Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

CT-derived Fractional Flow Reserve: How, When, and Where to use this Novel Cardiac Imaging Tool

Author(s): Roozbeh Narimani Javid and Seyed Kianoosh Hosseini*

Volume 20, Issue 6, 2024

Published on: 04 June, 2024

Article ID: e040624230662 Pages: 12

DOI: 10.2174/011573403X300384240529124517

Price: $65

Abstract

Fractional flow reserve computed tomography (FFRCT) is a novel imaging modality. It utilizes computational fluid dynamics analysis of coronary blood flow obtained from CCTA images to estimate the decrease in pressure across coronary stenosis during the maximum hyperemia. The FFRCT can serve as a valuable tool in the assessment of coronary artery disease (CAD).

This non-invasive option can be used as an alternative to the invasive fractional Flow Reserve (FFR) evaluation, which is presently considered the gold standard for evaluating the physiological significance of coronary stenoses. It can help in several clinical situations, including Assessment of Acute and stable chest pain, virtual planning for coronary stenting, and treatment decision-making.

Although FFRCT has demonstrated potential clinical applications as a non-invasive imaging technique, it is also crucial to acknowledge its limitations in clinical practice. As a result, it is imperative to meticulously evaluate the advantages and drawbacks of FFRCT individually and contemplate its application in combination with other diagnostic examinations and clinical data.

[1]
Khan MAB, Hashim MJ, Mustafa H, et al. Global epidemiology of ischemic heart disease: Results from the global burden of disease study. Cureus 2020; 12(7): e9349.
[http://dx.doi.org/10.7759/cureus.9349] [PMID: 32742886]
[2]
Benz DC, Giannopoulos AA. Fractional flow reserve as the standard of reference: All that glistens is not gold. J Nucl Cardiol 2020; 27(4): 1314-6.
[http://dx.doi.org/10.1007/s12350-019-01771-3] [PMID: 31175624]
[3]
Tonino PAL, De Bruyne B, Pijls NHJ, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009; 360(3): 213-24.
[http://dx.doi.org/10.1056/NEJMoa0807611] [PMID: 19144937]
[4]
Min JK, Taylor CA, Achenbach S, et al. Noninvasive Fractional Flow Reserve Derived From Coronary CT Angiography. JACC Cardiovasc Imaging 2015; 8(10): 1209-22.
[http://dx.doi.org/10.1016/j.jcmg.2015.08.006] [PMID: 26481846]
[5]
Kofoed KF, Bosserdt M, Maurovich-Horvat P, et al. Comparative effectiveness of initial computed tomography and invasive coronary angiography in women and men with stable chest pain and suspected coronary artery disease: multicentre randomised trial. BMJ 2022; 379: e071133.
[PMID: 36261169]
[6]
Gonzalez JA, Lipinski MJ, Flors L, Shaw PW, Kramer CM, Salerno M. Meta-analysis of diagnostic performance of coronary computed tomography angiography, computed tomography perfusion, and computed tomography-fractional flow reserve in functional myocardial ischemia assessment versus invasive fractional flow reserve. Am J Cardiol 2015; 116(9): 1469-78.
[http://dx.doi.org/10.1016/j.amjcard.2015.07.078] [PMID: 26347004]
[7]
Meijboom WB, Van Mieghem CAG, van Pelt N, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 2008; 52(8): 636-43.
[http://dx.doi.org/10.1016/j.jacc.2008.05.024] [PMID: 18702967]
[8]
Arbab-Zadeh A, Hoe J. Quantification of coronary arterial stenoses by multidetector CT angiography in comparison with conventional angiography methods, caveats, and implications. JACC Cardiovasc Imaging 2011; 4(2): 191-202.
[http://dx.doi.org/10.1016/j.jcmg.2010.10.011] [PMID: 21329905]
[9]
Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 2013; 61(22): 2233-41.
[http://dx.doi.org/10.1016/j.jacc.2012.11.083] [PMID: 23562923]
[10]
Kruk M, Wardziak Ł, Demkow M, et al. Workstation-Based Calculation of CTA-Based FFR for Intermediate Stenosis. JACC Cardiovasc Imaging 2016; 9(6): 690-9.
[http://dx.doi.org/10.1016/j.jcmg.2015.09.019] [PMID: 26897667]
[11]
Ri K, Kumamaru KK, Fujimoto S, et al. Noninvasive Computed Tomography–Derived Fractional Flow Reserve Based on Structural and Fluid Analysis: Reproducibility of On-site Determination by Unexperienced Observers. J Comput Assist Tomogr 2018; 42(2): 256-62.
[http://dx.doi.org/10.1097/RCT.0000000000000679] [PMID: 28937495]
[12]
Blanco PJ, Bulant CA, Müller LO, et al. Comparison of 1D and 3D Models for the Estimation of Fractional Flow Reserve. Sci Rep 2018; 8(1): 17275.
[http://dx.doi.org/10.1038/s41598-018-35344-0] [PMID: 30467321]
[13]
Alastruey J, Xiao N, Fok H, Schaeffter T, Figueroa CA. On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics. J R Soc Interface 2016; 13(119): 20160073.
[http://dx.doi.org/10.1098/rsif.2016.0073] [PMID: 27307511]
[14]
Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M. Microneedles for drug delivery: Trends and progress. Drug Deliv 2016; 23(7): 2338-54.
[15]
Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter discover-flow (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 2011; 58(19): 1989-97.
[http://dx.doi.org/10.1016/j.jacc.2011.06.066] [PMID: 22032711]
[16]
Nakazato R, Park HB, Berman DS, et al. Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the defacto study. Circ Cardiovasc Imaging 2013; 6(6): 881-9.
[http://dx.doi.org/10.1161/CIRCIMAGING.113.000297] [PMID: 24081777]
[17]
Nørgaard BL, Leipsic J, Gaur S, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 2014; 63(12): 1145-55.
[http://dx.doi.org/10.1016/j.jacc.2013.11.043] [PMID: 24486266]
[18]
Yang DH, Kim YH, Roh JH, et al. Diagnostic performance of on-site CT-derived fractional flow reserve versus CT perfusion. Eur Heart J Cardiovasc Imaging 2017; 18(4): 432-40.
[http://dx.doi.org/10.1093/ehjci/jew094] [PMID: 27354345]
[19]
Cami E, Tagami T, Raff G, Gallagher M, Chinnaiyan K, Bilolikar AN. Dissolving microneedles: Applications and growing therapeutic po-tential. J Control Rel 2022; 348: 186-205.
[20]
Cami E, Tagami T, Raff G, et al. Assessment of lesion-specific ischemia using fractional flow reserve (FFR) profiles derived from coronary computed tomography angiography (FFRCT) and invasive pressure measurements (FFRINV): Importance of the site of measurement and implications for patient referral for invasive coronary angiography and percutaneous coronary intervention. J Cardiovasc Comput Tomogr 2018; 12(6): 480-92.
[http://dx.doi.org/10.1016/j.jcct.2018.09.003] [PMID: 30274795]
[21]
Kueh SH, Mooney J, Ohana M, et al. Fractional flow reserve derived from coronary computed tomography angiography reclassification rate using value distal to lesion compared to lowest value. J Cardiovasc Comput Tomogr 2017; 11(6): 462-7.
[http://dx.doi.org/10.1016/j.jcct.2017.09.009] [PMID: 28986147]
[22]
Omori H, Hara M, Sobue Y, et al. Determination of the Optimal Measurement Point for Fractional Flow Reserve Derived From CTA Using Pressure Wire Assessment as Reference. AJR Am J Roentgenol 2021; 216(6): 1492-9.
[http://dx.doi.org/10.2214/AJR.20.24090] [PMID: 32876482]
[23]
Sand NPR, Veien KT, Nielsen SS, et al. Prospective comparison of FFR derived from coronary CT angiography with SPECT perfusion imaging in stable coronary artery disease. JACC Cardiovasc Imaging 2018; 11(11): 1640-50.
[http://dx.doi.org/10.1016/j.jcmg.2018.05.004] [PMID: 29909103]
[24]
Collet C, Sonck J, Vandeloo B, et al. Measurement of hyperemic pullback pressure gradients to characterize patterns of coronary atherosclerosis. J Am Coll Cardiol 2019; 74(14): 1772-84.
[http://dx.doi.org/10.1016/j.jacc.2019.07.072] [PMID: 31582137]
[25]
Lee JM, Choi G, Koo BK, et al. Identification of high-risk plaques destined to cause acute coronary syndrome using coronary computed tomographic angiography and computational fluid dynamics. JACC Cardiovasc Imaging 2019; 12(6): 1032-43.
[http://dx.doi.org/10.1016/j.jcmg.2018.01.023] [PMID: 29550316]
[26]
Takagi H, Ishikawa Y, Orii M, et al. Optimized interpretation of fractional flow reserve derived from computed tomography: Comparison of three interpretation methods. J Cardiovasc Comput Tomogr 2019; 13(2): 134-41.
[http://dx.doi.org/10.1016/j.jcct.2018.10.027] [PMID: 30385326]
[27]
Doris MK, Otaki Y, Arnson Y, et al. Non-invasive fractional flow reserve in vessels without severe obstructive stenosis is associated with coronary plaque burden. J Cardiovasc Comput Tomogr 2018; 12(5): 379-84.
[http://dx.doi.org/10.1016/j.jcct.2018.05.003] [PMID: 29784622]
[28]
Takagi H, Leipsic JA, McNamara N, et al. Trans-lesional fractional flow reserve gradient as derived from coronary CT improves patient management: Advance registry. J Cardiovasc Comput Tomogr 2022; 16(1): 19-26.
[http://dx.doi.org/10.1016/j.jcct.2021.08.003] [PMID: 34518113]
[29]
National clinical guideline centre for acute and chronic conditions (UK) chest pain of recent onset: Assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin London. Royal College of Physicians (UK) 2010.
[PMID: 22420013]
[30]
Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 1979; 300(24): 1350-8.
[http://dx.doi.org/10.1056/NEJM197906143002402] [PMID: 440357]
[31]
Norman JJ, Arya JM, McClain MA, Frew PM, Meltzer MI, Prausnitz MR. Microneedle patches: Usability and acceptability for self-vaccination against influenza. Vaccine 2016; 32(16): 1856-62.
[32]
Montalescot G, Sechtem U, Achenbach S, et al. 2013 ESC guidelines on the management of stable coronary artery disease. Eur Heart J 2013; 34(38): 2949-3003.
[http://dx.doi.org/10.1093/eurheartj/eht296] [PMID: 23996286]
[33]
Douglas PS, Pontone G, Hlatky MA, et al. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: The prospective longitudinal trial of FFRCT: Out-come and resource impacts study. Eur Heart J 2015; 36(47): 3359-67.
[http://dx.doi.org/10.1093/eurheartj/ehv444] [PMID: 26330417]
[34]
Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation and diagnosis of chest pain: a report of the american college of cardiology/american heart association joint committee on clinical practice guidelines. Circulation 2021; 144(22): e368-454.
[35]
Cook CM, Petraco R, Shun-Shin MJ, et al. Diagnostic accuracy of computed tomography–derived fractional flow reserve. JAMA Cardiol 2017; 2(7): 803-10.
[http://dx.doi.org/10.1001/jamacardio.2017.1314] [PMID: 28538960]
[36]
Gao Y, Zhao N, Song L, et al. Diagnostic performance of CT FFR with a new parameter optimized computational fluid dynamics algorithm from the CT-FFR-CHINA trial: Characteristic analysis of gray zone lesions and misdiagnosed lesions. Front Cardiovasc Med 2022; 9: 819460.
[http://dx.doi.org/10.3389/fcvm.2022.819460] [PMID: 35391840]
[37]
Newby DE, Adamson PD, Berry C, et al. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med 2018; 379(10): 924-33.
[http://dx.doi.org/10.1056/NEJMoa1805971] [PMID: 30145934]
[38]
Curzen N, Rana O, Nicholas Z, et al. Does routine pressure wire assessment influence management strategy at coronary angiography for diagnosis of chest pain?: the RIPCORD study. Circ Cardiovasc Interv 2014; 7(2): 248-55.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.113.000978] [PMID: 24642999]
[39]
Nørgaard BL, Hjort J, Gaur S, et al. Clinical use of coronary CTA–derived FFR for decision-making in stable CAD. JACC Cardiovasc Imaging 2017; 10(5): 541-50.
[http://dx.doi.org/10.1016/j.jcmg.2015.11.025] [PMID: 27085447]
[40]
Nørgaard BL, Fairbairn TA, Safian RD, et al. Coronary CT angiography-derived fractional flow reserve testing in patients with stable coronary artery disease: Recommendations on interpretation and reporting. Radiol Cardiothorac Imaging 2019; 1(5): e190050.
[http://dx.doi.org/10.1148/ryct.2019190050] [PMID: 33778528]
[41]
Rajiah P, Cummings KW, Williamson E, Young PM. CT fractional flow reserve: A practical guide to application, interpretation, and problem solving. Radiographics 2022; 42(2): 340-58.
[http://dx.doi.org/10.1148/rg.210097] [PMID: 35119968]
[42]
Douglas PS, Hoffmann U, Patel MR, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med 2015; 372(14): 1291-300.
[http://dx.doi.org/10.1056/NEJMoa1415516] [PMID: 25773919]
[43]
Pijls NHJ, van Schaardenburgh P, Manoharan G, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol 2007; 49(21): 2105-11.
[http://dx.doi.org/10.1016/j.jacc.2007.01.087] [PMID: 17531660]
[44]
Goldstein JA, Chinnaiyan KM, Abidov A, et al. The CT-STAT (coronary computed tomographic angiography for systematic triage of acute chest pain patients to treatment) trial. J Am Coll Cardiol 2011; 58(14): 1414-22.
[http://dx.doi.org/10.1016/j.jacc.2011.03.068] [PMID: 21939822]
[45]
Goldstein JA, Gallagher MJ, O’Neill WW, Ross MA, O’Neil BJ, Raff GL. A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 2007; 49(8): 863-71.
[http://dx.doi.org/10.1016/j.jacc.2006.08.064] [PMID: 17320744]
[46]
Hoffmann U, Truong QA, Schoenfeld DA, et al. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med 2012; 367(4): 299-308.
[http://dx.doi.org/10.1056/NEJMoa1201161] [PMID: 22830462]
[47]
Fischer AM, van Assen M, Schoepf UJ, et al. Non-invasive fractional flow reserve (FFRCT) in the evaluation of acute chest pain – Concepts and first experiences. Eur J Radiol 2021; 138: 109633.
[http://dx.doi.org/10.1016/j.ejrad.2021.109633] [PMID: 33735700]
[48]
Park DW, Clare RM, Schulte PJ, et al. Extent, location, and clinical significance of non-infarct-related coronary artery disease among patients with ST-elevation myocardial infarction. JAMA 2014; 312(19): 2019-27.
[http://dx.doi.org/10.1001/jama.2014.15095] [PMID: 25399277]
[49]
Engstrøm T, Kelbæk H, Helqvist S, et al. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3—PRIMULTI): An open-label, randomised controlled trial. Lancet 2015; 386(9994): 665-71.
[http://dx.doi.org/10.1016/S0140-6736(15)60648-1] [PMID: 26347918]
[50]
Smits PC, Abdel-Wahab M, Neumann FJ, et al. Fractional flow reserve–guided multivessel angioplasty in myocardial infarction. N Engl J Med 2017; 376(13): 1234-44.
[http://dx.doi.org/10.1056/NEJMoa1701067] [PMID: 28317428]
[51]
Gershlick AH, Khan JN, Kelly DJ, et al. Randomized trial of complete versus lesion-only revascularization in patients undergoing primary percutaneous coronary intervention for STEMI and multivessel disease: the CvLPRIT trial. J Am Coll Cardiol 2015; 65(10): 963-72.
[http://dx.doi.org/10.1016/j.jacc.2014.12.038] [PMID: 25766941]
[52]
Mehta SR, Wood DA, Storey RF, et al. Complete revascularization with multivessel PCI for myocardial infarction. N Engl J Med 2019; 381(15): 1411-21.
[http://dx.doi.org/10.1056/NEJMoa1907775] [PMID: 31475795]
[53]
Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Rev Esp Cardiol 2021; 74(6): 544.
[http://dx.doi.org/10.1016/j.rec.2021.05.002] [PMID: 34020768]
[54]
Ibánez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Rev Esp Cardiol 2017; 70(12): 1082.
[http://dx.doi.org/10.1016/j.rec.2017.11.010] [PMID: 29198432]
[55]
Thim T, van der Hoeven NW, Musto C, et al. Evaluation and management of nonculprit lesions in STEMI. JACC Cardiovasc Interv 2020; 13(10): 1145-54.
[http://dx.doi.org/10.1016/j.jcin.2020.02.030] [PMID: 32438985]
[56]
Gaur S, Taylor CA, Jensen JM, et al. FFR derived from coronary CT angiography in nonculprit lesions of patients with recent STEMI. JACC Cardiovasc Imaging 2017; 10(4): 424-33.
[http://dx.doi.org/10.1016/j.jcmg.2016.05.019] [PMID: 27743953]
[57]
Ahres A, Simon J, Jablonkai B, et al. Diagnostic performance of on-site computed tomography derived fractional flow reserve on non-culprit coronary lesions in patients with acute coronary syndrome. Life 2022; 12(11): 1820.
[http://dx.doi.org/10.3390/life12111820] [PMID: 36362974]
[58]
Pijls NHJ, Fearon WF, Tonino PAL, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Mul-tivessel Evaluation) study. J Am Coll Cardiol 2010; 56(3): 177-84.
[http://dx.doi.org/10.1016/j.jacc.2010.04.012] [PMID: 20537493]
[59]
Alfonso F, Byrne RA, Rivero F, Kastrati A. Current treatment of in-stent restenosis. J Am Coll Cardiol 2014; 63(24): 2659-73.
[http://dx.doi.org/10.1016/j.jacc.2014.02.545] [PMID: 24632282]
[60]
Siontis GCM, Stefanini GG, Mavridis D, et al. Percutaneous coronary interventional strategies for treatment of in-stent restenosis: A network meta-analysis. Lancet 2015; 386(9994): 655-64.
[http://dx.doi.org/10.1016/S0140-6736(15)60657-2] [PMID: 26334160]
[61]
James SK, Stenestrand U, Lindbäck J, et al. Long-term safety and efficacy of drug-eluting versus bare-metal stents in Sweden. N Engl J Med 2009; 360(19): 1933-45.
[http://dx.doi.org/10.1056/NEJMoa0809902] [PMID: 19420363]
[62]
Ojha CP, Ibrahim A, Paul TK, Mulukutla V, Nagarajarao HS. The clinical significance of physiological assessment of residual ischemia after percutaneous coronary intervention. Curr Cardiol Rep 2020; 22(4): 17.
[http://dx.doi.org/10.1007/s11886-020-1269-7] [PMID: 32036467]
[63]
Sato A, Aonuma K. Role of cardiac multidetector computed tomography beyond coronary angiography. Circ J 2015; 79(4): 712-20.
[http://dx.doi.org/10.1253/circj.CJ-15-0102] [PMID: 25753692]
[64]
Tang CX, Guo BJ, Schoepf JU, et al. Feasibility and prognostic role of machine learning-based FFRCT in patients with stent implantation. Eur Radiol 2021; 31(9): 6592-604.
[http://dx.doi.org/10.1007/s00330-021-07922-w] [PMID: 33864504]
[65]
Tang CX, Liu CY, Lu MJ, et al. CT FFR for ischemia-specific CAD with a new computational fluid dynamics algorithm. JACC Cardiovasc Imaging 2020; 13(4): 980-90.
[http://dx.doi.org/10.1016/j.jcmg.2019.06.018] [PMID: 31422138]
[66]
Alexander JH, Smith PK. Coronary-artery bypass grafting. N Engl J Med 2016; 374(20): 1954-64.
[http://dx.doi.org/10.1056/NEJMra1406944] [PMID: 27192673]
[67]
Fischer JJ, Samady H, McPherson JA, et al. Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. Am J Cardiol 2002; 90(3): 210-5.
[http://dx.doi.org/10.1016/S0002-9149(02)02456-6] [PMID: 12127605]
[68]
Tonino PAL, Fearon WF, De Bruyne B, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 2010; 55(25): 2816-21.
[http://dx.doi.org/10.1016/j.jacc.2009.11.096] [PMID: 20579537]
[69]
Ferguson TB Jr, Chen C, Babb JD, Efird JT, Daggubati R, Cahill JM. Fractional flow reserve–guided coronary artery bypass grafting: Can intraoperative physiologic imaging guide decision making? J Thorac Cardiovasc Surg 2013; 146(4): 824-835.e1.
[http://dx.doi.org/10.1016/j.jtcvs.2013.06.026] [PMID: 23915918]
[70]
Pellicano M, De Bruyne B, Toth GG, Casselman F, Wijns W, Barbato E. Fractional flow reserve to guide and to assess coronary artery bypass grafting. Eur Heart J 2017; 38(25): 1959-68.
[PMID: 28025191]
[71]
Fournier S, Toth GG, De Bruyne B, et al. Six-year follow-up of fractional flow reserve-guided versus angiography-guided coronary artery bypass graft surgery. Circ Cardiovasc Interv 2018; 11(6): e006368.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.117.006368] [PMID: 29848611]
[72]
Glineur D, Grau JB, Etienne PY, et al. Impact of preoperative fractional flow reserve on arterial bypass graft anastomotic function: the IMPAG trial. Eur Heart J 2019; 40(29): 2421-8.
[http://dx.doi.org/10.1093/eurheartj/ehz329] [PMID: 31155673]
[73]
Lytle B, Gaudino M. Fractional flow reserve for coronary artery bypass surgery. Circulation 2020; 142(14): 1315-6.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050818] [PMID: 33017205]
[74]
Kawashima H, Onuma Y, Andreini D, et al. Successful coronary artery bypass grafting based solely on non-invasive coronary computed tomography angiography. Cardiovasc Revasc Med 2022; 40: 187-9.
[http://dx.doi.org/10.1016/j.carrev.2021.09.003] [PMID: 34556432]
[75]
Sonck J, Miyazaki Y, Collet C, et al. Feasibility of planning coronary artery bypass grafting based only on coronary computed tomography angiography and CT-derived fractional flow reserve:A pilot survey of the surgeons involved in the randomized SYNTAX III Revolution trial. Interact Cardiovasc Thorac Surg 2019; 29(2): 209-16.
[http://dx.doi.org/10.1093/icvts/ivz046] [PMID: 30887024]
[76]
Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020; 41(3): 407-77.
[http://dx.doi.org/10.1093/eurheartj/ehz425] [PMID: 31504439]
[77]
Moss AJ, Williams MC, Newby DE, Nicol ED. The updated NICE guidelines: Cardiac CT as the first-line test for coronary artery disease. Curr Cardiovasc Imaging Rep 2017; 10(5): 15.
[http://dx.doi.org/10.1007/s12410-017-9412-6] [PMID: 28446943]
[78]
Kawashima H, Pompilio G, Andreini D, et al. Safety and feasibility evaluation of planning and execution of surgical revascularisation solely based on coronary CTA and FFR CT in patients with complex coronary artery disease: Study protocol of the FASTTRACK CABG study. BMJ Open 2020; 10(12): e038152.
[http://dx.doi.org/10.1136/bmjopen-2020-038152] [PMID: 33303435]
[79]
Zu ZY, Xu PP, Chen Q, et al. The prognostic value of CT-derived fractional flow reserve in coronary artery bypass graft: A retrospective multicenter study. Eur Radiol 2022; 33(5): 3029-40.
[http://dx.doi.org/10.1007/s00330-022-09353-7] [PMID: 36576550]
[80]
Cashin WL, Sanmarco ME, Nessim SA, Blankenhorn DH. Accelerated progression of atherosclerosis in coronary vessels with minimal lesions that are bypassed. N Engl J Med 1984; 311(13): 824-8.
[http://dx.doi.org/10.1056/NEJM198409273111304] [PMID: 6332274]
[81]
Pereg D, Fefer P, Samuel M, et al. Native coronary artery patency after coronary artery bypass surgery. JACC Cardiovasc Interv 2014; 7(7): 761-7.
[http://dx.doi.org/10.1016/j.jcin.2014.01.164] [PMID: 25060019]
[82]
Zouridakis E, Schwartzman R, Garcia-Moll X, et al. Increased plasma endothelin levels in angina patients with rapid coronary artery dis-ease progression. Eur Heart J 2001; 22(17): 1578-84.
[http://dx.doi.org/10.1053/euhj.2000.2588] [PMID: 11492987]
[83]
Kobayashi Y, Lønborg J, Jong A, et al. Prognostic value of the residual SYNTAX score after functionally complete revascularization in ACS. J Am Coll Cardiol 2018; 72(12): 1321-9.
[http://dx.doi.org/10.1016/j.jacc.2018.06.069] [PMID: 30213322]
[84]
Lee JM, Hwang D, Choi KH, et al. Prognostic impact of residual anatomic disease burden after functionally complete revascularization. Circ Cardiovasc Interv 2020; 13(9): e009232.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.120.009232] [PMID: 32895005]
[85]
Fournier S, Ciccarelli G, Toth GG, et al. Association of improvement in fractional flow reserve with outcomes, including symptomatic relief, after percutaneous coronary intervention. JAMA Cardiol 2019; 4(4): 370-4.
[http://dx.doi.org/10.1001/jamacardio.2019.0175] [PMID: 30840026]
[86]
Lee JM, Hwang D, Choi KH, et al. Prognostic implications of relative increase and final fractional flow reserve in patients with stent implantation. JACC Cardiovasc Interv 2018; 11(20): 2099-109.
[http://dx.doi.org/10.1016/j.jcin.2018.07.031] [PMID: 30336814]
[87]
Agarwal SK, Kasula S, Hacioglu Y, Ahmed Z, Uretsky BF, Hakeem A. Utilizing post-intervention fractional flow reserve to optimize acute results and the relationship to long-term outcomes. JACC Cardiovasc Interv 2016; 9(10): 1022-31.
[http://dx.doi.org/10.1016/j.jcin.2016.01.046] [PMID: 27198682]
[88]
Piroth Z, Toth GG, Tonino PAL, et al. Prognostic value of fractional flow reserve measured immediately after drug-eluting stent implantation. Circ Cardiovasc Interv 2017; 10(8): e005233.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.116.005233] [PMID: 28790165]
[89]
Nagumo S, Collet C, Norgaard BL, et al. Rationale and design of the precise percutaneous coronary intervention plan (P3) study: Pro-spective evaluation of a virtual computed tomography‐based percutaneous intervention planner. Clin Cardiol 2021; 44(4): 446-54.
[http://dx.doi.org/10.1002/clc.23551] [PMID: 33656754]
[90]
Sonck J, Nagumo S, Norgaard BL, et al. Clinical validation of a virtual planner for coronary interventions based on coronary ct angiography. JACC Cardiovasc Imaging 2022; 15(7): 1242-55.
[http://dx.doi.org/10.1016/j.jcmg.2022.02.003] [PMID: 35798401]
[91]
Modi BN, Sankaran S, Kim HJ, et al. Predicting the physiological effect of revascularization in serially diseased coronary arteries. Circ Cardiovasc Interv 2019; 12(2): e007577.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.118.007577] [PMID: 30722688]
[92]
Collet C, Onuma Y, Andreini D, et al. Coronary computed tomography angiography for heart team decision-making in multivessel coronary artery disease. Eur Heart J 2018; 39(41): 3689-98.
[http://dx.doi.org/10.1093/eurheartj/ehy581] [PMID: 30312411]
[93]
Andreini D, Modolo R, Katagiri Y, et al. Impact of fractional flow reserve derived from coronary computed tomography angiography on heart team treatment decision-making in patients with multivessel coronary artery disease. Circ Cardiovasc Interv 2019; 12(12): e007607.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.118.007607] [PMID: 31833413]
[94]
Andreini D, Mushtaq S, Pontone G, et al. Diagnostic performance of coronary CT angiography carried out with a novel whole-heart cover-age high-definition CT scanner in patients with high heart rate. Int J Cardiol 2018; 257: 325-31.
[http://dx.doi.org/10.1016/j.ijcard.2017.10.084] [PMID: 29506722]
[95]
Douglas PS, De Bruyne B, Pontone G, et al. 1-Year outcomes of FFRCT-guided care in patients with suspected coronary disease. J Am Coll Cardiol 2016; 68(5): 435-45.
[http://dx.doi.org/10.1016/j.jacc.2016.05.057] [PMID: 27470449]
[96]
Fairbairn TA, Nieman K, Akasaka T, et al. Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: Lessons from the ADVANCE Registry. Eur Heart J 2018; 39(41): 3701-11.
[http://dx.doi.org/10.1093/eurheartj/ehy530] [PMID: 30165613]
[97]
Curzen N, Nicholas Z, Stuart B, et al. Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: The FORECAST randomized trial. Eur Heart J 2021; 42(37): 3844-52.
[http://dx.doi.org/10.1093/eurheartj/ehab444] [PMID: 34269376]
[98]
Douglas PS, Nanna MG, Kelsey MD, et al. Comparison of an initial risk-based testing strategy vs usual testing in stable symptomatic patients with suspected coronary artery disease. JAMA Cardiol 2023; 8(10): 904-14.
[http://dx.doi.org/10.1001/jamacardio.2023.2595] [PMID: 37610731]
[99]
HeartFlow FFRCT for estimating fractional flow reserve from coronary CT angiography. 2017. Available from: https://www.nice.org.uk/guidance/mtg32 (accessed on 24-5-2024)
[100]
Hlatky MA, De Bruyne B, Pontone G, et al. Quality-of-life and economic outcomes of assessing fractional flow reserve with computed tomography angiography. J Am Coll Cardiol 2015; 66(21): 2315-23.
[http://dx.doi.org/10.1016/j.jacc.2015.09.051] [PMID: 26475205]
[101]
Lu MT, Ferencik M, Roberts RS, et al. Noninvasive FFR derived from coronary CT angiography. JACC Cardiovasc Imaging 2017; 10(11): 1350-8.
[http://dx.doi.org/10.1016/j.jcmg.2016.11.024] [PMID: 28412436]
[102]
Pontone G, Weir-McCall JR, Baggiano A, et al. Determinants of rejection rate for coronary CT angiography fractional flow reserve analysis. Radiology 2019; 292(3): 597-605.
[http://dx.doi.org/10.1148/radiol.2019182673] [PMID: 31335283]
[103]
Andreini D, Pontone G, Mushtaq S, et al. Diagnostic accuracy of rapid kilovolt peak–switching dual-energy ct coronary angiography in patients with a high calcium score. JACC Cardiovasc Imaging 2015; 8(6): 746-8.
[http://dx.doi.org/10.1016/j.jcmg.2014.10.013] [PMID: 25797129]
[104]
Cho I, Elmore K. , ó Hartaigh B, et al. Heart-rate dependent improvement in image quality and diagnostic accuracy of coronary computed tomographic angiography by novel intracycle motion correction algorithm. Clin Imaging 2015; 39(3): 421-6.
[http://dx.doi.org/10.1016/j.clinimag.2014.11.020] [PMID: 25649255]
[105]
Nørgaard BL, Gaur S, Leipsic J, et al. Influence of coronary calcification on the diagnostic performance of CT angiography derived FFR in coronary artery disease. JACC Cardiovasc Imaging 2015; 8(9): 1045-55.
[http://dx.doi.org/10.1016/j.jcmg.2015.06.003] [PMID: 26298072]
[106]
Ko BS, Cameron JD, Munnur RK, et al. Noninvasive CT-derived FFR based on structural and fluid analysis. JACC Cardiovasc Imaging 2017; 10(6): 663-73.
[http://dx.doi.org/10.1016/j.jcmg.2016.07.005] [PMID: 27771399]
[107]
Kumamaru KK, Fujimoto S, Otsuka Y, et al. Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 2020; 21(4): 437-45.
[PMID: 31230076]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy