Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Towards Simpler Modelling Expressions for the Mechanical Characterization of Soft Materials

Author(s): Stylianos-Vasileios Kontomaris*, Anna Malamou, Andreas Stylianou* and Georgios Chliveros

Volume 16, Issue 3, 2024

Published on: 05 June, 2024

Page: [172 - 182] Pages: 11

DOI: 10.2174/0118764029305681240530071757

Price: $65

Abstract

Aims: The aim of this paper is to develop a new, simple equation for deep spherical indentations.

Background: The Hertzian theory is the most widely applied mathematical tool when testing soft materials because it provides an elementary equation that can be used to fit force-indentation data and determine the mechanical properties of the sample (i.e., its Young’s modulus). However, the Hertz equation is only valid for parabolic or spherical indenters at low indentation depths. For large indentation depths, Sneddon’s extension of the Hertzian theory offers accurate force-indentation equations, while alternative approaches have also been developed. Despite ongoing mathematical efforts to derive new accurate equations for deep spherical indentations, the Hertz equation is still commonly used in most cases due to its simplicity in data processing.

Objective: The main objective of this paper is to simplify the data processing for deep spherical indentations, primarily by providing an accurate equation that can be easily fitted to force-indentation data, similar to the Hertzian equation.

Methods: A simple power-law equation is derived by considering the equal work done by the indenter using the actual equation.

Results: The mentioned power-law equation was tested on simulated force-indentation data created using both spherical and sphero-conical indenters. Furthermore, it was applied to experimental force-indentation data obtained from agarose gels, demonstrating remarkable accuracy.

Conclusion: A new elementary power-law equation for accurately determining Young’s modulus in deep spherical indentation has been derived.

Graphical Abstract

[1]
Appleyard, R.C.; Swain, M.V.; Khanna, S.; Murrell, G.A.C. The accuracy and reliability of a novel handheld dynamic indentation probe for analysing articular cartilage. Phys. Med. Biol., 2001, 46(2), 541-550.
[http://dx.doi.org/10.1088/0031-9155/46/2/319] [PMID: 11229732]
[2]
Aspden, R.M.; Larsson, T.; Svensson, R.; Heinegård, D. Computer-controlled mechanical testing machine for small samples of biological viscoelastic materials. J. Biomed. Eng., 1991, 13(6), 521-525.
[http://dx.doi.org/10.1016/0141-5425(91)90102-D] [PMID: 1770815]
[3]
Athanasiou, K.A.; Zhu, C.F.; Wang, X.; Agrawal, C.M. Effects of aging and dietary restriction on the structural integrity of rat articular cartilage. Ann. Biomed. Eng., 2000, 28(2), 143-149.
[http://dx.doi.org/10.1114/1.238] [PMID: 10710185]
[4]
Duda, G.N.; Kleemann, R.U.; Bluecher, U.; Weiler, A. A new device to detect early cartilage degeneration. Am. J. Sports Med., 2004, 32(3), 693-698.
[http://dx.doi.org/10.1177/0363546503261725] [PMID: 15090387]
[5]
Lekka, M. Discrimination between normal and cancerous cells using AFM. Bionanoscience, 2016, 6(1), 65-80.
[http://dx.doi.org/10.1007/s12668-016-0191-3] [PMID: 27014560]
[6]
Lekka, M.; Laidler, P. Applicability of AFM in cancer detection. Nat. Nanotechnol., 2009, 4(2), 72.
[http://dx.doi.org/10.1038/nnano.2009.004] [PMID: 19197298]
[7]
Plodinec, M.; Loparic, M.; Monnier, C.A.; Obermann, E.C.; Zanetti-Dallenbach, R.; Oertle, P.; Hyotyla, J.T.; Aebi, U.; Bentires-Alj, M.; Lim, R.Y.H.; Schoenenberger, C.A. The nanomechanical signature of breast cancer. Nat. Nanotechnol., 2012, 7(11), 757-765.
[http://dx.doi.org/10.1038/nnano.2012.167] [PMID: 23085644]
[8]
Stolz, M.; Gottardi, R.; Raiteri, R.; Miot, S.; Martin, I.; Imer, R.; Staufer, U.; Raducanu, A.; Düggelin, M.; Baschong, W.; Daniels, A.U.; Friederich, N.F.; Aszodi, A.; Aebi, U. Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy. Nat. Nanotechnol., 2009, 4(3), 186-192.
[http://dx.doi.org/10.1038/nnano.2008.410] [PMID: 19265849]
[9]
Moreno-Herrero, F.; Pérez, M.; Baró, A.M.; Avila, J. AFM assessing of nanomechanical fingerprints for cancer early diagnosis and classification: From single cell to tissue level. Nanoscale, 2018, 10, 20930-20945.
[http://dx.doi.org/10.1016/S0006-3495(04)74130-2]
[10]
Feuillie, C.; Lambert, E.; Ewald, M.; Azouz, M.; Henry, S.; Marsaudon, S.; Cullin, C.; Lecomte, S.; Molinari, M. High Speed AFM and NanoInfrared Spectroscopy Investigation of Aβ1–42 Peptide Variants and Their Interaction With POPC/SM/Chol/GM1 Model Membranes. Front. Mol. Biosci., 2020, 7, 571696.
[http://dx.doi.org/10.3389/fmolb.2020.571696] [PMID: 33033718]
[11]
Kontomaris, S.V.; Malamou, A. Hertz model or Oliver & Pharr analysis? Tutorial regarding AFM nanoindentation experiments on biological samples. Mater. Res. Express, 2020, 7(3), 033001.
[http://dx.doi.org/10.1088/2053-1591/ab79ce]
[12]
Krieg, M.; Fläschner, G.; Alsteens, D.; Gaub, B.M.; Roos, W.H.; Wuite, G.J.L.; Gaub, H.E.; Gerber, C.; Dufrêne, Y.F.; Müller, D.J. Atomic force microscopy-based mechanobiology. Nature Reviews Physics, 2018, 1(1), 41-57.
[http://dx.doi.org/10.1038/s42254-018-0001-7]
[13]
Pérez-Domínguez, S.; Kulkarni, S.G.; Pabijan, J.; Gnanachandran, K.; Holuigue, H.; Eroles, M.; Lorenc, E.; Berardi, M.; Antonovaite, N.; Marini, M.L.; Lopez Alonso, J.; Redonto-Morata, L.; Dupres, V.; Janel, S.; Acharya, S.; Otero, J.; Navajas, D.; Bielawski, K.; Schillers, H.; Lafont, F.; Rico, F.; Podestà, A.; Radmacher, M.; Lekka, M. Reliable, standardized measurements for cell mechanical properties. Nanoscale, 2023, 15(40), 16371-16380.
[http://dx.doi.org/10.1039/D3NR02034G] [PMID: 37789717]
[14]
Deng, X.; Xiong, F.; Li, X.; Xiang, B.; Li, Z.; Wu, X.; Guo, C.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Zeng, Z. Application of atomic force microscopy in cancer research. J. Nanobiotechnology, 2018, 16(1), 102.
[http://dx.doi.org/10.1186/s12951-018-0428-0] [PMID: 30538002]
[15]
Kerdegari, S.; Canepa, P.; Odino, D.; Oropesa-Nuñez, R.; Relini, A.; Cavalleri, O.; Canale, C. Insights in cell biomechanics through atomic force microscopy. Materials (Basel), 2023, 16(8), 2980.
[http://dx.doi.org/10.3390/ma16082980] [PMID: 37109816]
[16]
Stylianou, A. Atomic force microscopy for collagen-based nanobiomaterials. J. Nanomater., 2017, 2017, 1-14.
[http://dx.doi.org/10.1155/2017/9234627]
[17]
Stylianou, A.; Gkretsi, V.; Louca, M.; Zacharia, L.; Stylianopoulos, T. Collagen content and extracellular matrix stiffness remodels pancreatic fibroblasts cytoskeleton. J. R. Soc. Interface, 2019, 16, 20190226.
[http://dx.doi.org/10.1098/rsif.2019.0226] [PMID: 31113335]
[18]
Stylianou, A.; Gkretsi, V.; Stylianopoulos, T. Atomic force microscopy nano-characterization of 3D collagen gels with tunable stiffness. MethodsX, 2018, 5, 503-513.
[http://dx.doi.org/10.1016/j.mex.2018.05.009] [PMID: 30023313]
[19]
Stylianou, A.; Gkretsi, V.; Stylianopoulos, T. Transforming growth factor-β modulates pancreatic cancer associated fibroblasts cell shape, stiffness and invasion. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(7), 1537-1546.
[http://dx.doi.org/10.1016/j.bbagen.2018.02.009] [PMID: 29477748]
[20]
Li, M.; Xi, N.; Wang, Y.; Liu, L. Atomic force microscopy for revealing micro/nanoscale mechanics in tumor metastasis: From single cells to microenvironmental cues. Acta Pharmacol. Sin., 2021, 42(3), 323-339.
[http://dx.doi.org/10.1038/s41401-020-0494-3] [PMID: 32807839]
[21]
Chen, X.; Hughes, R.; Mullin, N.; Hawkins, R.J.; Holen, I.; Brown, N.J.; Hobbs, J.K. Identification of Ras suppressor-1 (RSU-1) as a potential breast cancer metastasis biomarker using a three-dimensional in vitro approach. Oncotarget, 2021, 8, 27364-27379.
[http://dx.doi.org/10.1039/D1NR03900H]
[22]
Najera, J.; Rosenberger, M.R.; Datta, M. Atomic force microscopy methods to measure tumor mechanical properties. Cancers (Basel), 2023, 15(13), 3285.
[http://dx.doi.org/10.3390/cancers15133285] [PMID: 37444394]
[23]
Shen, Y.; Schmidt, T.; Diz-Muñoz, A. Nanomechanical properties of solid tumors as treatment monitoring biomarkers. Acta Biomater., 2022, 154, 324-334.
[http://dx.doi.org/10.1016/j.xpro.2020.100167]
[24]
Liu, S.; Han, Y.; Kong, L.; Wang, G.; Ye, Z. Atomic force microscopy in disease‐related studies: Exploring tissue and cell mechanics. Microsc. Res. Tech., 2024, 87(4), 660-684.
[http://dx.doi.org/10.1002/jemt.24471] [PMID: 38063315]
[25]
Wu, C.E.; Lin, K.H.; Juang, J.Y. Hertzian load–displacement relation holds for spherical indentation on soft elastic solids undergoing large deformations. Tribol. Int., 2016, 97, 71-76.
[http://dx.doi.org/10.1016/j.triboint.2015.12.034]
[26]
Koruk, H.; Pouliopoulos, A.N. Elasticity and viscoelasticity imaging based on small particles exposed to external forces. Processes (Basel), 2023, 11(12), 3402.
[http://dx.doi.org/10.3390/pr11123402]
[27]
Sneddon, I.N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci., 1965, 3(1), 47-57.
[http://dx.doi.org/10.1016/0020-7225(65)90019-4]
[28]
Puricelli, L.; Galluzzi, M.; Schulte, C.; Podestà, A.; Milani, P. Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes. Rev. Sci. Instrum., 2015, 86(3), 033705.
[http://dx.doi.org/10.1063/1.4915896] [PMID: 25832236]
[29]
Kontomaris, S.V.; Malamou, A. A novel approximate method to calculate the force applied on an elastic half space by a rigid sphere. Eur. J. Phys., 2021, 42(2), 025010.
[http://dx.doi.org/10.1088/1361-6404/abccfb]
[30]
Brill-Karniely, Y. Mechanical measurements of cells using AFM: 3D or 2D physics? Front. Bioeng. Biotechnol., 2020, 8, 605153.
[http://dx.doi.org/10.3389/fbioe.2020.605153] [PMID: 33330437]
[31]
Kontomaris, S.V.; Malamou, A.; Stylianou, A. The Hertzian theory in AFM nanoindentation experiments regarding biological samples: Overcoming limitations in data processing. Micron, 2022, 155, 103228.
[http://dx.doi.org/10.1016/j.micron.2022.103228] [PMID: 35124406]
[32]
Pharr, G.M.; Oliver, W.C.; Brotzen, F.R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res., 1992, 7(3), 613-617.
[http://dx.doi.org/10.1557/JMR.1992.0613]
[33]
Wenger, M.P.E.; Bozec, L.; Horton, M.A.; Mesquida, P. Mechanical properties of collagen fibrils. Biophys. J., 2007, 93(4), 1255-1263.
[http://dx.doi.org/10.1529/biophysj.106.103192] [PMID: 17526569]
[34]
Koruk, H.; Pouliopoulos, A.N. Investigation of the motion of a spherical object located at soft elastic and viscoelastic material interface for identification of material properties. Appl. Sci. Eng. Prog., 2023, 17(4), 7277.
[http://dx.doi.org/10.14416/j.asep.2023.12.002]
[35]
Kontomaris, S.V.; Stylianou, A.; Malamou, A. Is it possible to directly determine the radius of a spherical indenter using force indentation data on soft samples? Scanning, 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/6463063] [PMID: 35265251]
[36]
Briscoe, B.J.; Sebastian, K.S.; Adams, M.J. The effect of indenter geometry on the elastic response to indentation. J. Phys. D Appl. Phys., 1994, 27(6), 1156-1162.
[http://dx.doi.org/10.1088/0022-3727/27/6/013]
[37]
Hermanowicz, P.; Sarna, M.; Burda, K.; Gabryś, H.; Atomic, J.; Atomic, J.; Atomic, J. An open source software for analysis of force curves. Rev. Sci. Instrum., 2014, 85(6), 063703.
[http://dx.doi.org/10.1063/1.4881683] [PMID: 24985823]
[38]
Ma, C.; Zhou, C.; Peng, J.; Chen, Y.; Arnold, W.; Chu, J. Thermal noise in contact atomic force microscopy. J. Appl. Phys., 2021, 129(23), 234303.
[http://dx.doi.org/10.1063/5.0054256]
[39]
Meinhardt, A.; Lakner, P.; Huber, P.; Keller, T.F. Mapping the nanoscale elastic property modulations of polypyrrole thin films in liquid electrolyte with EC-AFM. Nanoscale Adv., 2023, 6(1), 102-110.
[http://dx.doi.org/10.1039/D3NA00611E] [PMID: 38125599]
[40]
Koruk, H. Development of a model for predicting dynamic response of a sphere at viscoelastic interface: A dynamic Hertz model. IOP Conf. Series Mater. Sci. Eng., 2021, 1150(1), 012015.
[http://dx.doi.org/10.1088/1757-899X/1150/1/012015]
[41]
Koruk, H. Modelling small and large displacements of a sphere on an elastic half-space exposed to a dynamic force. Eur. J. Phys., 2021, 42(5), 055006.
[http://dx.doi.org/10.1088/1361-6404/ac0e42]
[42]
Kontomaris, S.V.; Stylianou, A.; Georgakopoulos, A.; Malamou, A. Is it mathematically correct to fit AFM data (obtained on biological materials) to equations arising from Hertzian mechanics? Micron, 2023, 164, 103384.
[http://dx.doi.org/10.1016/j.micron.2022.103384] [PMID: 36375358]
[43]
Kontomaris, S.V.; Stylianou, A.; Chliveros, G.; Malamou, A. AFM indentation on highly heterogeneous materials using different indenter geometries. Appl. Mechanics, 2023, 4(2), 460-475.
[http://dx.doi.org/10.3390/applmech4020026]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy