Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

UPBEAT1-ROS-POD-PAL System under Different Xylogenesis Scenarios in Karelian Birch (Betula pendula Roth var. carelica (Mercl.) Hämet-Ahti)

Author(s): Kseniya Mihajlovna Nikerova*, Nataliya Alekseevna Galibina, Irina Nikolaevna Sofronova, Yuliya Leonidovna Moshchenskaya, Maksim Anatol'evich Korzhenevskij, Anna Vladimirovna Klimova and Tatiana Vladimirovna Tarelkina

Volume 31, Issue 5, 2024

Published on: 04 June, 2024

Page: [375 - 385] Pages: 11

DOI: 10.2174/0109298665291781240529044444

Abstract

Background: We studied UPBEAT1 (UPB1) which regulated superoxide radical / hydrogen peroxide ratio together with peroxidase (POD) activity and PAL genes expression under different ways of apical meristem development during the xylem structural elements’ formation in unique woody plants B. pendula var. pendula with straight-grained wood and B. pendula var. carelica with figured wood. The differentiation process predominanced in straight-grained wood (B. pendula var. pendula) or proliferation – in the figured wood. The investigation was conducted in the radial row (cambial zone - differentiating xylem - mature xylem) during the active cambial growth period.

Objective: The study aimed to study the xylogenesis processes occurring in the 16-year-old straight-grained silver birch (Betula pendula Roth) and Karelian birch (Betula pendula Roth var. carelica (Mercl.) Hämet-Ahti) with figured wood.

Methods: Hydrogen peroxide and superoxide radical contents and peroxidase activity were determined spectrophotometrically. Gene expression for PAL family genes and the UPBEAT1 gene was assessed using qRT-PCR.

Results: Principal component analysis has confirmed trees with straight-grained and figured wood to be different according to UPBEAT1-ROS-POD-PAL system functioning.

Conclusion: The higher superoxide radical/hydrogen peroxide ratio in figured Karelian birch, along with UPBEAT1 transcription factor and PAL genes upregulation, distinguished it from straight-grained silver birch. This metabolic picture confirmed the shift of Karelian birch xylogenesis towards proliferation processes, accompanied by ROS and phenolic compounds’ flow and POD activity.

Graphical Abstract

[1]
Tsukagoshi, H.; Busch, W.; Benfey, P.N. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell, 2010, 143(4), 606-616.
[http://dx.doi.org/10.1016/j.cell.2010.10.020] [PMID: 21074051]
[2]
Zeng, J.; Dong, Z.; Wu, H.; Tian, Z.; Zhao, Z. Redox regulation of plant stem cell fate. EMBO J., 2017, 36(19), 2844-2855.
[http://dx.doi.org/10.15252/embj.201695955] [PMID: 28838936]
[3]
a) Sorce, C.; Giovannelli, A.; Sebastiani, L.; Anfodillo, T. Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Xylem Cell Dev., 1981, 192-235.
[http://dx.doi.org/10.1007/s00299-013-1431-4];
b) Sorce, C.; Giovannelli, A. Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Rep., 2013, 32, 885-898.
[http://dx.doi.org/10.1007/s00299-013-1431-4]
[4]
Galibina, N.A.; Moshchenskaya, Y.L.; Tarelkina, T.V.; Chirva, O.V.; Nikerova, K.M.; Serkova, A.A.; Semenova, L.I.; Ivanova, D.S. Changes in the activity of the CLE41/PXY/WOX signaling pathway in the birch cambial zone under different xylogenesis patterns. Plants, 2022, 11(13), 1727.
[http://dx.doi.org/10.3390/plants11131727] [PMID: 35807679]
[5]
Albenne, C.; Canut, H.; Jamet, E. Plant cell wall proteomics: The leadership of Arabidopsis thaliana. Front. Plant Sci., 2013, 4, 111.
[http://dx.doi.org/10.3389/fpls.2013.00111] [PMID: 23641247]
[6]
Passardi, F.; Penel, C.; Dunand, C. Performing the paradoxical: How plant peroxidases modify the cell wall. Trends Plant Sci., 2004, 9(11), 534-540.
[http://dx.doi.org/10.1016/j.tplants.2004.09.002] [PMID: 15501178]
[7]
Pourcel, L.; Routaboul, J.M.; Kerhoas, L.; Caboche, M.; Lepiniec, L.; Debeaujon, I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005, 17(11), 2966-2980.
[http://dx.doi.org/10.1105/tpc.105.035154] [PMID: 16243908]
[8]
Bindschedler, L.V.; Dewdney, J.; Blee, K.A.; Stone, J.M.; Asai, T.; Plotnikov, J.; Denoux, C.; Hayes, T.; Gerrish, C.; Davies, D.R.; Ausubel, F.M.; Paul Bolwell, G. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J., 2006, 47(6), 851-863.
[http://dx.doi.org/10.1111/j.1365-313X.2006.02837.x] [PMID: 16889645]
[9]
Quan, L.J.; Zhang, B.; Shi, W.W.; Li, H.Y. Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network. J. Integr. Plant Biol., 2008, 50(1), 2-18.
[http://dx.doi.org/10.1111/j.1744-7909.2007.00599.x] [PMID: 18666947]
[10]
Ogawa, K.; Kanematsu, S.; Asada, K. Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl. Plant Cell Physiol., 1996, 37(6), 790-799.
[http://dx.doi.org/10.1093/oxfordjournals.pcp.a029014]
[11]
Koutaniemi, S.; Warinowski, T.; Kärkönen, A.; Alatalo, E.; Fossdal, C.G.; Saranpää, P.; Laakso, T.; Fagerstedt, K.V.; Simola, L.K.; Paulin, L.; Rudd, S.; Teeri, T.H. Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Mol. Biol., 2007, 65(3), 311-328.
[http://dx.doi.org/10.1007/s11103-007-9220-5] [PMID: 17764001]
[12]
Weydert, C.J.; Cullen, J.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc., 2010, 5(1), 51-66.
[http://dx.doi.org/10.1038/nprot.2009.197] [PMID: 20057381]
[13]
Winterbourn, C.C. Biological production, detection, and fate of hydrogen peroxide. Antioxid. Redox Signal., 2018, 29(6), 541-551.
[http://dx.doi.org/10.1089/ars.2017.7425] [PMID: 29113458]
[14]
de Marco, A.; Roubelakis-Angelakis, K.A. The complexity of enzymic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplasts. Plant Physiol., 1996, 110(1), 137-145.
[http://dx.doi.org/10.1104/pp.110.1.137] [PMID: 12226176]
[15]
Zagoskina, N.V.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M. Polyphenols in plants: Structure, biosynthesis, abiotic stress regulation, and practical applications. Int. J. Mol. Sci., 2023, 24(18), 13874.
[http://dx.doi.org/10.3390/ijms241813874] [PMID: 37762177]
[16]
Loix, C.; Huybrechts, M.; Vangronsveld, J.; Gielen, M.; Keunen, E.; Cuypers, A. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front. Plant Sci., 2017, 8, 1867.
[http://dx.doi.org/10.3389/fpls.2017.01867] [PMID: 29163592]
[17]
Nikerova, K.M.; Galibina, N.A.; Moshchenskaya, Y.L.; Tarelkina, T.V.; Borodina, M.N.; Sofronova, I.N.; Semenova, L.I.; Ivanova, D.S.; Novitskaya, L.L. Upregulation of antioxidant enzymes is a biochemical indicator of abnormal xylogenesis in Karelian birch. Trees, 2022, 36(2), 517-529.
[http://dx.doi.org/10.1007/s00468-021-02225-5]
[18]
Nikerova, K.M.; Galibina, N.A.; Sofronova, I.N.; Borodina, M.N.; Moshchenskaya, Y.L.; Tarelkina, T.V.; Klimova, A.V.; Novitskaya, L.L. An indicating role of antioxidant system enzymes at the stage of active structural anomalies formation in karelian birch (Betula pendula Roth var. carelica (Mercl.) Hämet-Ahti). Protein Pept. Lett., 2023, 30(4), 325-334.
[http://dx.doi.org/10.2174/0929866530666230228113430] [PMID: 36852788]
[19]
Galibina, N.A.; Moshchenskaya, Y.L.; Tarelkina, T.V.; Nikerova, K.M.; Korzhenevskii, M.A.; Serkova, A.A.; Afoshin, N.V.; Semenova, L.I.; Ivanova, D.S.; Guljaeva, E.N.; Chirva, O.V. Identification and expression profile of CLE41/44-PXY-WOX genes in adult trees Pinus sylvestris L. Trunk tissues during cambial activity. Plants, 2023, 12(4), 835.
[http://dx.doi.org/10.3390/plants12040835] [PMID: 36840180]
[20]
Ershova, M.A.; Nikerova, K.M.; Galibina, N.A.; Sofronova, I.N.; Borodina, M.N. Some minor characteristics of spectrophotometric determination of antioxidant system and phenolic metabolism enzyme activity in wood plant tissues of Pinus sylvestris L. Protein Pept. Lett., 2022, 29(8), 711-720.
[http://dx.doi.org/10.2174/0929866529666220414104747] [PMID: 35430966]
[21]
Yang, J.; Cao, Y.; Zhang, N. Spectrophotometric method for superoxide anion radical detection in a visible light (400–780 nm) system. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 239, 118556.
[http://dx.doi.org/10.1016/j.saa.2020.118556] [PMID: 32502811]
[22]
Brumbarova, T.; Le, C.; Bauer, P. Hydrogen peroxide measurement in arabidopsis root tissue using amplex red. Bio Protoc., 2016, 6(21), e1999.
[http://dx.doi.org/10.21769/BioProtoc.1999]
[23]
Moshchenskaya, Y.L.; Galibina, N.A.; Nikerova, K.M.; Tarelkina, T.V.; Korzhenevsky, M.A.; Sofronova, I.N.; Ershova, M.A.; Semenova, L.I. Plant-programmed cell death-associated genes participation in Pinus sylvestris L. Trunk tissue formation. Plants, 2022, 11(24), 3438.
[http://dx.doi.org/10.3390/plants11243438] [PMID: 36559551]
[24]
Moshchenskaya, Y.L.; Galibina, N.A.; Tarelkina, T.V.; Nikerova, K.M.; Korzhenevsky, M.A.; Semenova, L.I. Cambial age influences PCD gene expression during xylem development and heartwood formation. Plants, 2023, 12(23), 4072.
[http://dx.doi.org/10.3390/plants12234072] [PMID: 38068707]
[25]
Wells, D.M.; Wilson, M.H.; Bennett, M.J. Feeling UPBEAT about growth: Linking ROS gradients and cell proliferation. Dev. Cell, 2010, 19(5), 644-646.
[http://dx.doi.org/10.1016/j.devcel.2010.10.017] [PMID: 21074713]
[26]
Moschenskaya, Y.L.; Galibina, N.A.; Tarelkina, T.V.; Nikerova, K.M.; Chirva, O.V.; Novitskaya, L.L. Choice reference genes for the normalization of quantitative PCR data in real time in two forms of silver birch. Russ. J. Plant Physiol., 2021, 68(3), 430-439.
[http://dx.doi.org/10.1134/S1021443721020114]
[27]
Salojärvi, J.; Smolander, O.P.; Nieminen, K.; Rajaraman, S.; Safronov, O.; Safdari, P.; Lamminmäki, A.; Immanen, J.; Lan, T.; Tanskanen, J.; Rastas, P.; Amiryousefi, A.; Jayaprakash, B.; Kammonen, J.I.; Hagqvist, R.; Eswaran, G.; Ahonen, V.H.; Serra, J.A.; Asiegbu, F.O.; de Dios Barajas-Lopez, J.; Blande, D.; Blokhina, O.; Blomster, T.; Broholm, S.; Brosché, M.; Cui, F.; Dardick, C.; Ehonen, S.E.; Elomaa, P.; Escamez, S.; Fagerstedt, K.V.; Fujii, H.; Gauthier, A.; Gollan, P.J.; Halimaa, P.; Heino, P.I.; Himanen, K.; Hollender, C.; Kangasjärvi, S.; Kauppinen, L.; Kelleher, C.T.; Kontunen-Soppela, S.; Koskinen, J.P.; Kovalchuk, A.; Kärenlampi, S.O.; Kärkönen, A.K.; Lim, K.J.; Leppälä, J.; Macpherson, L.; Mikola, J.; Mouhu, K.; Mähönen, A.P.; Niinemets, Ü.; Oksanen, E.; Overmyer, K.; Palva, E.T.; Pazouki, L.; Pennanen, V.; Puhakainen, T.; Poczai, P.; Possen, B.J.H.M.; Punkkinen, M.; Rahikainen, M.M.; Rousi, M.; Ruonala, R.; van der Schoot, C.; Shapiguzov, A.; Sierla, M.; Sipilä, T.P.; Sutela, S.; Teeri, T.H.; Tervahauta, A.I.; Vaattovaara, A.; Vahala, J.; Vetchinnikova, L.; Welling, A.; Wrzaczek, M.; Xu, E.; Paulin, L.G.; Schulman, A.H.; Lascoux, M.; Albert, V.A.; Auvinen, P.; Helariutta, Y.; Kangasjärvi, J. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat. Genet., 2017, 49(6), 904-912.
[http://dx.doi.org/10.1038/ng.3862] [PMID: 28481341]
[28]
Marchler-Bauer, A.; Bryant, S.H. CD-Search: protein domain annotations on the fly. Nucleic Acids Res., 2004, 32(Web Server), W327-W331.
[http://dx.doi.org/10.1093/nar/gkh454] [PMID: 15215404]
[29]
Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol., 2021, 38(7), 3022-3027.
[http://dx.doi.org/10.1093/molbev/msab120] [PMID: 33892491]
[30]
Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 1987, 4(4), 406-425.
[http://dx.doi.org/10.1093/oxfordjournals.molbev.a040454] [PMID: 3447015]
[31]
Marzec-Schmidt, K.; Wojciechowska, N.; Nemeczek, K.; Ludwików, A.; Mucha, J.; Bagniewska-Zadworna, A. Allies or enemies: The role of reactive oxygen species in developmental processes of black cottonwood (Populus trichocarpa). Antioxidants, 2020, 9(3), 199.
[http://dx.doi.org/10.3390/antiox9030199] [PMID: 32120843]
[32]
Dang, T.V.T.; Lee, S.; Cho, H.; Choi, K.; Hwang, I. The LBD11-ROS feedback regulatory loop modulates vascular cambium proliferation and secondary growth in Arabidopsis. Mol. Plant, 2023, 16(7), 1131-1145.
[http://dx.doi.org/10.1016/j.molp.2023.05.010] [PMID: 37264569]
[33]
Olson, P.D.; Varner, J.E. Hydrogen peroxide and lignification. Plant J, 1993, 4(5), 887-892.
[http://dx.doi.org/10.1046/j.1365-313X.1993.04050887.x]
[34]
Novitskaya, L.; Nikolaeva, N.; Galibina, N.; Tarelkina, T.; Semenova, L. The greatest density of parenchyma inclusions in Karelian birch wood occurs at confluences of phloem flows. Silva Fenn., 2016, 50(3), 1461-1478.
[http://dx.doi.org/10.14214/sf.1461]
[35]
Novitskaya, L.L.; Tarelkina, T.V.; Galibina, N.A.; Moshchenskaya, Y.L.; Nikolaeva, N.N.; Nikerova, K.M.; Podgornaya, M.N.; Sofronova, I.N.; Semenova, L.I. The formation of structural abnormalities in Karelian birch wood is associated with auxin inactivation and disrupted basipetal auxin transport. J. Plant Growth Regul., 2020, 39(1), 378-394.
[http://dx.doi.org/10.1007/s00344-019-09989-8]
[36]
Tarelkina, T.V.; Novitskaya, L.L.; Galibina, N.A.; Moshchenskaya, Y.L.; Nikerova, K.M.; Nikolaeva, N.N.; Sofronova, I.N.; Ivanova, D.S.; Semenova, L.I. Expression analysis of key auxin biosynthesis, transport, and metabolism genes of Betula pendula with special emphasis on figured wood formation in karelian birch. Plants, 2020, 9(11), 1406.
[http://dx.doi.org/10.3390/plants9111406] [PMID: 33105649]
[37]
Galibina, N.A.; Tarelkina, T.V.; Chirva, O.V.; Moshchenskaya, Y.L.; Nikerova, K.M.; Ivanova, D.S.; Semenova, L.I.; Serkova, A.A.; Novitskaya, L.L. Molecular genetic characteristics of different scenarios of xylogenesis on the example of two forms of silver birch differing in the ratio of structural elements in the xylem. Plants, 2021, 10(8), 1593.
[http://dx.doi.org/10.3390/plants10081593] [PMID: 34451638]
[38]
Serkova, A.; Tarelkina, T.; Galibina, N.; Nikerova, K.; Moshchenskaya, Y.; Sofronova, I.; Nikolaeva, N.; Ivanova, D.; Semenova, L.; Novitskaya, L. Changes in the differentiation program of birch cambial derivatives following trunk girdling. Forests, 2022, 13(8), 1171.
[http://dx.doi.org/10.3390/f13081171]
[39]
Nikerova, K.M.; Galibina, N.A.; Sofronova, I.N.; Moshchenskaya, Y.L.; Korzhenevskii, M.A.; Klimova, A.V.; Tarelkina, T.V.; Serkova, A.V. The role of O2-/H2O2 in the regulation of cambium stem cell differentiation under different xylogenesis scenarios. X Congress of society physiologists of plants of Russia “Plant Biology in the Era of Global Climate Change, 2023.
[http://dx.doi.org/10.31163/978-5-6047532-1-7]
[40]
Chen, Q.; Yang, G. Signal function studies of ROS, especially RBOH-dependent ROS, in plant growth, development and environmental stress. J. Plant Growth Regul., 2020, 39(1), 157-171.
[http://dx.doi.org/10.1007/s00344-019-09971-4]
[41]
Wang, P.; Liu, W.C.; Han, C.; Wang, S.; Bai, M.Y.; Song, C.P. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. J. Integr. Plant Biol., 2024, 66(3), 330-367.
[http://dx.doi.org/10.1111/jipb.13601] [PMID: 38116735]
[42]
Schmidt, R.; Schippers, J.H.M. ROS-mediated redox signaling during cell differentiation in plants. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(8), 1497-1508.
[http://dx.doi.org/10.1016/j.bbagen.2014.12.020] [PMID: 25542301]
[43]
MacDonald, M.J.; D’Cunha, G.B. A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol., 2007, 85(3), 273-282.
[http://dx.doi.org/10.1139/O07-018] [PMID: 17612622]
[44]
Tsai, C.; Harding, S. A.; Tschaplinski, T. J.; Lindroth, R. L.; Yuan, Y. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytol., 2006, 172(1), 47-62.
[http://dx.doi.org/10.1111/j.1469-8137.2006.01798.x]
[45]
Kao, Y.Y.; Harding, S.A.; Tsai, C.J. Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol., 2002, 130(2), 796-807.
[http://dx.doi.org/10.1104/pp.006262] [PMID: 12376645]
[46]
Shi, R.; Shuford, C.M.; Wang, J.P.; Sun, Y.H.; Yang, Z.; Chen, H.C.; Tunlaya-Anukit, S.; Li, Q.; Liu, J.; Muddiman, D.C.; Sederoff, R.R.; Chiang, V.L. Regulation of phenylalanine ammonia-lyase (PAL) gene family in wood forming tissue of Populus trichocarpa. Planta, 2013, 238(3), 487-497.
[http://dx.doi.org/10.1007/s00425-013-1905-1] [PMID: 23765265]
[47]
Gaspar, T.; Kevers, C.; Hausman, J.F.; Faivre-Rampant, O.; Boyer, N.; Dommes, J. Integrating phytohormone metabolism and action with primary biochemical pathways. I. Interrelationships between auxins, cytokinins, ethylene and polyamines in growth and development processes. In: Integrated plant systems; University of Geneva: Switzerland, 2000; pp. 163-191.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy