010, 58(7), 4477-4486.
[http://dx.doi.org/10.1021/jf904061x] [PMID: 20302373]
[95]
Hu, L.W.; Yen, J.H.; Shen, Y.T.; Wu, K.Y.; Wu, M.J. Luteolin modulates 6-hydroxydopamine-induced transcriptional changes of stress response pathways in PC12 cells. PLoS One, 2014, 9(5), e97880.
[http://dx.doi.org/10.1371/journal.pone.0097880] [PMID: 24846311]
[96]
Tsai, F.S.; Peng, W.H.; Wang, W.H.; Wu, C.R.; Hsieh, C.C.; Lin, Y.T.; Feng, I.C.; Hsieh, M.T. Effects of luteolin on learning acquisition in rats: Involvement of the central cholinergic system. Life Sci., 2007, 80(18), 1692-1698.
[http://dx.doi.org/10.1016/j.lfs.2007.01.055] [PMID: 17337279]
[97]
Liu, Y.; Tian, X.; Gou, L.; Sun, L.; Ling, X.; Yin, X. Luteolin attenuates diabetes-associated cognitive decline in rats. Brain Res. Bull., 2013, 94, 23-29.
[http://dx.doi.org/10.1016/j.brainresbull.2013.02.001] [PMID: 23415807]
[98]
Lall, R.K.; Adhami, V.M.; Mukhtar, H. Dietary flavonoid fisetin for cancer prevention and treatment. Mol. Nutr. Food Res., 2016, 60(6), 1396-1405.
[http://dx.doi.org/10.1002/mnfr.201600025] [PMID: 27059089]
[99]
Prasath, G.S.; Sundaram, C.S.; Subramanian, S.P. Fisetin averts oxidative stress in pancreatic tissues of streptozotocin-induced diabetic rats. Endocrine, 2013, 44(2), 359-368.
[http://dx.doi.org/10.1007/s12020-012-9866-x] [PMID: 23277230]
[100]
Zhen, L.; Zhu, J.; Zhao, X.; Huang, W.; An, Y.; Li, S.; Du, X.; Lin, M.; Wang, Q.; Xu, Y.; Pan, J. The antidepressant-like effect of fisetin involves the serotonergic and noradrenergic system. Behav. Brain Res., 2012, 228(2), 359-366.
[http://dx.doi.org/10.1016/j.bbr.2011.12.017] [PMID: 22197297]
[101]
Prasath, G.S.; Subramanian, S.P. Antihyperlipidemic effect of fisetin, a bioflavonoid of strawberries, studied in streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol., 2014, 28(10), 442-449.
[http://dx.doi.org/10.1002/jbt.21583] [PMID: 24939606]
[102]
Maher, P. Modulation of multiple pathways involved in the maintenance of neuronal function during aging by fisetin. Genes Nutr., 2009, 4(4), 297-307.
[http://dx.doi.org/10.1007/s12263-009-0142-5] [PMID: 19756810]
[103]
Currais, A.; Farrokhi, C.; Dargusch, R.; Armando, A.; Quehenberger, O.; Schubert, D.; Maher, P. Fisetin reduces the impact of aging on behavior and physiology in the rapidly aging SAMP8 mouse. J. Gerontol. A Biol. Sci. Med. Sci., 2018, 73(3), 299-307.
[http://dx.doi.org/10.1093/gerona/glx104] [PMID: 28575152]
[104]
Sandireddy, R.; Yerra, V.G.; Komirishetti, P.; Areti, A.; Kumar, A. Fisetin imparts neuroprotection in experimental diabetic neuropathy by modulating Nrf2 and NF-κB pathways. Cell. Mol. Neurobiol., 2016, 36(6), 883-892.
[http://dx.doi.org/10.1007/s10571-015-0272-9] [PMID: 26399251]
[105]
Kasi, P.D.; Tamilselvam, R.; Skalicka-Woźniak, K.; Nabavi, S.F.; Daglia, M.; Bishayee, A.; Pazoki-toroudi, H.; Nabavi, S.M. Molecular targets of curcumin for cancer therapy: An updated review. Tumour Biol., 2016, 37(10), 13017-13028.
[http://dx.doi.org/10.1007/s13277-016-5183-y] [PMID: 27468716]
[106]
Platania, C.B.M.; Fidilio, A.; Lazzara, F.; Piazza, C.; Geraci, F.; Giurdanella, G.; Leggio, G.M.; Salomone, S.; Drago, F.; Bucolo, C. Retinal protection and distribution of curcumin in vitro and in vivo. Front. Pharmacol., 2018, 9, 670.
[http://dx.doi.org/10.3389/fphar.2018.00670] [PMID: 30013474]
[107]
Koo, B.B.; Calderazzo, S.; Bowley, B.G.E.; Kolli, A.; Moss, M.B.; Rosene, D.L.; Moore, T.L. Long-term effects of curcumin in the non-human primate brain. Brain Res. Bull., 2018, 142, 88-95.
[http://dx.doi.org/10.1016/j.brainresbull.2018.06.015] [PMID: 29981358]
[108]
Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Tonk, S.; Kuruva, C.S.; Bhatti, J.S.; Kandimalla, R.; Vijayan, M.; Kumar, S.; Wang, R.; Pradeepkiran, J.A.; Ogunmokun, G.; Thamarai, K.; Quesada, K.; Boles, A.; Reddy, A.P. Protective effects of Indian spice curcumin against amyloid-β in Alzheimer’s disease. J. Alzheimers Dis., 2018, 61(3), 843-866.
[http://dx.doi.org/10.3233/JAD-170512] [PMID: 29332042]
[109]
Zhang, L.; Fang, Y.; Xu, Y.; Lian, Y.; Xie, N.; Wu, T.; Zhang, H.; Sun, L.; Zhang, R.; Wang, Z. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One, 2015, 10(6), e0131525.
[http://dx.doi.org/10.1371/journal.pone.0131525] [PMID: 26114940]
[110]
Faheem, N.M.; El Askary, A. Neuroprotective role of curcumin on the hippocampus against the structural and serological alterations of streptozotocin-induced diabetes in Sprague Dawely rats. Iran. J. Basic Med. Sci., 2017, 20(6), 690-699.
[PMID: 28868124]
[111]
Kumar, P.T.; George, N.; Antony, S.; Skaria Paulose, C. Curcumin restores diabetes induced neurochemical changes in the brain stem of Wistar rats. Eur. J. Pharmacol., 2013, 702(1-3), 323-331.
[http://dx.doi.org/10.1016/j.ejphar.2013.01.012] [PMID: 23380686]
[112]
Kumar, T.P.; Antony, S.; Gireesh, G.; George, N.; Paulose, C.S. Curcumin modulates dopaminergic receptor, CREB and phospholipase c gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats. J. Biomed. Sci., 2010, 17(1), 43.
[http://dx.doi.org/10.1186/1423-0127-17-43] [PMID: 20513244]
[113]
Kuhad, A.; Chopra, K. Curcumin attenuates diabetic encephalopathy in rats: Behavioral and biochemical evidences. Eur. J. Pharmacol., 2007, 576(1-3), 34-42.
[http://dx.doi.org/10.1016/j.ejphar.2007.08.001] [PMID: 17822693]
[114]
Cox, K.H.M.; Pipingas, A.; Scholey, A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol., 2015, 29(5), 642-651.
[http://dx.doi.org/10.1177/0269881114552744] [PMID: 25277322]
[115]
Small, G.W.; Siddarth, P.; Li, Z.; Miller, K.J.; Ercoli, L.; Emerson, N.D.; Martinez, J.; Wong, K.P.; Liu, J.; Merrill, D.A.; Chen, S.T.; Henning, S.M.; Satyamurthy, N.; Huang, S.C.; Heber, D.; Barrio, J.R. Memory and brain amyloid and Tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry, 2018, 26(3), 266-277.
[http://dx.doi.org/10.1016/j.jagp.2017.10.010] [PMID: 29246725]
[116]
Hodaei, H.; Adibian, M.; Nikpayam, O.; Hedayati, M.; Sohrab, G. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: A randomized, double-blind clinical trial. Diabetol. Metab. Syndr., 2019, 11(1), 41.
[http://dx.doi.org/10.1186/s13098-019-0437-7] [PMID: 31149032]
[117]
Schiborr, C.; Kocher, A.; Behnam, D.; Jandasek, J.; Toelstede, S.; Frank, J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol. Nutr. Food Res., 2014, 58(3), 516-527.
[http://dx.doi.org/10.1002/mnfr.201300724] [PMID: 24402825]
[118]
Kulkarni, S.S.; Cantó, C. The molecular targets of resveratrol. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(6), 1114-1123.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.005] [PMID: 25315298]
[119]
Tian, Z.; Wang, J.; Xu, M.; Wang, Y.; Zhang, M.; Zhou, Y. Resveratrol improves cognitive impairment by regulating apoptosis and synaptic plasticity in streptozotocin-induced diabetic rats. Cell. Physiol. Biochem., 2016, 40(6), 1670-1677.
[http://dx.doi.org/10.1159/000453216] [PMID: 28006780]
[120]
Gocmez, S.S.; Şahin, T.D.; Yazir, Y.; Duruksu, G.; Eraldemir, F.C.; Polat, S.; Utkan, T. Resveratrol prevents cognitive deficits by attenuating oxidative damage and inflammation in rat model of streptozotocin diabetes induced vascular dementia. Physiol. Behav., 2019, 201, 198-207.
[http://dx.doi.org/10.1016/j.physbeh.2018.12.012] [PMID: 30550811]
[121]
Sadi, G.; Konat, D. Resveratrol regulates oxidative biomarkers and antioxidant enzymes in the brain of streptozotocin-induced diabetic rats. Pharm. Biol., 2016, 54(7), 1156-1163.
[PMID: 26079852]
[122]
Thomas, J.; Garg, M.L.; Smith, D.W. Dietary resveratrol supplementation normalizes gene expression in the hippocampus of streptozotocin-induced diabetic C57Bl/6 mice. J. Nutr. Biochem., 2014, 25(3), 313-318.
[http://dx.doi.org/10.1016/j.jnutbio.2013.11.005] [PMID: 24456733]
[123]
Huber, J. Diabetes, cognitive function, and the blood-brain barrier. Curr. Pharm. Des., 2008, 14(16), 1594-1600.
[http://dx.doi.org/10.2174/138161208784705441] [PMID: 18673200]
[124]
Jing, Y.H.; Chen, K.H.; Kuo, P.C.; Pao, C.C.; Chen, J.K. Neurodegeneration in streptozotocin-induced diabetic rats is attenuated by treatment with resveratrol. Neuroendocrinology, 2013, 98(2), 116-127.
[http://dx.doi.org/10.1159/000350435] [PMID: 23486084]
[125]
Schmatz, R.; Mazzanti, C.M.; Spanevello, R.; Stefanello, N.; Gutierres, J.; Corrêa, M.; da Rosa, M.M.; Rubin, M.A.; Chitolina Schetinger, M.R.; Morsch, V.M. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur. J. Pharmacol., 2009, 610(1-3), 42-48.
[http://dx.doi.org/10.1016/j.ejphar.2009.03.032] [PMID: 19303406]
[126]
Schmatz, R.; Mazzanti, C.M.; Spanevello, R.; Stefanello, N.; Gutierres, J.; Maldonado, P.A.; Corrêa, M.; da Rosa, C.S.; Becker, L.; Bagatini, M.; Gonçalves, J.F.; Jaques, J.D.S.; Schetinger, M.R.; Morsch, V.M. Ectonucleotidase and acetylcholinesterase activities in synaptosomes from the cerebral cortex of streptozotocin-induced diabetic rats and treated with resveratrol. Brain Res. Bull., 2009, 80(6), 371-376.
[http://dx.doi.org/10.1016/j.brainresbull.2009.08.019] [PMID: 19723569]
[127]
Wong, R.H. Raederstorff, and P.R. Howe, Acute resveratrol consumption improve neurovascular coupling capacity in adults with type 2 diabetes mellitus. Nutrients, 2016, 8(7)
[http://dx.doi.org/10.3390/nu8070425] [PMID: 27420093]
[128]
Murakami, A.; Ashida, H.; Terao, J. Multitargeted cancer prevention by quercetin. Cancer Lett., 2008, 269(2), 315-325.
[http://dx.doi.org/10.1016/j.canlet.2008.03.046] [PMID: 18467024]
[129]
Xue, F.; Nie, X.; Shi, J.; Liu, Q.; Wang, Z.; Li, X.; Zhou, J.; Su, J.; Xue, M.; Chen, W.D.; Wang, Y.D. Quercetin inhibits LPS-induced inflammation and ox-LDL-induced lipid deposition. Front. Pharmacol., 2017, 8, 40.
[http://dx.doi.org/10.3389/fphar.2017.00040] [PMID: 28217098]
[130]
Fuentes, J.; Atala, E.; Pastene, E.; Carrasco-Pozo, C.; Speisky, H. Quercetin oxidation paradoxically enhances its antioxidant and cytoprotective properties. J. Agric. Food Chem., 2017, 65(50), 11002-11010.
[http://dx.doi.org/10.1021/acs.jafc.7b05214] [PMID: 29179550]
[131]
Gormaz, J.; Quintremil, S.; Rodrigo, R. Cardiovascular disease: A target for the pharmacological effects of quercetin. Curr. Top. Med. Chem., 2015, 15(17), 1735-1742.
[http://dx.doi.org/10.2174/1568026615666150427124357] [PMID: 25915608]
[132]
Zunino, S.J. Type 2 diabetes and glycemic response to grapes or grape products. J. Nutr., 2009, 139(9), 1794S-1800S.
[http://dx.doi.org/10.3945/jn.109.107631] [PMID: 19625702]
[133]
Bhutada, P.; Mundhada, Y.; Bansod, K.; Bhutada, C.; Tawari, S.; Dixit, P.; Mundhada, D. Ameliorative effect of quercetin on memory dysfunction in streptozotocin-induced diabetic rats. Neurobiol. Learn. Mem., 2010, 94(3), 293-302.
[http://dx.doi.org/10.1016/j.nlm.2010.06.008] [PMID: 20620214]
[134]
Tota, S.; Awasthi, H.; Kamat, P.K.; Nath, C.; Hanif, K. Protective effect of quercetin against intracerebral streptozotocin induced reduction in cerebral blood flow and impairment of memory in mice. Behav. Brain Res., 2010, 209(1), 73-79.
[http://dx.doi.org/10.1016/j.bbr.2010.01.017] [PMID: 20096732]
[135]
Demir, E.A.; Gergerlioglu, H.S.; Oz, M. Antidepressant‐like effects of quercetin in diabetic rats are independent of hypothalamic–pituitary–adrenal axis. Acta Neuropsychiatr., 2016, 28(1), 23-30.
[http://dx.doi.org/10.1017/neu.2015.45] [PMID: 26234153]
[136]
Maciel, R.M.; Carvalho, F.B.; Olabiyi, A.A.; Schmatz, R.; Gutierres, J.M.; Stefanello, N.; Zanini, D.; Rosa, M.M.; Andrade, C.M.; Rubin, M.A.; Schetinger, M.R.; Morsch, V.M.; Danesi, C.C.; Lopes, S.T.A. Neuroprotective effects of quercetin on memory and anxiogenic-like behavior in diabetic rats: Role of ectonucleotidases and acetylcholinesterase activities. Biomed. Pharmacother., 2016, 84, 559-568.
[http://dx.doi.org/10.1016/j.biopha.2016.09.069] [PMID: 27694000]
[137]
Chougala, M.B.; Bhaskar, J.J.; Rajan, M.G.R.; Salimath, P.V. Effect of curcumin and quercetin on lysosomal enzyme activities in streptozotocin-induced diabetic rats. Clin. Nutr., 2012, 31(5), 749-755.
[http://dx.doi.org/10.1016/j.clnu.2012.02.003] [PMID: 22445558]
[138]
Youl, E.; Bardy, G.; Magous, R.; Cros, G.; Sejalon, F.; Virsolvy, A.; Richard, S.; Quignard, J.F.; Gross, R.; Petit, P.; Bataille, D.; Oiry, C. Quercetin potentiates insulin secretion and protects INS‐1 pancreatic β‐cells against oxidative damage via the ERK1/2 pathway. Br. J. Pharmacol., 2010, 161(4), 799-814.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00910.x] [PMID: 20860660]
[139]
Coskun, O.; Kanter, M.; Korkmaz, A.; Oter, S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and? -cell damage in rat pancreas. Pharmacol. Res., 2005, 51(2), 117-123.
[http://dx.doi.org/10.1016/j.phrs.2004.06.002] [PMID: 15629256]
[140]
Bournival, J.; Francoeur, M.A.; Renaud, J.; Martinoli, M.G. Quercetin and sesamin protect neuronal PC12 cells from high-glucose-induced oxidation, nitrosative stress, and apoptosis. Rejuvenation Res., 2012, 15(3), 322-333.
[http://dx.doi.org/10.1089/rej.2011.1242] [PMID: 22524206]
[141]
Nakagawa, T.; Itoh, M.; Ohta, K.; Hayashi, Y.; Hayakawa, M.; Yamada, Y.; Akanabe, H.; Chikaishi, T.; Nakagawa, K.; Itoh, Y.; Muro, T.; Yanagida, D.; Nakabayashi, R.; Mori, T.; Saito, K.; Ohzawa, K.; Suzuki, C.; Li, S.; Ueda, M.; Wang, M.X.; Nishida, E.; Islam, S. Tana; Kobori, M.; Inuzuka, T. Improvement of memory recall by quercetin in rodent contextual fear conditioning and human early-stage Alzheimer’s disease patients. Neuroreport, 2016, 27(9), 671-676.
[http://dx.doi.org/10.1097/WNR.0000000000000594] [PMID: 27145228]
[142]
Venza, I.; Visalli, M.; Oteri, R.; Beninati, C.; Teti, D.; Venza, M. Genistein reduces proliferation of EP3-expressing melanoma cells through inhibition of PGE2-induced IL-8 expression. Int. Immunopharmacol., 2018, 62, 86-95.
[http://dx.doi.org/10.1016/j.intimp.2018.06.009] [PMID: 29990698]
[143]
Ganai, A.A.; Farooqi, H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed. Pharmacother., 2015, 76, 30-38.
[http://dx.doi.org/10.1016/j.biopha.2015.10.026] [PMID: 26653547]
[144]
Cai, B.; Wang, Y.; Shao, J.; Wang, T.; Cai, R.; Ma, C.; Han, T.; Du, J. Genistein suppresses the mitochondrial apoptotic pathway in hippocampal neurons in rats with Alzheimer’s disease. Neural Regen. Res., 2016, 11(7), 1153-1158.
[http://dx.doi.org/10.4103/1673-5374.187056] [PMID: 27630702]
[145]
Bonet-Costa, V.; Herranz-Pérez, V.; Blanco-Gandía, M.; Mas-Bargues, C.; Inglés, M.; Garcia-Tarraga, P.; Rodriguez-Arias, M.; Miñarro, J.; Borras, C.; Garcia-Verdugo, J.M.; Viña, J. Clearing Amyloid-β through PPARγ/ApoE activation by genistein is a treatment of experimental alzheimer’s disease. J. Alzheimers Dis., 2016, 51(3), 701-711.
[http://dx.doi.org/10.3233/JAD-151020] [PMID: 26890773]
[146]
Cai, B.; Ye, S.; Wang, T.; Wang, Y.; Li, J.; Zhan, J.; Shen, G. Genistein protects hippocampal neurons against injury by regulating calcium/calmodulin dependent protein kinase IV protein levels in Alzheimer’s disease model rats. Neural Regen. Res., 2017, 12(9), 1479-1484.
[http://dx.doi.org/10.4103/1673-5374.215260] [PMID: 29089994]
[147]
Rajput, M.S.; Sarkar, P.D. Modulation of neuro-inflammatory condition, acetylcholinesterase and antioxidant levels by genistein attenuates diabetes associated cognitive decline in mice. Chem. Biol. Interact., 2017, 268, 93-102.
[http://dx.doi.org/10.1016/j.cbi.2017.02.021] [PMID: 28259689]
[148]
Zhang, Z.; Yan, J.; Shi, H. Hyperglycemia as a risk factor of ischemic stroke. J. Drug Metab. Toxicol., 2013, 4(4), 153.
[PMID: 25328819]
[149]
Rajput, M.S.; Sarkar, P.D.; Nirmal, N.P. Inhibition of DPP-4 activity and neuronal atrophy with genistein attenuates neurological deficits induced by transient global cerebral ischemia and reperfusion in streptozotocin-induced diabetic mice. Inflammation, 2017, 40(2), 623-635.
[http://dx.doi.org/10.1007/s10753-017-0509-5] [PMID: 28091829]
[150]
Liu, Y.W.; Zhu, X.; Yang, Q.Q.; Lu, Q.; Wang, J.Y.; Li, H.P.; Wei, Y.Q.; Yin, J.L.; Yin, X.X. Suppression of methylglyoxal hyperactivity by mangiferin can prevent diabetes-associated cognitive decline in rats. Psychopharmacology, 2013, 228(4), 585-594.
[http://dx.doi.org/10.1007/s00213-013-3061-5] [PMID: 23529380]
[151]
Marrazzo, G.; Bosco, P.; La Delia, F.; Scapagnini, G.; Di Giacomo, C.; Malaguarnera, M.; Galvano, F.; Nicolosi, A.; Li Volti, G. Neuroprotective effect of silibinin in diabetic mice. Neurosci. Lett., 2011, 504(3), 252-256.
[http://dx.doi.org/10.1016/j.neulet.2011.09.041] [PMID: 21970972]
[152]
Li, R.; Zang, A.; Zhang, L.; Zhang, H.; Zhao, L.; Qi, Z.; Wang, H. Chrysin ameliorates diabetes-associated cognitive deficits in Wistar rats. Neurol. Sci., 2014, 35(10), 1527-1532.
[http://dx.doi.org/10.1007/s10072-014-1784-7] [PMID: 24737349]
[153]
Sharifzadeh, M.; Ranjbar, A.; Hosseini, A.; Khanavi, M. The effect of green tea extract on oxidative stress and spatial learning in streptozotocin-diabetic rats. Iran. J. Pharm. Res., 2017, 16(1), 201-209.
[PMID: 28496475]
[154]
Baluchnejadmojarad, T.; Roghani, M. Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress. Behav. Brain Res., 2011, 224(2), 305-310.
[http://dx.doi.org/10.1016/j.bbr.2011.06.007] [PMID: 21699923]
[155]
Jiang, B.; Le, L.; Pan, H.; Hu, K.; Xu, L.; Xiao, P. Dihydromyricetin ameliorates the oxidative stress response induced by methylglyoxal via the AMPK/GLUT4 signaling pathway in PC12 cells. Brain Res. Bull., 2014, 109, 117-126.
[http://dx.doi.org/10.1016/j.brainresbull.2014.10.010] [PMID: 25451453]
[156]
El-Marasy, S.A.; Abdallah, H.M.I.; El-Shenawy, S.M.; El-Khatib, A.S.; El-Shabrawy, O.A.; Kenawy, S.A. Anti-depressant effect of hesperidin in diabetic rats. Can. J. Physiol. Pharmacol., 2014, 92(11), 945-952.
[http://dx.doi.org/10.1139/cjpp-2014-0281] [PMID: 25358020]
[157]
Ashafaq, M. Neuromodulatory effects of hesperidin in mitigating oxidative stress in streptozotocin-induced diabetes. BioMed Res. Int., 2014, 2014, 249031.
[http://dx.doi.org/10.1155/2014/249031]
[158]
Pan, Y.; Hong, Y.; Zhang, Q.Y.; Kong, L.D. Impaired hypothalamic insulin signaling in CUMS rats: Restored by icariin and fluoxetine through inhibiting CRF system. Psychoneuroendocrinology, 2013, 38(1), 122-134.
[http://dx.doi.org/10.1016/j.psyneuen.2012.05.007] [PMID: 22663897]
[159]
Mirshekar, M.; Roghani, M.; Khalili, M.; Baluchnejadmojarad, T. Chronic oral pelargonidin alleviates learning and memory disturbances in streptozotocin diabetic rats. Iran. J. Pharm. Res., 2011, 10(3), 569-575.
[PMID: 24250390]
[160]
Mirshekar, M.; Roghani, M.; Khalili, M.; Baluchnejadmojarad, T.; Arab Moazzen, S. Chronic oral pelargonidin alleviates streptozotocin-induced diabetic neuropathic hyperalgesia in rat: Involvement of oxidative stress. Iran. Biomed. J., 2010, 14(1-2), 33-39.
[PMID: 20683496]
[161]
Ola, M.S.; Aleisa, A.M.; Al-Rejaie, S.S.; Abuohashish, H.M.; Parmar, M.Y.; Alhomida, A.S.; Ahmed, M.M. Flavonoid, morin inhibits oxidative stress, inflammation and enhances neurotrophic support in the brain of streptozotocin-induced diabetic rats. Neurol. Sci., 2014, 35(7), 1003-1008.
[http://dx.doi.org/10.1007/s10072-014-1628-5] [PMID: 24413816]
[162]
Bachewal, P.; Gundu, C.; Yerra, V.G.; Kalvala, A.K.; Areti, A.; Kumar, A. Morin exerts neuroprotection via attenuation of ROS induced oxidative damage and neuroinflammation in experimental diabetic neuropathy. Biofactors, 2018, 44(2), 109-122.
[http://dx.doi.org/10.1002/biof.1397] [PMID: 29193444]
[163]
Liu, X.; Mo, Y.; Gong, J.; Li, Z.; Peng, H.; Chen, J.; Wang, Q.; Ke, Z.; Xie, J. Puerarin ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Metab. Brain Dis., 2016, 31(2), 417-423.
[http://dx.doi.org/10.1007/s11011-015-9779-5] [PMID: 26686502]
[164]
Ola, M.S.; Ahmed, M.M.; Ahmad, R.; Abuohashish, H.M.; Al-Rejaie, S.S.; Alhomida, A.S. Neuroprotective effects of rutin in streptozotocin-induced diabetic rat retina. J. Mol. Neurosci., 2015, 56(2), 440-448.
[http://dx.doi.org/10.1007/s12031-015-0561-2] [PMID: 25929832]
[165]
Zhang, S.; Li, H.; Zhang, L.; Li, J.; Wang, R.; Wang, M. Effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits in the hippocampus of streptozotocin-induced type 1 diabetes mellitus rats. Brain Res., 2017, 1657, 355-360.
[http://dx.doi.org/10.1016/j.brainres.2016.12.009] [PMID: 27998794]
[166]
Wang, J.; Wang, L.; Zhou, J.; Qin, A.; Chen, Z. The protective effect of formononetin on cognitive impairment in streptozotocin (STZ)-induced diabetic mice. Biomed. Pharmacother., 2018, 106, 1250-1257.
[http://dx.doi.org/10.1016/j.biopha.2018.07.063] [PMID: 30119194]
[167]
Cho, S.J.; Kang, K.A.; Piao, M.J.; Ryu, Y.S.; Fernando, P.D.S.M.; Zhen, A.X.; Hyun, Y.J.; Ahn, M.J.; Kang, H.K.; Hyun, J.W. 7,8-dihydroxyflavone protects high glucose-damaged neuronal cells against oxidative stress. Biomol. Ther., 2019, 27(1), 85-91.
[http://dx.doi.org/10.4062/biomolther.2018.202] [PMID: 30481956]
[168]
Wang, H.; Sun, X.; Zhang, N.; Ji, Z.; Ma, Z.; Fu, Q.; Qu, R.; Ma, S. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway. Physiol. Behav., 2017, 182, 93-100.
[http://dx.doi.org/10.1016/j.physbeh.2017.10.001] [PMID: 28988132]
[169]
Semaming, Y.; Sripetchwandee, J.; Sa-nguanmoo, P.; Pintana, H.; Pannangpetch, P.; Chattipakorn, N.; Chattipakorn, S.C. Protocatechuic acid protects brain mitochondrial function in streptozotocin-induced diabetic rats. Appl. Physiol. Nutr. Metab., 2015, 40(10), 1078-1081.
[http://dx.doi.org/10.1139/apnm-2015-0158] [PMID: 26316260]
[170]
Adedara, I.A.; Fasina, O.B.; Ayeni, M.F.; Ajayi, O.M.; Farombi, E.O. Protocatechuic acid ameliorates neurobehavioral deficits via suppression of oxidative damage, inflammation, caspase-3 and acetylcholinesterase activities in diabetic rats. Food Chem. Toxicol., 2019, 125, 170-181.
[http://dx.doi.org/10.1016/j.fct.2018.12.040] [PMID: 30597223]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy