Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Synthesis, Antibacterial Activity and In Silico Study of 1-(2-ethyl acetate)- 2-styryl 5-nitroimidazole Derivatives

In Press, (this is not the final "Version of Record"). Available online 05 June, 2024
Author(s): Misgana Aragaw*, Sileshi Degu, Abiy Abebe, Mekonnen Abebayehu, Kibrom Gebreheiwot Bedane, Daniel Bisrat and Solomon Tadesse
Published on: 05 June, 2024

Article ID: e050624230688

DOI: 10.2174/0122113525297723240513114228

Price: $95

Abstract

Background: For more than six decades, the use of metronidazole has been limited to anaerobic microorganisms. However, there are accounts of metronidazole derivatives exhibiting strong effectiveness against facultative anaerobic bacteria, suggesting that there may be another mechanism of action for metronidazole. Recent studies have shown that the enzyme FabH (β-ketoacyl-acyl carrier protein synthase III), responsible for the first step of fatty acid biosynthesis (FAB), is a promising target for nitroimidazole derivatives that can be used as an effective anti-infective agent.

Objective: This study aimed to synthesize 1-(2-ethyl acetate)-2-styryl nitroimidazole derivatives and evaluate their in vitro and in silico antibacterial activity.

Methods: We synthesized 2-styryl 5-nitroimidazole derivatives by first condensing metronidazole with benzaldehydes and then carrying out an acetylation reaction. We evaluated the antimicrobial activity of the synthesized compounds against three Gram-positive bacterial strains (Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus agalactiae) and three Gram-negative bacterial strains (Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae) using a two-fold serial dilution MTT (3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide) assay.

Results: Compounds 2 and 4 exhibited the highest level of antibacterial effectiveness, with minimum inhibitory concentrations (MIC) of 1.56 μg/mL against S. agalactiae and 3.13 μg/mL against P. aeruginosa. Compounds 2 and 4 also exhibited potent activity against K. pneumonia, with an MIC value of 6.25 μg/mL and 12.5 μg/mL, respectively. Molecular docking studies revealed that both compounds have favorable hydrophobic and electrostatic interactions with conserved residues in the binding site of the E. coli β-Ketoacyl-acyl carrier protein synthase III (FabH) complex.

Conclusion: Acetylation of 2-styryl-5-nitroimidazoles improved both their biological activity and binding interaction with the target protein.

[1]
WHO. WHO publishes list of bacteria for which new antibiotics are urgently needed., 2017. Available from: https://www.who.int/news/item/27-02-
[2]
Jarrad, A.M.; Karoli, T.; Debnath, A.; Tay, C.Y.; Huang, J.X.; Kaeslin, G.; Elliott, A.G.; Miyamoto, Y.; Ramu, S.; Kavanagh, A.M.; Zuegg, J.; Eckmann, L.; Blaskovich, M.A.T.; Cooper, M.A. Metronidazole-triazole conjugates: Activity against Clostridium difficile and parasites. Eur. J. Med. Chem., 2015, 101, 96-102.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.019] [PMID: 26117821]
[3]
André, A.C.; Debande, L.; Marteyn, B.S. The selective advantage of facultative anaerobes relies on their unique ability to cope with changing oxygen levels during infection. In: Cellular Microbiology; John Wiley and Sons Inc, 2021.
[http://dx.doi.org/10.1111/cmi.13338]
[4]
Christensen, C.E.; Kragelund, B.B.; von Wettstein-Knowles, P.; Henriksen, A. Structure of the human β‐ketoacyl [ACP] synthase from the mitochondrial type II fatty acid synthase. Protein Sci., 2007, 16(2), 261-272.
[http://dx.doi.org/10.1110/ps.062473707] [PMID: 17242430]
[5]
Zhang, J.H. -L. Li, Z.; -L. Zhu, H. Advances in the Research of β-Ketoacyl-ACP Synthase III (FabH) Inhibitors. Curr. Med. Chem., 2012, 19(8), 1225-1237.
[http://dx.doi.org/10.2174/092986712799320484] [PMID: 22257054]
[6]
Qiu, X.; Janson, C.A.; Smith, W.W.; Head, M.; Lonsdale, J.; Konstantinidis, A.K. Refined structures of β-ketoacyl-acyl carrier protein synthase III. J. Mol. Biol., 2001, 307(1), 341-356.
[http://dx.doi.org/10.1006/jmbi.2000.4457] [PMID: 11243824]
[7]
Li, H.Q.; Shi, L.; Li, Q.S.; Liu, P.G.; Luo, Y.; Zhao, J.; Zhu, H.L. Synthesis of C(7) modified chrysin derivatives designing to inhibit β-ketoacyl-acyl carrier protein synthase III (FabH) as antibiotics. Bioorg. Med. Chem., 2009, 17(17), 6264-6269.
[http://dx.doi.org/10.1016/j.bmc.2009.07.046] [PMID: 19664929]
[8]
Nie, Z.; Perretta, C.; Lu, J.; Su, Y.; Margosiak, S.; Gajiwala, K.S.; Cortez, J.; Nikulin, V.; Yager, K.M.; Appelt, K.; Chu, S. Structure-based design, synthesis, and study of potent inhibitors of β-ketoacyl-acyl carrier protein synthase III as potential antimicrobial agents. J. Med. Chem., 2005, 48(5), 1596-1609.
[http://dx.doi.org/10.1021/jm049141s] [PMID: 15743201]
[9]
Zhang, H.J.; Qin, X.; Liu, K.; Zhu, D.D.; Wang, X.M.; Zhu, H.L. Synthesis, antibacterial activities and molecular docking studies of Schiff bases derived from N-(2/4-benzaldehyde-amino) phenyl-N′-phenyl-thiourea. Bioorg. Med. Chem., 2011, 19(18), 5708-5715.
[http://dx.doi.org/10.1016/j.bmc.2011.06.077] [PMID: 21872479]
[10]
Duan, Y.T.; Wang, Z.C.; Sang, Y.L.; Tao, X.X.; Teraiya, S.B.; Wang, P.F.; Wen, Q.; Zhou, X.J.; Ding, L.; Yang, Y.H.; Zhu, H.L. Design and synthesis of 2-styryl of 5-Nitroimidazole derivatives and antimicrobial activities as FabH inhibitors. Eur. J. Med. Chem., 2014, 76, 387-396.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.004] [PMID: 24594526]
[11]
Anbu, N.; Nagarjun, N.; Jacob, M.; Vimala, J.M.; Kalaiarasi, K.; Dhakshinamoorthy, A. Acetylation of alcohols, amines, phenols, thiols under catalyst and solvent-free conditions. Chemistry, 2019, 1(1), 69-79.
[12]
Eloff, J. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med., 1998, 64(8), 711-713.
[http://dx.doi.org/10.1055/s-2006-957563] [PMID: 9933989]
[13]
CLSI. M07-A10: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard-tenth edition. 2015. Available from: www.clsi.org
[14]
[15]
Schrödinger, L. Schrödinger Release 2023-2: Protein Preparation Wizard; Epik: New York, NY, 2023.
[16]
Schrödinger, L. Schrödinger Release 2023-2: Induced Fit Docking Protocol; Glide: New York, NY, 2023.
[17]
Elekofehinti, O.O.; Iwaloye, O.; Josiah, S.S.; Lawal, A.O.; Akinjiyan, M.O.; Ariyo, E.O. Molecular docking studies, molecular dynamics and ADME/tox reveal therapeutic potentials of STOCK1N-69160 against papain-like protease of SARS-CoV-2. Mol. Divers., 2021, 25(3), 1761-1773.
[http://dx.doi.org/10.1007/s11030-020-10151-w] [PMID: 33201386]
[18]
Sherman, W.; Day, T.; Jacobson, M.P.; Friesner, R.A.; Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem., 2006, 49(2), 534-553.
[http://dx.doi.org/10.1021/jm050540c] [PMID: 16420040]
[19]
Nagao, P.E. Streptococcus agalactiae (Group B Streptococci). In: Molecular Medical Microbiology; Elsevier, 2015; pp. 1751-1767.
[http://dx.doi.org/10.1016/B978-0-12-397169-2.00099-8]
[20]
Percival, S.L.; Williams, D.W. Escherichia Coli.Microbiology of Waterborne Diseases; Elsevier, 2014, pp. 89-117.
[http://dx.doi.org/10.1016/B978-0-12-415846-7.00006-8]
[21]
[22]
Wu, M.; Li, X. Klebsiella Pneumoniae and Pseudomonas aeruginosa. In: Molecular Medical Microbiology; Elsevier, 2015; pp. 1547-1564.
[http://dx.doi.org/10.1016/B978-0-12-397169-2.00087-1]
[23]
Chacko, A.; Delbaz, A.; Choudhury, I.N.; Eindorf, T.; Shah, M.; Godfrey, C.; Sullivan, M.J.; St John, J.A.; Ulett, G.C.; Ekberg, J.A.K. Streptococcus agalactiae infects glial cells and invades the central nervous system via the olfactory and trigeminal nerves. Front. Cell. Infect. Microbiol., 2022, 12, 793416.
[http://dx.doi.org/10.3389/fcimb.2022.793416] [PMID: 35281448]
[24]
Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, R.G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S.C.; Browne, A.J.; Chipeta, M.G.; Fell, F.; Hackett, S.; Woodhouse, H.G.; Hamadani, K.B.H.; Kumaran, E.A.P.; McManigal, B.; Achalapong, S.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Babin, F-X.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Berkley, J.A.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Donatien, C.R.; Cook, A.J.; Cooper, B.; Cressey, T.R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N.P.J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S.J.; Duong Bich, T.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Pearson, F.N.; Forrest, K.; Garcia, C.; Garrett, D.; Gastmeier, P.; Giref, A.Z.; Greer, R.C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S.I.; Holm, M.; Hopkins, S.; Hsia, Y.; Iregbu, K.C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Jenney, A.W.J.; Khorana, M.; Khusuwan, S.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H.H.; Lim, C.; Lim, K.; Limmathurotsakul, D.; Loftus, M.J.; Lunn, M.; Ma, J.; Manoharan, A.; Marks, F.; May, J.; Mayxay, M.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Musila, L.A.; Pinhata, M.M.M.; Naidu, R.N.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C.W.; Ochoa, T.J.; Martinez, O.A.; Olliaro, P.; Ooko, E.; Brizuela, O.E.; Ounchanum, P.; Pak, G.D.; Paredes, J.L.; Peleg, A.Y.; Perrone, C.; Phe, T.; Phommasone, K.; Plakkal, N.; de-Leon, P.A.; Raad, M.; Ramdin, T.; Rattanavong, S.; Riddell, A.; Roberts, T.; Robotham, J.V.; Roca, A.; Rosenthal, V.D.; Rudd, K.E.; Russell, N.; Sader, H.S.; Saengchan, W.; Schnall, J.; Scott, J.A.G.; Seekaew, S.; Sharland, M.; Shivamallappa, M.; Osornio, S.J.; Simpson, A.J.; Steenkeste, N.; Stewardson, A.J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Tigoi, C.; Turner, C.; Turner, P.; van Doorn, H.R.; Velaphi, S.; Vongpradith, A.; Vongsouvath, M.; Vu, H.; Walsh, T.; Walson, J.L.; Waner, S.; Wangrangsimakul, T.; Wannapinij, P.; Wozniak, T.; Young Sharma, T.E.M.W.; Yu, K.C.; Zheng, P.; Sartorius, B.; Lopez, A.D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 2022, 399(10325), 629-655.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[25]
Miller, E.B.; Murphy, R.B.; Sindhikara, D.; Borrelli, K.W.; Grisewood, M.J.; Ranalli, F.; Dixon, S.L.; Jerome, S.; Boyles, N.A.; Day, T.; Ghanakota, P.; Mondal, S.; Rafi, S.B.; Troast, D.M.; Abel, R.; Friesner, R.A. Reliable and accurate solution to the induced fit docking problem for protein–ligand binding. J. Chem. Theory Comput., 2021, 17(4), 2630-2639.
[http://dx.doi.org/10.1021/acs.jctc.1c00136] [PMID: 33779166]
[26]
Garrido, A.; Lepailleur, A.; Mignani, S.M.; Dallemagne, P.; Rochais, C. hERG toxicity assessment: Useful guidelines for drug design. Eur. J. Med. Chem., 2020, 195, 112290.
[http://dx.doi.org/10.1016/j.ejmech.2020.112290] [PMID: 32283295]
[27]
Recanatini, M.; Poluzzi, E.; Masetti, M.; Cavalli, A.; De Ponti, F. QT prolongation through hERG K + channel blockade: Current knowledge and strategies for the early prediction during drug development. Med. Res. Rev., 2005, 25(2), 133-166.
[http://dx.doi.org/10.1002/med.20019] [PMID: 15389727]
[28]
User manual, Q. Schrödinger Press QikProp 4.4 user manual. 2015. Available from: http://gohom.win/ManualHom/Schrodinger/Schrodinger_2015-2_docs/qikprop/qikprop_user_manual.pdf

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy