Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

The Features of Shared Genes among Transcriptomes Probed in Atopic Dermatitis, Psoriasis, and Inflammatory Acne: S100A9 Selection as the Target Gene

Author(s): Wei Wang, Sungbo Hwang, Daeui Park* and Yong-Doo Park*

Volume 31, Issue 5, 2024

Published on: 17 May, 2024

Page: [356 - 374] Pages: 19

DOI: 10.2174/0109298665290166240426072642

Abstract

Background: Atopic dermatitis (AD), psoriasis (PS), and inflammatory acne (IA) are well-known as inflammatory skin diseases. Studies of the transcriptome with altered expression levels have reported a large number of dysregulated genes and gene clusters, particularly those involved in inflammatory skin diseases.

Objective: To identify genes commonly shared in AD, PS, and IA that are potential therapeutic targets, we have identified consistently dysregulated genes and disease modules that overlap with AD, PS, and IA.

Methods: Microarray data from AD, PS, and IA patients were downloaded from Gene Expression Omnibus (GEO), and identification of differentially expressed genes from microarrays of AD, PS, and IA was conducted. Subsequently, gene ontology and gene set enrichment analysis, detection of disease modules with known disease-associated genes, construction of the protein-protein interaction (PPI) network, and PPI sub-mapping analysis of shared genes were performed. Finally, the computational docking simulations between the selected target gene and inhibitors were conducted.

Results: We identified 50 shared genes (36 up-regulated and 14 down-regulated) and disease modules for each disease. Among the shared genes, 20 common genes in PPI network were detected such as LCK, DLGAP5, SELL, CEP55, CDC20, RRM2, S100A7, S100A9, MCM10, AURKA, CCNB1, CHEK1, BTC, IL1F7, AGTR1, HABP4, SERPINB13, RPS6KA4, GZMB, and TRIP13. Finally, S100A9 was selected as the target gene for therapeutics. Docking simulations between S100A9 and known inhibitors indicated several key binding residues, and based on this result, we suggested several cannabinoids such as WIN-55212-2, JZL184, GP1a, Nabilone, Ajulemic acid, and JWH-122 could be potential candidates for a clinical study for AD, PS, and IA via inhibition of S100A9-related pathway.

Conclusion: Overall, our approach may become an effective strategy for discovering new disease candidate genes for inflammatory skin diseases with a reevaluation of clinical data.

Graphical Abstract

[1]
Langan, S.M.; Irvine, A.D.; Weidinger, S. Atopic dermatitis. Lancet, 2020, 396(10247), 345-360.
[http://dx.doi.org/10.1016/S0140-6736(20)31286-1] [PMID: 32738956]
[2]
Kage, P.; Zarnowski, J.; Simon, J.C.; Treudler, R. Atopic dermatitis and psychosocial comorbidities : What's new? Allergol Select, 2020, 4, 86-96.
[http://dx.doi.org/10.5414/ALX02174E]
[3]
Lowes, M.A.; Suárez-Fariñas, M.; Krueger, J.G. Immunology of psoriasis. Annu. Rev. Immunol., 2014, 32(1), 227-255.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120225] [PMID: 24655295]
[4]
Gisondi, P.; Bellinato, F.; Girolomoni, G.; Albanesi, C. Pathogenesis of chronic plaque psoriasis and its intersection with cardio-metabolic comorbidities. Front Pharmacol, 2020, 11, 117.
[http://dx.doi.org/10.3389/fphar.2020.00117]
[5]
Bronckers, I.M.G.J.; Paller, A.S.; van Geel, M.J.; Van de Kerkhof, P.C.M.; Seyger, M.M.B. Psoriasis in children and adolescents: Diagnosis, management and comorbidities. Paediatr. Drugs, 2015, 17(5), 373-384.
[http://dx.doi.org/10.1007/s40272-015-0137-1] [PMID: 26072040]
[6]
Oliveira, M.F.S.P.; Rocha, B.O.; Duarte, G.V. Psoriasis: classical and emerging comorbidities. An. Bras. Dermatol., 2015, 90(1), 9-20.
[http://dx.doi.org/10.1590/abd1806-4841.20153038] [PMID: 25672294]
[7]
Gebauer, K. Acne in adolescents. Aust. Fam. Physician, 2017, 46(12), 892-895.
[PMID: 29464224]
[8]
Barankin, B.; DeKoven, J. Psychosocial effect of common skin diseases. Can. Fam. Physician, 2002, 48, 712-716.
[PMID: 12046366]
[9]
Park, K.D.; Pak, S.C.; Park, K.K. The pathogenetic effect of natural and bacterial toxins on atopic dermatitis. Toxins, 2016, 9(1), 3.
[http://dx.doi.org/10.3390/toxins9010003]
[10]
Megna, M.; Napolitano, M.; Patruno, C.; Villani, A.; Balato, A.; Monfrecola, G.; Ayala, F.; Balato, N. Systemic treatment of adult atopic dermatitis: A review. Dermatol. Ther., 2017, 7(1), 1-23.
[http://dx.doi.org/10.1007/s13555-016-0170-1] [PMID: 28025775]
[11]
Berke, R.; Singh, A.; Guralnick, M. Atopic dermatitis: An overview. Am. Fam. Physician, 2012, 86(1), 35-42.
[PMID: 22962911]
[12]
Reid, C.; Griffiths, C. Psoriasis and treatment: Past, present and future aspects. Acta Derm. Venereol., 2020, 100(3), 70-80.
[http://dx.doi.org/10.2340/00015555-3386] [PMID: 31971601]
[13]
Titus, S.; Hodge, J. Diagnosis and treatment of acne. Am. Fam. Physician, 2012, 86(8), 734-740.
[PMID: 23062156]
[14]
Habeshian, K.A.; Cohen, B.A. Current issues in the treatment of acne vulgaris. Pediatrics, 2020, 145(Suppl 2), S225-S230.
[http://dx.doi.org/10.1542/peds.2019-2056L]
[15]
Yu, Y.; Dunaway, S.; Champer, J.; Kim, J.; Alikhan, A. Changing our microbiome: probiotics in dermatology. Br. J. Dermatol., 2020, 182(1), e28.
[http://dx.doi.org/10.1111/bjd.18659] [PMID: 31049923]
[16]
Ellis, S.R.; Nguyen, M.; Vaughn, A.R.; Notay, M.; Burney, W.A.; Sandhu, S.; Sivamani, R.K. The skin and gut microbiome and its role in common dermatologic conditions. Microorganisms, 2019, 7(11), 550.
[http://dx.doi.org/10.3390/microorganisms7110550] [PMID: 31717915]
[17]
Navarro-López, V.; Núñez-Delegido, E.; Ruzafa-Costas, B.; Sánchez-Pellicer, P.; Agüera-Santos, J.; Navarro-Moratalla, L. Probiotics in the therapeutic arsenal of dermatologists. Microorganisms, 2021, 9(7), 1513.
[http://dx.doi.org/10.3390/microorganisms9071513] [PMID: 34361948]
[18]
Chen, P.; He, G.; Qian, J.; Zhan, Y.; Xiao, R. Potential role of the skin microbiota in Inflammatory skin diseases. J. Cosmet. Dermatol., 2021, 20(2), 400-409.
[http://dx.doi.org/10.1111/jocd.13538] [PMID: 32562332]
[19]
Niemeyer - van der Kolk, T.; van der Wall, H.E.C.; Balmforth, C.; Van Doorn, M.B.A.; Rissmann, R. A systematic literature review of the human skin microbiome as biomarker for dermatological drug development. Br. J. Clin. Pharmacol., 2018, 84(10), 2178-2193.
[http://dx.doi.org/10.1111/bcp.13662] [PMID: 29877593]
[20]
Cesare, A.D.; Meglio, P.D.; Nestle, F.O. A role for Th17 cells in the immunopathogenesis of atopic dermatitis? J. Invest. Dermatol., 2008, 128(11), 2569-2571.
[http://dx.doi.org/10.1038/jid.2008.283] [PMID: 18927538]
[21]
Yamanaka, K.; Mizutani, H. The role of cytokines/chemokines in the pathogenesis of atopic dermatitis. Curr. Probl. Dermatol., 2011, 41, 80-92.
[http://dx.doi.org/10.1159/000323299] [PMID: 21576949]
[22]
Liu, T.; Li, S.; Ying, S.; Tang, S.; Ding, Y.; Li, Y.; Qiao, J.; Fang, H. The IL-23/IL-17 pathway in inflammatory skin diseases: From bench to bedside. Front. Immunol., 2020, 11, 594735.
[http://dx.doi.org/10.3389/fimmu.2020.594735] [PMID: 33281823]
[23]
Wolk, K.; Haugen, H.S.; Xu, W.; Witte, E.; Waggie, K.; Anderson, M.; vom Baur, E.; Witte, K.; Warszawska, K.; Philipp, S.; Johnson-Leger, C.; Volk, H.D.; Sterry, W.; Sabat, R. IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-γ are not. J. Mol. Med., 2009, 87(5), 523-536.
[http://dx.doi.org/10.1007/s00109-009-0457-0] [PMID: 19330474]
[24]
Kingo, K.; Mössner, R.; Kõks, S.; Rätsep, R.; Krüger, U.; Vasar, E.; Reich, K.; Silm, H. Association analysis of IL19, IL20 and IL24 genes in palmoplantar pustulosis. Br. J. Dermatol., 2007, 156(4), 646-652.
[http://dx.doi.org/10.1111/j.1365-2133.2006.07731.x] [PMID: 17263806]
[25]
Bernardini, N.; Skroza, N.; Tolino, E.; Mambrin, A.; Anzalone, A.; Balduzzi, V.; Colapietra, D.; Marchesiello, A.; Michelini, S.; Proietti, I.; Potenza, C. IL-17 and its role in inflammatory, autoimmune, and oncological skin diseases: state of art. Int. J. Dermatol., 2020, 59(4), 406-411.
[http://dx.doi.org/10.1111/ijd.14695] [PMID: 31663126]
[26]
Kurokawa, I.; Layton, A.M.; Ogawa, R. Updated treatment for acne: Targeted therapy based on pathogenesis. Dermatol. Ther., 2021, 11(4), 1129-1139.
[http://dx.doi.org/10.1007/s13555-021-00552-6] [PMID: 34115308]
[27]
Kõks, G.; Uudelepp, M.L.; Limbach, M.; Peterson, P.; Reimann, E.; Kõks, S. Smoking-induced expression of the GPR15 gene indicates its potential role in chronic inflammatory pathologies. Am. J. Pathol., 2015, 185(11), 2898-2906.
[http://dx.doi.org/10.1016/j.ajpath.2015.07.006] [PMID: 26348578]
[28]
Yin, S.J.; Park, M.W.; Lee, B.N.; Yang, J.M.; Park, Y.D.; Qian, G.Y. Functional study of acetaldehyde dehydrogenase 1 (ALDH1) in keratinocytes: microarray integrating bioinformatics approaches. J. Biomol. Struct. Dyn., 2021, 39(6), 2133-2151.
[http://dx.doi.org/10.1080/07391102.2020.1745281] [PMID: 32189581]
[29]
Miyagaki, T.; Sugaya, M. Recent advances in atopic dermatitis and psoriasis: Genetic background, barrier function, and therapeutic targets. J. Dermatol. Sci., 2015, 78(2), 89-94.
[http://dx.doi.org/10.1016/j.jdermsci.2015.02.010] [PMID: 25771165]
[30]
Ricardo, J.W.; Lipner, S.R. Considerations for safety in the use of systemic medications for psoriasis and atopic dermatitis during the COVID-19 pandemic. Dermatol. Ther., 2020, 33(5), e13687.
[http://dx.doi.org/10.1111/dth.13687] [PMID: 32458536]
[31]
Fournière, M.; Latire, T.; Souak, D.; Feuilloley, M.G.J.; Bedoux, G. Staphylococcus epidermidis and Cutibacterium acnes: Two Major Sentinels of Skin Microbiota and the Influence of Cosmetics. Microorganisms, 2020, 8(11), 1752.
[http://dx.doi.org/10.3390/microorganisms8111752] [PMID: 33171837]
[32]
Han, G.; Wu, J.J.; Del Rosso, J.Q. Use of topical tazarotene for the treatment of acne vulgaris in pregnancy: A literature review. J. Clin. Aesthet. Dermatol., 2020, 13(9), E59-E65.
[PMID: 33133344]
[33]
Zouboulis, C.C.; Beutler, C.; Merk, H.F.; Baron, J.M. RIS-1/psoriasin expression in epithelial skin cells indicates their selective role in innate immunity and in inflammatory skin diseases including acne. Dermatoendocrinol, 2017, 9(1), e1338993.
[http://dx.doi.org/10.1080/19381980.2017.1338993] [PMID: 29484089]
[34]
Ishitsuka, Y.; Ogawa, T.; Roop, D. The KEAP1/NRF2 signaling pathway in keratinization. Antioxidants, 2020, 9(8), 751.
[http://dx.doi.org/10.3390/antiox9080751] [PMID: 32823937]
[35]
Miller, L.S. Toll-like receptors in skin. Adv. Dermatol., 2008, 24, 71-87.
[http://dx.doi.org/10.1016/j.yadr.2008.09.004] [PMID: 19256306]
[36]
Jeong, H.; Mason, S.P.; Barabási, A.L.; Oltvai, Z.N. Lethality and centrality in protein networks. Nature, 2001, 411(6833), 41-42.
[http://dx.doi.org/10.1038/35075138] [PMID: 11333967]
[37]
Lee, I.; Lehner, B.; Crombie, C.; Wong, W.; Fraser, A.G.; Marcotte, E.M. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat. Genet., 2008, 40(2), 181-188.
[http://dx.doi.org/10.1038/ng.2007.70] [PMID: 18223650]
[38]
LaCount, D.J.; Vignali, M.; Chettier, R.; Phansalkar, A.; Bell, R.; Hesselberth, J.R.; Schoenfeld, L.W.; Ota, I.; Sahasrabudhe, S.; Kurschner, C.; Fields, S.; Hughes, R.E. A protein interaction network of the malaria parasite Plasmodium falciparum. Nature, 2005, 438(7064), 103-107.
[http://dx.doi.org/10.1038/nature04104] [PMID: 16267556]
[39]
Jonsson, P.F.; Bates, P.A. Global topological features of cancer proteins in the human interactome. Bioinformatics, 2006, 22(18), 2291-2297.
[http://dx.doi.org/10.1093/bioinformatics/btl390] [PMID: 16844706]
[40]
Barabási, A.L.; Gulbahce, N.; Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet., 2011, 12(1), 56-68.
[http://dx.doi.org/10.1038/nrg2918] [PMID: 21164525]
[41]
Reemann, P.; Reimann, E.; Ilmjärv, S.; Porosaar, O.; Silm, H.; Jaks, V.; Vasar, E.; Kingo, K.; Kõks, S. Melanocytes in the skin-comparative whole transcriptome analysis of main skin cell types. PLoS One, 2014, 9(12), e115717.
[http://dx.doi.org/10.1371/journal.pone.0115717] [PMID: 25545474]
[42]
Barrett, T.; Troup, D.B.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Muertter, R.N.; Holko, M.; Ayanbule, O.; Yefanov, A.; Soboleva, A. NCBI GEO: archive for functional genomics data sets-10 years on. Nucleic Acids Res., 2011, 39(Database), D1005-D1010.
[http://dx.doi.org/10.1093/nar/gkq1184] [PMID: 21097893]
[43]
Guttman-Yassky, E.; Suárez-Fariñas, M.; Chiricozzi, A.; Nograles, K.E.; Shemer, A.; Fuentes-Duculan, J.; Cardinale, I.; Lin, P.; Bergman, R.; Bowcock, A.M.; Krueger, J.G. Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis. J. Allergy Clin. Immunol., 2009, 124(6), 1235-1244.e58.
[http://dx.doi.org/10.1016/j.jaci.2009.09.031] [PMID: 20004782]
[44]
Yao, Y.; Richman, L.; Morehouse, C.; de los Reyes, M.; Higgs, B.W.; Boutrin, A.; White, B.; Coyle, A.; Krueger, J.; Kiener, P.A.; Jallal, B. Type I interferon: potential therapeutic target for psoriasis? PLoS One, 2008, 3(7), e2737.
[http://dx.doi.org/10.1371/journal.pone.0002737] [PMID: 18648529]
[45]
Suárez-Fariñas, M.; Tintle, S.J.; Shemer, A.; Chiricozzi, A.; Nograles, K.; Cardinale, I.; Duan, S.; Bowcock, A.M.; Krueger, J.G.; Guttman-Yassky, E. Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. J. Allergy Clin. Immunol., 2011, 127(4), 954-964.e4, 4.
[http://dx.doi.org/10.1016/j.jaci.2010.12.1124] [PMID: 21388663]
[46]
Trivedi, N.R.; Gilliland, K.L.; Zhao, W.; Liu, W.; Thiboutot, D.M. Gene array expression profiling in acne lesions reveals marked upregulation of genes involved in inflammation and matrix remodeling. J. Invest. Dermatol., 2006, 126(5), 1071-1079.
[http://dx.doi.org/10.1038/sj.jid.5700213] [PMID: 16528362]
[47]
Wilson, C.L.; Miller, C.J. Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics, 2005, 21(18), 3683-3685.
[http://dx.doi.org/10.1093/bioinformatics/bti605] [PMID: 16076888]
[48]
Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol, 2004, 3, Article3.
[49]
Storey, J.D.; Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA, 2003, 100(16), 9440-9445.
[http://dx.doi.org/10.1073/pnas.1530509100] [PMID: 12883005]
[50]
Mootha, V.K.; Lindgren, C.M.; Eriksson, K.F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.; Ridderstråle, M.; Laurila, E.; Houstis, N.; Daly, M.J.; Patterson, N.; Mesirov, J.P.; Golub, T.R.; Tamayo, P.; Spiegelman, B.; Lander, E.S.; Hirschhorn, J.N.; Altshuler, D.; Groop, L.C. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet., 2003, 34(3), 267-273.
[http://dx.doi.org/10.1038/ng1180] [PMID: 12808457]
[51]
Ye, J.; Fang, L.; Zheng, H.; Zhang, Y.; Chen, J.; Zhang, Z.; Wang, J.; Li, S.; Li, R.; Bolund, L.; Wang, J. WEGO: A web tool for plotting GO annotations. Nucleic Acids Res., 2006, 34(Web Server), W293-W297.
[http://dx.doi.org/10.1093/nar/gkl031] [PMID: 16845012]
[52]
Kim, J.G.; Park, D.; Kim, B.C.; Cho, S.W.; Kim, Y.T.; Park, Y.J.; Cho, H.J.; Park, H.; Kim, K.B.; Yoon, K.O.; Park, S.J.; Lee, B.M.; Bhak, J. Predicting the Interactome of Xanthomonas oryzae pathovar oryzae for target selection and DB service. BMC Bioinformatics, 2008, 9(1), 41.
[http://dx.doi.org/10.1186/1471-2105-9-41] [PMID: 18215330]
[53]
Peri, S.; Navarro, J.D.; Amanchy, R.; Kristiansen, T.Z.; Jonnalagadda, C.K.; Surendranath, V.; Niranjan, V.; Muthusamy, B.; Gandhi, T.K.B.; Gronborg, M.; Ibarrola, N.; Deshpande, N.; Shanker, K.; Shivashankar, H.N.; Rashmi, B.P.; Ramya, M.A.; Zhao, Z.; Chandrika, K.N.; Padma, N.; Harsha, H.C.; Yatish, A.J.; Kavitha, M.P.; Menezes, M.; Choudhury, D.R.; Suresh, S.; Ghosh, N.; Saravana, R.; Chandran, S.; Krishna, S.; Joy, M.; Anand, S.K.; Madavan, V.; Joseph, A.; Wong, G.W.; Schiemann, W.P.; Constantinescu, S.N.; Huang, L.; Khosravi-Far, R.; Steen, H.; Tewari, M.; Ghaffari, S.; Blobe, G.C.; Dang, C.V.; Garcia, J.G.N.; Pevsner, J.; Jensen, O.N.; Roepstorff, P.; Deshpande, K.S.; Chinnaiyan, A.M.; Hamosh, A.; Chakravarti, A.; Pandey, A. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res., 2003, 13(10), 2363-2371.
[http://dx.doi.org/10.1101/gr.1680803] [PMID: 14525934]
[54]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[55]
Johansen, C.; Rittig, A.H.; Mose, M.; Bertelsen, T.; Weimar, I.; Nielsen, J.; Andersen, T.; Rasmussen, T.K.; Deleuran, B.; Iversen, L. STAT2 is involved in the pathogenesis of psoriasis by promoting CXCL11 and CCL5 production by keratinocytes. PLoS One, 2017, 12(5), e0176994.
[http://dx.doi.org/10.1371/journal.pone.0176994] [PMID: 28472186]
[56]
Jin, S.; Park, C.O.; Shin, J.U.; Noh, J.Y.; Lee, Y.S.; Lee, N.R.; Kim, H.R.; Noh, S.; Lee, Y.; Lee, J.H.; Lee, K.H. DAMP molecules S100A9 and S100A8 activated by IL-17A and house-dust mites are increased in atopic dermatitis. Exp. Dermatol., 2014, 23(12), 938-941.
[http://dx.doi.org/10.1111/exd.12563] [PMID: 25308296]
[57]
Wilsmann-Theis, D.; Wagenpfeil, J.; Holzinger, D.; Roth, J.; Koch, S.; Schnautz, S.; Bieber, T.; Wenzel, J. Among the S100 proteins, S100A12 is the most significant marker for psoriasis disease activity. J. Eur. Acad. Dermatol. Venereol., 2016, 30(7), 1165-1170.
[http://dx.doi.org/10.1111/jdv.13269] [PMID: 26333514]
[58]
Zouboulis, C.C.; Nogueira da Costa, A.; Makrantonaki, E.; Hou, X.X.; Almansouri, D.; Dudley, J.T.; Edwards, H.; Readhead, B.; Balthasar, O.; Jemec, G.B.E.; Bonitsis, N.G.; Nikolakis, G.; Trebing, D.; Zouboulis, K.C.; Hossini, A.M. Alterations in innate immunity and epithelial cell differentiation are the molecular pillars of Hidradenitis suppurativa. J. Eur. Acad. Dermatol. Venereol., 2020, 34(4), 846-861.
[http://dx.doi.org/10.1111/jdv.16147] [PMID: 31838778]
[59]
Poola, I.; DeWitty, R.L.; Marshalleck, J.J.; Bhatnagar, R.; Abraham, J.; Leffall, L.D. Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis. Nat. Med., 2005, 11(5), 481-483.
[http://dx.doi.org/10.1038/nm1243] [PMID: 15864312]
[60]
Rosty, C.; Sheffer, M.; Tsafrir, D.; Stransky, N.; Tsafrir, I.; Peter, M.; de Crémoux, P.; de La Rochefordière, A.; Salmon, R.; Dorval, T.; Thiery, J.P.; Couturier, J.; Radvanyi, F.; Domany, E.; Sastre-Garau, X. Identification of a proliferation gene cluster associated with HPV E6/E7 expression level and viral DNA load in invasive cervical carcinoma. Oncogene, 2005, 24(47), 7094-7104.
[http://dx.doi.org/10.1038/sj.onc.1208854] [PMID: 16007141]
[61]
Graham, S.M.; Vass, J.K.; Holyoake, T.L.; Graham, G.J. Transcriptional analysis of quiescent and proliferating CD34+ human hemopoietic cells from normal and chronic myeloid leukemia sources. Stem Cells, 2007, 25(12), 3111-3120.
[http://dx.doi.org/10.1634/stemcells.2007-0250] [PMID: 17717066]
[62]
Frey, S.; Sticht, H.; Wilsmann-Theis, D.; Gerschütz, A.; Wolf, K.; Löhr, S.; Haskamp, S.; Frey, B.; Hahn, M.; Ekici, A.B.; Uebe, S.; Thiel, C.; Reis, A.; Burkhardt, H.; Behrens, F.; Köhm, M.; Rech, J.; Schett, G.; Assmann, G.; Kingo, K.; Kõks, S.; Mössner, R.; Prinz, J.C.; Oji, V.; Schulz, P.; Muñoz, L.E.; Kremer, A.E.; Wenzel, J.; Hüffmeier, U. Rare loss-of-function mutation in SERPINA3 in generalized pustular psoriasis. J Invest Dermatol, 2020, 140(7), 1451-1455.
[http://dx.doi.org/10.1016/j.jid.2019.11.024]
[63]
Kumar, V. Going, Toll-like receptors in skin inflammation and inflammatory diseases. EXCLI J., 2021, 20, 52-79.
[http://dx.doi.org/10.17179/excli2020-3114] [PMID: 33510592]
[64]
Oesterle, A.; Hofmann Bowman, M.A. S100A12 and the S100/Calgranulins. Arterioscler. Thromb. Vasc. Biol., 2015, 35(12), 2496-2507.
[http://dx.doi.org/10.1161/ATVBAHA.115.302072] [PMID: 26515415]
[65]
Sumsion, J.S.; Pulsipher, A.; Alt, J.A. Differential expression and role of S100 proteins in chronic rhinosinusitis. Curr. Opin. Allergy Clin. Immunol., 2020, 20(1), 14-22.
[http://dx.doi.org/10.1097/ACI.0000000000000595] [PMID: 31644435]
[66]
Perera, C.; McNeil, H.P.; Geczy, C.L. S100 Calgranulins in inflammatory arthritis. Immunol. Cell Biol., 2010, 88(1), 41-49.
[http://dx.doi.org/10.1038/icb.2009.88] [PMID: 19935766]
[67]
Boros, F.; Vécsei, L. Progress in the development of kynurenine and quinoline-3-carboxamide-derived drugs. Expert Opin. Investig. Drugs, 2020, 29(11), 1223-1247.
[http://dx.doi.org/10.1080/13543784.2020.1813716] [PMID: 32819186]
[68]
Eagleston, L.R.M.; Kalani, N.K.; Patel, R.R.; Flaten, H.K.; Dunnick, C.A.; Dellavalle, R.P. Cannabinoids in dermatology: A scoping review. Dermatol. Online. J., 2018, 24, 13030.
[69]
Scheau, C.; Badarau, I.A.; Mihai, L.G.; Scheau, A.E.; Costache, D.O.; Constantin, C.; Calina, D.; Caruntu, C.; Costache, R.S.; Caruntu, A. Cannabinoids in the pathophysiology of skin inflammation. Molecules, 2020, 25(3), 652.
[http://dx.doi.org/10.3390/molecules25030652] [PMID: 32033005]
[70]
Scheau, C.; Caruntu, C.; Badarau, I.A.; Scheau, A.E.; Docea, A.O.; Calina, D.; Caruntu, A. Cannabinoids and inflammations of the gut-lung-skin barrier. J. Pers. Med., 2021, 11(6), 494.
[http://dx.doi.org/10.3390/jpm11060494] [PMID: 34072930]
[71]
Nam, G.; Jeong, S.K.; Park, B.M.; Lee, S.H.; Kim, H.J.; Hong, S.P.; Kim, B.; Kim, B.W. Selective cannabinoid receptor-1 agonists regulate mast cell activation in an oxazolone-induced atopic dermatitis model. Ann. Dermatol., 2016, 28(1), 22-29.
[http://dx.doi.org/10.5021/ad.2016.28.1.22] [PMID: 26848215]
[72]
Raymond, E.; Dalgleish, A.; Damber, J.E.; Smith, M.; Pili, R. Mechanisms of action of tasquinimod on the tumour microenvironment. Cancer Chemother. Pharmacol., 2014, 73(1), 1-8.
[http://dx.doi.org/10.1007/s00280-013-2321-8] [PMID: 24162378]
[73]
Mehta, A.R.; Armstrong, A.J. Tasquinimod in the treatment of castrate-resistant prostate cancer current status and future prospects. Ther. Adv. Urol., 2016, 8(1), 9-18.
[http://dx.doi.org/10.1177/1756287215603558] [PMID: 26834836]
[74]
Nakhlé, J.; Pierron, V.; Bauchet, A.L.; Plas, P.; Thiongane, A.; Meyer-Losic, F.; Schmidlin, F. Tasquinimod modulates tumor-infiltrating myeloid cells and improves the antitumor immune response to PD-L1 blockade in bladder cancer. OncoImmunology, 2016, 5(6), e1145333.
[http://dx.doi.org/10.1080/2162402X.2016.1145333] [PMID: 27471612]
[75]
Thöne, J.; Linker, R. Laquinimod in the treatment of multiple sclerosis: A review of the data so far. Drug Des. Devel. Ther., 2016, 10, 1111-1118.
[http://dx.doi.org/10.2147/DDDT.S55308] [PMID: 27042003]
[76]
Bengtsson, A.A.; Sturfelt, G.; Lood, C.; Rönnblom, L.; van Vollenhoven, R.F.; Axelsson, B.; Sparre, B.; Tuvesson, H.; Öhman, M.W.; Leanderson, T. Pharmacokinetics, tolerability, and preliminary efficacy of paquinimod (ABR-215757), a new quinoline-3-carboxamide derivative: Studies in lupus-prone mice and a multicenter, randomized, double-blind, placebo-controlled, repeat-dose, dose-ranging study in patients with systemic lupus erythematosus. Arthritis Rheum., 2012, 64(5), 1579-1588.
[http://dx.doi.org/10.1002/art.33493] [PMID: 22131101]
[77]
Hesselstrand, R.; Distler, J.H.W.; Riemekasten, G.; Wuttge, D.M.; Törngren, M.; Nyhlén, H.C.; Andersson, F.; Eriksson, H.; Sparre, B.; Tuvesson, H.; Distler, O. An open-label study to evaluate biomarkers and safety in systemic sclerosis patients treated with paquinimod. Arthritis Res. Ther., 2021, 23(1), 204.
[http://dx.doi.org/10.1186/s13075-021-02573-0] [PMID: 34330322]
[78]
Schelbergen, R.F.; Geven, E.J.; van den Bosch, M.H.J.; Eriksson, H.; Leanderson, T.; Vogl, T.; Roth, J.; van de Loo, F A J.; Koenders, M.I.; van der Kraan, P.M.; van den Berg, W.B.; Blom, A.B.; van Lent, P.L.E.M. Prophylactic treatment with S100A9 inhibitor paquinimod reduces pathology in experimental collagenase-induced osteoarthritis. Ann. Rheum. Dis., 2015, 74(12), 2254-2258.
[http://dx.doi.org/10.1136/annrheumdis-2014-206517] [PMID: 25969431]
[79]
Sheriff, T.; Lin, M.J.; Dubin, D.; Khorasani, H. The potential role of cannabinoids in dermatology. J. Dermatolog. Treat., 2020, 31(8), 839-845.
[http://dx.doi.org/10.1080/09546634.2019.1675854] [PMID: 31599175]
[80]
Tóth, K.; Ádám, D.; Bíró, T.; Oláh, A. Cannabinoid signaling in the skin: Therapeutic potential of the “c(ut)annabinoid” system. Molecules, 2019, 24(5), 918.
[http://dx.doi.org/10.3390/molecules24050918] [PMID: 30845666]
[81]
Yoo, E.H.; Lee, J.H. Cannabinoids and their receptors in skin diseases. Int. J. Mol. Sci., 2023, 24(22), 16523.
[http://dx.doi.org/10.3390/ijms242216523] [PMID: 38003712]
[82]
Douroudis, K.; Kingo, K.; Traks, T.; Reimann, E.; Raud, K.; Rätsep, R.; Mössner, R.; Silm, H.; Vasar, E.; Kõks, S. Polymorphisms in the ATG16L1 gene are associated with psoriasis vulgaris. Acta Derm. Venereol., 2012, 92(1), 85-87.
[http://dx.doi.org/10.2340/00015555-1183] [PMID: 21879234]
[83]
Schonthaler, H.B.; Guinea-Viniegra, J.; Wculek, S.K.; Ruppen, I.; Ximénez-Embún, P.; Guío-Carrión, A.; Navarro, R.; Hogg, N.; Ashman, K.; Wagner, E.F. S100A8-S100A9 protein complex mediates psoriasis by regulating the expression of complement factor C3. Immunity, 2013, 39(6), 1171-1181.
[http://dx.doi.org/10.1016/j.immuni.2013.11.011] [PMID: 24332034]
[84]
Korkmaz, S.; Fıçıcıoğlu, S.K. Calprotectin can play an inflammatory role in acne vulgaris. Postepy Dermatol. Alergol., 2018, 35(4), 397-399.
[http://dx.doi.org/10.5114/ada.2017.71286] [PMID: 30206454]
[85]
Mondet, J.; Chevalier, S.; Mossuz, P. Pathogenic Roles of S100A8 and S100A9 proteins in acute myeloid and lymphoid leukemia: Clinical and therapeutic impacts. Molecules, 2021, 26(5), 1323.
[http://dx.doi.org/10.3390/molecules26051323] [PMID: 33801279]
[86]
Mahler, M.; Meroni, P.L.; Infantino, M.; Buhler, K.A.; Fritzler, M.J. Circulating calprotectin as a biomarker of COVID-19 Severity. Expert Rev. Clin. Immunol., 2021, 17(5), 431-443.
[http://dx.doi.org/10.1080/1744666X.2021.1905526] [PMID: 33750254]
[87]
Krishnan, V.S.; Kõks, S. Transcriptional landscape of repetitive elements in psoriatic skin from large cohort studies: Relevance to psoriasis pathophysiology. Int. J. Mol. Sci., 2023, 24(23), 16725.
[http://dx.doi.org/10.3390/ijms242316725] [PMID: 38069048]
[88]
Stacey, V.M.; Kõks, S. Genome-wide differential transcription of long noncoding RNAs in psoriatic skin. Int. J. Mol. Sci., 2023, 24(22), 16344.
[http://dx.doi.org/10.3390/ijms242216344] [PMID: 38003532]

© 2024 Bentham Science Publishers | Privacy Policy