Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Artificial Intelligence in Eye Movements Analysis for Alzheimer’s Disease Early Diagnosis

In Press, (this is not the final "Version of Record"). Available online 04 June, 2024
Author(s): Shadi Farabi Maleki, Milad Yousefi, Navid Sobhi, Ali Jafarizadeh*, Roohallah Alizadehsani and Juan Manuel Gorriz-Saez
Published on: 04 June, 2024

DOI: 10.2174/0115672050322607240529075641

Price: $95

Abstract

As the world's population ages, Alzheimer's disease is currently the seventh most common cause of death globally; the burden is anticipated to increase, especially among middle-class and elderly persons. Artificial intelligence-based algorithms that work well in hospital environments can be used to identify Alzheimer's disease. A number of databases were searched for English-language articles published up until March 1, 2024, that examined the relationships between artificial intelligence techniques, eye movements, and Alzheimer's disease. A novel non-invasive method called eye movement analysis may be able to reflect cognitive processes and identify anomalies in Alzheimer's disease. Artificial intelligence, particularly deep learning, and machine learning, is required to enhance Alzheimer's disease detection using eye movement data. One sort of deep learning technique that shows promise is convolutional neural networks, which need further data for precise classification. Nonetheless, machine learning models showed a high degree of accuracy in this context. Artificial intelligence-driven eye movement analysis holds promise for enhancing clinical evaluations, enabling tailored treatment, and fostering the development of early and precise Alzheimer's disease diagnosis. A combination of artificial intelligence-based systems and eye movement analysis can provide a window for early and non-invasive diagnosis of Alzheimer's disease. Despite ongoing difficulties with early Alzheimer's disease detection, this presents a novel strategy that may have consequences for clinical evaluations and customized medication to improve early and accurate diagnosis.

[1]
Porsteinsson AP, Isaacson RS, Knox S, Sabbagh MN, Rubino I. Diagnosis of early alzheimer’s disease: Clinical practice in 2021. J Prev Alzheimers Dis 2021; 8(3): 371-86.
[PMID: 34101796]
[2]
Lynch C. World Alzheimer Report 2019: Attitudes to dementia, a global survey. Alzheimers Dement 2020; 16(S10): e038255.
[http://dx.doi.org/10.1002/alz.038255]
[3]
Penke B, Szűcs M, Bogár F. New pathways identify novel drug targets for the prevention and treatment of alzheimer’s disease. Int J Mol Sci 2023; 24(6): 5383.
[http://dx.doi.org/10.3390/ijms24065383] [PMID: 36982456]
[4]
DeTure MA, Dickson DW. The neuropathological diagnosis of alzheimer’s disease. Mol Neurodegener 2019; 14(1): 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[5]
Surguchov A, Emamzadeh FN, Titova M, Surguchev AA. Controversial properties of amyloidogenic proteins and peptides: New data in the COVID era. Biomedicines 2023; 11(4): 1215.
[http://dx.doi.org/10.3390/biomedicines11041215] [PMID: 37189833]
[6]
Nandi A, Counts N, Chen S, et al. Global and regional projections of the economic burden of Alzheimer’s disease and related dementias from 2019 to 2050: A value of statistical life approach. EClinicalMedicine 2022; 51: 101580.
[http://dx.doi.org/10.1016/j.eclinm.2022.101580] [PMID: 35898316]
[7]
Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q. The humanistic and economic burden of Alzheimer’s disease. Neurol Ther 2022; 11(2): 525-51.
[http://dx.doi.org/10.1007/s40120-022-00335-x] [PMID: 35192176]
[8]
Gómez-Río M, Caballero MM, Sáez MGJ, Mínguez-Castellanos A. Diagnosis of neurodegenerative diseases: The clinical approach. Curr Alzheimer Res 2016; 13(5): 469-74.
[http://dx.doi.org/10.2174/1567205013666151116141603] [PMID: 26567736]
[9]
Weiner MW, Górriz JM, Ramírez J, Castiglioni I. Editorial: Statistical signal processing in the analysis, characterization and detection of Aalzheimer's disease. Curr Alzheimer Res 2016; 13(5): 466-8.
[http://dx.doi.org/10.2174/156720501304160325180321] [PMID: 27025774]
[10]
Afzal S, Maqsood M, Khan U, et al. Alzheimer disease detection techniques and methods: A review. Int J Interact Multi 2021; 6(7): 26.
[http://dx.doi.org/10.9781/ijimai.2021.04.005]
[11]
Lee SAW, Sposato LA, Hachinski V, Cipriano LE. Cost-effectiveness of cerebrospinal biomarkers for the diagnosis of Alzheimer’s disease. Alzheimers Res Ther 2017; 9(1): 18.
[http://dx.doi.org/10.1186/s13195-017-0243-0] [PMID: 28302164]
[12]
Martinez-Murcia FJ, Górriz JM, Ramírez J, Ortiz A. A spherical brain mapping of MR images for the detection of alzheimer’s disease. Curr Alzheimer Res 2016; 13(5): 575-88.
[http://dx.doi.org/10.2174/1567205013666160314145158] [PMID: 26971941]
[13]
Juganavar A, Joshi A, Shegekar T. Navigating early alzheimer’s diagnosis: A comprehensive review of diagnostic innovations. Cureus 2023; 15(9): e44937.
[http://dx.doi.org/10.7759/cureus.44937] [PMID: 37818489]
[14]
Wolf A, Tripanpitak K, Umeda S, Otake-Matsuura M. Eye-tracking paradigms for the assessment of mild cognitive impairment: A systematic review. Front Psychol 2023; 14: 1197567.
[http://dx.doi.org/10.3389/fpsyg.2023.1197567] [PMID: 37546488]
[15]
Najjar R. Redefining radiology: A review of artificial intelligence integration in medical imaging. Diagnostics 2023; 13(17): 2760.
[http://dx.doi.org/10.3390/diagnostics13172760] [PMID: 37685300]
[16]
Yousefi M, Maleki SF, Jafarizadeh A, Youshanlui MA, Jafari A, Pedrammehr S, et al. Advancements in radiomics and artificial intelligence for thyroid cancer diagnosis. arXiv preprint arXiv:240407239 2024.
[17]
Zhang B, Zhu J, Su H. Toward the third generation artificial intelligence. Sci China Inf Sci 2023; 66(2): 121101.
[http://dx.doi.org/10.1007/s11432-021-3449-x]
[18]
Pedro AR, Dias MB, Laranjo L, Cunha AS, Cordeiro JV. Artificial intelligence in medicine: A comprehensive survey of medical doctor’s perspectives in Portugal. PLoS One 2023; 18(9): e0290613.
[http://dx.doi.org/10.1371/journal.pone.0290613] [PMID: 37676884]
[19]
Mirzaei G, Adeli H. Machine learning techniques for diagnosis of alzheimer disease, mild cognitive disorder, and other types of dementia. Biomed Signal Process Control 2022; 72: 103293.
[http://dx.doi.org/10.1016/j.bspc.2021.103293]
[20]
Ashayeri H, Jafarizadeh A, Yousefi M, Farhadi F, Javadzadeh A. Retinal imaging and Alzheimer’s disease: A future powered by Artificial Intelligence. Graefes Arch Clin Exp Ophthalmol 2024.
[http://dx.doi.org/10.1007/s00417-024-06394-0] [PMID: 38358524]
[21]
Insel PS, Weiner M, Mackin RS, et al. Determining clinically meaningful decline in preclinical Alzheimer disease. Neurology 2019; 93(4): e322-33.
[http://dx.doi.org/10.1212/WNL.0000000000007831] [PMID: 31289148]
[22]
Krashenyi I, Ramírez J, Popov A, Manuel Górriz J. Fuzzy computer-aided alzheimer’s disease diagnosis based on MRI data. Curr Alzheimer Res 2016; 13(5): 545-56.
[http://dx.doi.org/10.2174/1567205013666160314145008] [PMID: 26971942]
[23]
Zetterberg H, Blennow K. Moving fluid biomarkers for Alzheimer’s disease from research tools to routine clinical diagnostics. Mol Neurodegener 2021; 16(1): 10.
[http://dx.doi.org/10.1186/s13024-021-00430-x] [PMID: 33608044]
[24]
Niemantsverdriet E, Valckx S, Bjerke M, Engelborghs S. Alzheimer’s disease CSF biomarkers: Clinical indications and rational use. Acta Neurol Belg 2017; 117(3): 591-602.
[http://dx.doi.org/10.1007/s13760-017-0816-5] [PMID: 28752420]
[25]
Salas-Gonzalez D, Segovia F, Martínez-Murcia FJ, Lang EW, Gorriz JM, Ramırez J. An optimal approach for selecting discriminant regions for the diagnosis of alzheimer’s disease. Curr Alzheimer Res 2016; 13(7): 838-44.
[http://dx.doi.org/10.2174/1567205013666160415154852] [PMID: 27087440]
[26]
Lee JC, Kim SJ, Hong S, Kim Y. Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers. Exp Mol Med 2019; 51(5): 1-10.
[http://dx.doi.org/10.1038/s12276-019-0250-2] [PMID: 31073121]
[27]
Anderson TJ, MacAskill MR. Eye movements in patients with neurodegenerative disorders. Nat Rev Neurol 2013; 9(2): 74-85.
[http://dx.doi.org/10.1038/nrneurol.2012.273] [PMID: 23338283]
[28]
Opwonya J, Doan DNT, Kim SG, et al. Saccadic eye movement in mild cognitive impairment and alzheimer’s disease: A systematic review and meta-analysis. Neuropsychol Rev 2022; 32(2): 193-227.
[http://dx.doi.org/10.1007/s11065-021-09495-3] [PMID: 33959887]
[29]
Lage C, López-García S, Bejanin A, et al. Distinctive oculomotor behaviors in alzheimer’s disease and frontotemporal dementia. Front Aging Neurosci 2021; 12: 603790.
[http://dx.doi.org/10.3389/fnagi.2020.603790] [PMID: 33613262]
[30]
Tokushige S, Matsumoto H, Matsuda S, et al. Early detection of cognitive decline in Alzheimer’s disease using eye tracking. Front Aging Neurosci 2023; 15: 1123456.
[http://dx.doi.org/10.3389/fnagi.2023.1123456] [PMID: 37025964]
[31]
Max SM, Plewnia C, Zipfel S, Giel KE, Schag K. Combined antisaccade task and transcranial direct current stimulation to increase response inhibition in binge eating disorder. Eur Arch Psychiatry Clin Neurosci 2021; 271(1): 17-28.
[http://dx.doi.org/10.1007/s00406-020-01164-5] [PMID: 32661703]
[32]
Alichniewicz KK, Brunner F, Klünemann HH, Greenlee MW. Neural correlates of saccadic inhibition in healthy elderly and patients with amnestic mild cognitive impairment. Front Psychol 2013; 4: 467.
[http://dx.doi.org/10.3389/fpsyg.2013.00467] [PMID: 23898312]
[33]
Kaufman LD, Pratt J, Levine B, Black SE. Antisaccades: A probe into the dorsolateral prefrontal cortex in Alzheimer’s disease. A critical review. J Alzheimers Dis 2010; 19(3): 781-93.
[http://dx.doi.org/10.3233/JAD-2010-1275] [PMID: 20157236]
[34]
Ouerfelli-Ethier J, Salemme R, Fournet R, Urquizar C, Pisella L, Khan AZ. Impaired spatial inhibition processes for interhemispheric anti-saccades following dorsal posterior parietal lesions. Cereb Cortex Commun 2021; 2(3): tgab054.
[http://dx.doi.org/10.1093/texcom/tgab054]
[35]
Gorges M, Pinkhardt EH, Kassubek J. Alterations of eye movement control in neurodegenerative movement disorders. J Ophthalmol 2014; 2014: 1-11.
[http://dx.doi.org/10.1155/2014/658243] [PMID: 24955249]
[36]
Wang J, Guo X, Zhuang X, Chen T, Yan W. Disrupted pursuit compensation during self-motion perception in early Alzheimer’s disease. Sci Rep 2017; 7(1): 4049.
[http://dx.doi.org/10.1038/s41598-017-04377-2] [PMID: 28642572]
[37]
Fletcher WA, Sharpe JA. Smooth pursuit dysfunction in Alzheimer’s disease. Neurology 1988; 38(2): 272-7.
[http://dx.doi.org/10.1212/WNL.38.2.272] [PMID: 3340292]
[38]
Schewe HJ, Uebelhack R, Vohs K. Abnormality in saccadic eye movement in dementia. Eur Psychiatry 1999; 14(1): 52-3.
[http://dx.doi.org/10.1016/S0924-9338(99)80716-0] [PMID: 10572325]
[39]
Mahanama B, Jayawardana Y, Rengarajan S, et al. Eye movement and pupil measures: A review. Front Comput Sci 2022; 3: 733531.
[http://dx.doi.org/10.3389/fcomp.2021.733531]
[40]
Li D, Butala AA, Moro-Velazquez L, et al. Automating the analysis of eye movement for different neurodegenerative disorders. Comput Biol Med 2024; 170: 107951.
[http://dx.doi.org/10.1016/j.compbiomed.2024.107951] [PMID: 38219646]
[41]
Antoniades CA, Kennard C. Ocular motor abnormalities in neurodegenerative disorders. Eye 2015; 29(2): 200-7.
[http://dx.doi.org/10.1038/eye.2014.276] [PMID: 25412716]
[42]
Viña J, Sanz-Ros J. Alzheimer’s disease: Only prevention makes sense. Eur J Clin Invest 2018; 48(10): e13005.
[http://dx.doi.org/10.1111/eci.13005] [PMID: 30028503]
[43]
McDougal DH, Gamlin PD. Autonomic control of the eye. Comprehen Physiol 2015; 5(1): 439-73.
[http://dx.doi.org/10.1002/cphy.c140014]
[44]
Huo L, Jiao L, Wang S, Yang S. Object-level saliency detection with color attributes. Pattern Recognit 2016; 49: 162-73.
[http://dx.doi.org/10.1016/j.patcog.2015.07.005]
[45]
Beltrán J, García-Vázquez MS, Benois-Pineau J, Gutierrez-Robledo LM, Dartigues JF. Computational techniques for eye movements analysis towards supporting early diagnosis of alzheimer’s disease: A review. Comput Math Methods Med 2018; 2018: 1-13.
[http://dx.doi.org/10.1155/2018/2676409] [PMID: 29887912]
[46]
Khaleel AH, Abbas TH, Ibrahim A-WS. Best low-cost methods for real-time detection of the eye and gaze tracking. i-com 2024; 23(1)
[47]
Gide MS, Karam LJ. Computational visual attention models. Now Publishers 2017; 10: pp. 347-427.
[http://dx.doi.org/10.1561/9781680832815]
[48]
Treisman AM, Gelade G. A feature-integration theory of attention. Cognit Psychol 1980; 12(1): 97-136.
[http://dx.doi.org/10.1016/0010-0285(80)90005-5] [PMID: 7351125]
[49]
Chaitanuwong P, Singhanetr P, Chainakul M, Arjkongharn N, Ruamviboonsuk P, Grzybowski A. Potential ocular biomarkers for early detection of alzheimer’s disease and their roles in artificial intelligence studies. Neurol Ther 2023; 12(5): 1517-32.
[http://dx.doi.org/10.1007/s40120-023-00526-0] [PMID: 37468682]
[50]
Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput 2023; 14(7): 8459-86.
[http://dx.doi.org/10.1007/s12652-021-03612-z] [PMID: 35039756]
[51]
Bazargani YS, Mirzaei M, Sobhi N, Abdollahi M, Jafarizadeh A, Pedrammehr S, et al. Artificial intelligence and diabetes mellitus: An inside look through the retina. arXiv preprint arXiv:240218600 2024.
[52]
Das K, Behera RN. A survey on machine learning: Concept, algorithms and applications. IJIRCCE 2017; 5(2): 1301-9.
[53]
Jafarizadeh A, Maleki SF, Pouya P, Sobhi N, Abdollahi M, Pedrammehr S, et al. Current and future roles of artificial intelligence in retinopathy of prematurity. arXiv preprint arXiv:240209975 2024.
[54]
Lagun D, Manzanares C, Zola SM, Buffalo EA, Agichtein E. Detecting cognitive impairment by eye movement analysis using automatic classification algorithms. J Neurosci Methods 2011; 201(1): 196-203.
[http://dx.doi.org/10.1016/j.jneumeth.2011.06.027] [PMID: 21801750]
[55]
Nam U, Lee K, Ko H, Lee JY, Lee EC. Analyzing facial and eye movements to screen for Alzheimer’s disease. Sensors 2020; 20(18): 5349.
[http://dx.doi.org/10.3390/s20185349] [PMID: 32961984]
[56]
Muhuri PS, Chatterjee P, Yuan X, Roy K, Esterline A. Using a long short-term memory recurrent neural network (LSTM-RNN) to classify network attacks. Information 2020; 11(5): 243.
[http://dx.doi.org/10.3390/info11050243]
[57]
Jang H, Soroski T, Rizzo M, et al. Classification of alzheimer’s disease leveraging multi-task machine learning analysis of speech and eye-movement data. Front Hum Neurosci 2021; 15: 716670.
[http://dx.doi.org/10.3389/fnhum.2021.716670] [PMID: 34616282]
[58]
Fraser KC, Lundholm Fors K, Eckerström M, Öhman F, Kokkinakis D. Predicting MCI status from multimodal language data using cascaded classifiers. Front Aging Neurosci 2019; 11: 205.
[http://dx.doi.org/10.3389/fnagi.2019.00205] [PMID: 31427959]
[59]
Barral O, Jang H, Newton-Mason S, Shajan S, Soroski T, Carenini G, et al. Non-invasive classification of Alzheimer’s disease using eye tracking and language. PMLR 2020; 126: 813-41.
[60]
Lin J, Xu T, Yang X, Yang Q, Zhu Y, Wan M, et al. A detection model of cognitive impairment via the integrated gait and eye movement analysis from a large Chinese community cohort. Alzheimers Dement 2024; 20(2): 1089-101.
[http://dx.doi.org/10.1002/alz.13517]
[61]
Zdarsky N, Treue S, Esghaei M. A deep learning-based approach to video-based eye tracking for human psychophysics. Front Hum Neurosci 2021; 15: 685830.
[http://dx.doi.org/10.3389/fnhum.2021.685830] [PMID: 34366813]
[62]
Kim SY, Park J, Choi H, Loeser M, Ryu H, Seo K. Digital marker for early screening of mild cognitive impairment through hand and eye movement analysis in virtual reality using machine learning: First validation study. J Med Internet Res 2023; 25: e48093.
[http://dx.doi.org/10.2196/48093] [PMID: 37862101]
[63]
Yang S, Zhu F, Ling X, Liu Q, Zhao P. Intelligent health care: Applications of deep learning in computational medicine. Front Genet 2021; 12: 607471.
[http://dx.doi.org/10.3389/fgene.2021.607471] [PMID: 33912213]
[64]
Abdollahi M, Jafarizadeh A, Asbagh AG, Sobhi N, Pourmoghtader K, Pedrammehr S, et al. Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade. arXiv preprint arXiv:231107609 2023.
[65]
Sun J, Liu Y, Wu H, Jing P, Ji Y. A novel deep learning approach for diagnosing Alzheimer’s disease based on eye-tracking data. Front Hum Neurosci 2022; 16: 972773.
[http://dx.doi.org/10.3389/fnhum.2022.972773] [PMID: 36158627]
[66]
Jiang J, Yan Z, Shen T, Xu G, Guan Q, Yu Z. Use of deep belief network model to discriminate mild cognitive impairment and normal controls based on EEG, eye movement signals and neuropsychological tests. J Med Imaging Health Inform 2019; 9(9): 1978-85.
[http://dx.doi.org/10.1166/jmihi.2019.2825]
[67]
Biondi J, Fernandez G, Castro S, Agamennoni O. Eye movement behavior identification for Alzheimer’s disease diagnosis. JIN 2018; 17(4): 349-54.
[68]
Harisinghani A, Sriram H, Conati C, et al. Classification of alzheimer's using deep-learning methods on webcam-based gaze data. Proc ACM Hum-Comput Interact 2023; 7(157): 1-17.
[http://dx.doi.org/10.1145/3591126]
[69]
Zuo F, Jing P, Sun J, Ji Y, Liu Y. Deep learning-based eye-tracking analysis for diagnosis of alzheimer’s disease using 3d comprehensive visual stimuli. arXiv preprint arXiv:230306868 2023.
[70]
Haque RU, Pongos AL, Manzanares CM, Lah JJ, Levey AI, Clifford GD. Deep convolutional neural networks and transfer learning for measuring cognitive impairment using eye-tracking in a distributed tablet-based environment. IEEE Trans Biomed Eng 2021; 68(1): 11-8.
[http://dx.doi.org/10.1109/TBME.2020.2990734] [PMID: 32340935]
[71]
McNaboe R, Beardslee L, Kong Y, et al. Design and validation of a multimodal wearable device for simultaneous collection of electrocardiogram, electromyogram, and electrodermal activity. Sensors 2022; 22(22): 8851.
[http://dx.doi.org/10.3390/s22228851] [PMID: 36433449]
[72]
Zheng WL, Dong BN, Lu BL. Multimodal emotion recognition using EEG and eye tracking data. Annu Int Conf IEEE Eng Med Biol Soc 2014; 2014: 5040-3.
[PMID: 25571125]
[73]
Ortiz A, Lozano F, Górriz JM, Ramírez J, Martínez Murcia FJ, Neuroimaging Initiative AD. Discriminative sparse features for alzheimer’s disease diagnosis using multimodal image data. Curr Alzheimer Res 2017; 15(1): 67-79.
[http://dx.doi.org/10.2174/1567205014666170922101135] [PMID: 28934923]
[74]
Carr DB, Grover P. The role of eye tracking technology in assessing older driver safety. Geriatrics 2020; 5(2): 36.
[http://dx.doi.org/10.3390/geriatrics5020036] [PMID: 32517336]
[75]
Kourtis LC, Regele OB, Wright JM, Jones GB. Digital biomarkers for Alzheimer’s disease: The mobile/wearable devices opportunity. NPJ Digit Med 2019; 2(1): 9.
[http://dx.doi.org/10.1038/s41746-019-0084-2] [PMID: 31119198]
[76]
Tadokoro K, Yamashita T, Fukui Y, et al. Early detection of cognitive decline in mild cognitive impairment and Alzheimer’s disease with a novel eye tracking test. J Neurol Sci 2021; 427: 117529.
[http://dx.doi.org/10.1016/j.jns.2021.117529] [PMID: 34130064]
[77]
Sciarrone A, Bisio I, Garibotto C, et al. Early detection of external neurological symptoms through a wearable smart-glasses prototype. J Commun Soft Syst 2021; 17(2): 160-8.
[http://dx.doi.org/10.24138/jcomss-2021-0071]
[78]
Ali S, Abuhmed T, El-Sappagh S, et al. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Inf Fusion 2023; 99: 101805.
[http://dx.doi.org/10.1016/j.inffus.2023.101805]
[79]
Segovia F, Górriz JM, Ramírez J, Phillips C. Combining feature extraction methods to assist the diagnosis of alzheimer’s disease. Curr Alzheimer Res 2016; 13(7): 831-7.
[http://dx.doi.org/10.2174/1567205013666151116141906] [PMID: 26567734]
[80]
Lombardi A, Tavares JMR, Tangaro S. Explainable artificial intelligence (xai) in systems neuroscience. Front Syst Neurosci 2021; 2: 766980.
[81]
Božić V. Explainable artificial intelligence (XAI): Enhancing transparency and trust in AI systems. Preprint 2023.
[82]
Williams DR, Lees AJ. Progressive supranuclear palsy: Clinicopathological concepts and diagnostic challenges. Lancet Neurol 2009; 8(3): 270-9.
[http://dx.doi.org/10.1016/S1474-4422(09)70042-0] [PMID: 19233037]
[83]
Farabi Maleki S, Yousefi M, Afshar S, et al. Artificial intelligence for multiple sclerosis management using retinal images: Pearl, peaks, and pitfalls. Semin Ophthalmol 2024; 39(4): 271-88.
[http://dx.doi.org/10.1080/08820538.2023.2293030] [PMID: 38088176]
[84]
Todd OM, Burton JK, Dodds RM, et al. New Horizons in the use of routine data for ageing research. Age Ageing 2020; 49(5): 716-22.
[http://dx.doi.org/10.1093/ageing/afaa018] [PMID: 32043136]
[85]
Lyall DM, Kormilitzin A, Lancaster C, et al. Artificial intelligence for dementia—Applied models and digital health. Alzheimers Dement 2023; 19(12): 5872-84.
[http://dx.doi.org/10.1002/alz.13391] [PMID: 37496259]
[86]
Thilderkvist E, Dobslaw F. On current limitations of online eye- tracking to study the visual processing of source code. SSRN 4051688.
[http://dx.doi.org/10.2139/ssrn.4051688]
[87]
Pelgrim MH, Espinosa J, Buchsbaum D. Head-mounted mobile eye-tracking in the domestic dog: A new method. Behav Res Methods 2022; 55(4): 1924-41.
[http://dx.doi.org/10.3758/s13428-022-01907-3] [PMID: 35788974]
[88]
Adhanom IB, MacNeilage P, Folmer E. Eye tracking in virtual reality: A broad review of applications and challenges. Virtual Real 2023; 27(2): 1481-505.
[http://dx.doi.org/10.1007/s10055-022-00738-z] [PMID: 37621305]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy