Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Revolutionizing Plant Tissue Culture: Harnessing Artificial Intelligence for Precision Propagation and Optimization

In Press, (this is not the final "Version of Record"). Available online 04 June, 2024
Author(s): Preeti Kaushik, Madhu Rani, Neha Khurana, Parijat Pandey, Payal and Sonia Kapoor*
Published on: 04 June, 2024

Article ID: e040624230642

DOI: 10.2174/0122103155302871240527094915

Price: $95

Abstract

Plant tissue culture is a process of in-vitro regeneration requiring numerous resources and intensive labour to mass produce disease-free clones. Diverse factors such as sterilizing agents, media composition, and environmental conditions contribute toward successful regeneration and decide the production, such as the total shoot number, shoot length, in vitro rooting, and adaptation of plants to the external environment. Plant tissue culture, the successful induction of rapid shoot production, and subsequent root formation in plants are influenced by the utilization of appropriate growing conditions customized to each specific explant type. By carefully manipulating environmental factors, such as temperature, light, and nutrient availability, it is possible to stimulate the growth and development of new shoots in a time-efficient manner. This strategic combination of optimal growing conditions and hormone supplementation holds great promise in the domain of efficient propagation of plants through tissue culture techniques. The recent progress in artificial techniques such as artificial neural networks (ANN) and machine learning (ML) algorithms has presented promising opportunities for the development of sustainable and precise plant tissue culture processes. These techniques are widely recognized as robust techniques for assessing outcomes and enhancing the accuracy of predicting outputs in the domain of plant tissue culture. AI techniques and optimization algorithms have been applied to predict and optimize callogenesis, embryogenesis, several shoots, shoot length, hairy root culture, in vitro rooting, and plant acclimatization by helping predict sterilizing conditions, optimal culture conditions, and formulation of a suitable medium. Patents, modeling, and formulation of each stage of plant tissue culture using tools like artificial neural networks (ANNs), neuro-fuzzy logic, support vector machines (SVMs), decision trees (DT), random forests (FR), and genetic algorithms (GA) are presented.

Conclusion: In this article, the current state of Artificial Intelligence (AI) algorithms, including their applications in all elements of plant tissue culture, as well as the patents that have been gained for these algorithms, are dissected in great detail.

[1]
Leal, E.C.A.; Garza, P.C.A.; Lara, G.S. in vitro plant tissue culture: Means for production of biological active compounds. Planta, 2018, 248(1), 1-18.
[http://dx.doi.org/10.1007/s00425-018-2910-1] [PMID: 29736623]
[2]
Bidabadi, S.S.; Jain, S.M. Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants, 2020, 9(6), 702.
[http://dx.doi.org/10.3390/plants9060702] [PMID: 32492786]
[3]
De Fossard, R.A. Principles of plant tissue culture. In: Tissue culture as a plant production system for horticultural crops; Springer, 1986; pp. 1-13.
[http://dx.doi.org/10.1007/978-94-009-4444-2_1]
[4]
Hussain, A.; Qarshi, I.A.; Nazir, H.; Ullah, I. Plant tissue culture: Current status and opportunities. Recent Adv Plant in vitro. Culture, 2012, 1, 1-28.
[5]
Bhojwani, S.S.; Dantu, P.K. Micropropagation. In: Plant tissue culture: An introductory text; Springer, 2013; pp. 245-274.
[http://dx.doi.org/10.1007/978-81-322-1026-9_17]
[6]
Ahloowalia, B.S.; Prakash, J.; Savangikar, V.A.; Savangikar, C. Low cost options for tissue culture technology in developing countries.Proceedings of a Technical Meeting organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and held in Vienna; 26–30 August 2002, Vienna: Austria, 2004.
[7]
Arab, M.M.; Yadollahi, A.; Shojaeiyan, A.; Ahmadi, H. Artificial neural network genetic algorithm as powerful tool to predict and optimize in vitro proliferation mineral medium for G×N15 rootstock. Front. Plant Sci., 2016, 7, 1526.
[http://dx.doi.org/10.3389/fpls.2016.01526] [PMID: 27807436]
[8]
Haberlandt, G. Culture experiments with isolated plant cells, sessile. Acad. D. Scient. Mathermatusch-Scient., 1902, 1902, c169.
[9]
Chimdessa, E. Composition and preparation of plant tissue culture medium. Tissue Cult Bio Bioeng, 2020, 3, 120.
[10]
Gago, J.; Tornero, P.O.; Landín, M.; Burgos, L.; Gallego, P.P. Improving knowledge of plant tissue culture and media formulation by neurofuzzy logic: A practical case of data mining using apricot databases. J. Plant Physiol., 2011, 168(15), 1858-1865.
[http://dx.doi.org/10.1016/j.jplph.2011.04.008] [PMID: 21676490]
[11]
Gamborg, O.L.; Murashige, T.; Thorpe, T.A.; Vasil, I.K. Plant tissue culture media. in vitro, 1976, 12(7), 473-478.
[http://dx.doi.org/10.1007/BF02796489] [PMID: 965014]
[12]
George, E.F.; Hall, M.A.; De Klerk, G.J. The components of plant tissue culture media I: macro-and micro-nutrients. In: Plant propagation by tissue culture; Springer, 2008; pp. 65-113.
[13]
da Silva, T.J.A.; Alanagh, N.E.; Barreal, M.E.; Kher, M.M.; Wicaksono, A.; Gulyás, A.; Hidvégi, N.; Tábori, M.K.; Drienyovszki, M.N.; Márton, L.; Landín, M.; Gallego, P.P.; Driver, J.A.; Dobránszki, J. Shoot tip necrosis of in vitro plant cultures: A reappraisal of possible causes and solutions. Planta, 2020, 252(3), 47.
[http://dx.doi.org/10.1007/s00425-020-03449-4] [PMID: 32885282]
[14]
Caponetti, J.D.; Gray, D.J.; Trigiano, R.N. History of plant tissue and cell culture. In: Plant Tissue Culture, 3rd ed; Elsevier, 2018.
[15]
Rafiq, S.; Rather, Z.A.; Bhat, R.A.; Nazki, I.T. AL-Harbi, M.S.; Banday, N.; Farooq, I.; Samra, B.N.; Khan, M.H.; Ahmed, A.F.; Andrabi, N. Standardization of in vitro micropropagation procedure of oriental lilium hybrid Cv. ‘Ravenna’. Saudi J. Biol. Sci., 2021, 28(12), 7581-7587.
[http://dx.doi.org/10.1016/j.sjbs.2021.09.064] [PMID: 34867062]
[16]
Elemike, E.; Uzoh, I.; Onwudiwe, D.; Babalola, O. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl. Sci., 2019, 9(3), 499.
[http://dx.doi.org/10.3390/app9030499]
[17]
Harrell, R.C.; Hood, C.F.; Moltó, E.; Munilla, R.; Bieniek, M.; Cantliffe, D.J. Machine vision based analysis and harvest of somatic embryos. Comput. Electron. Agric., 1993, 9(1), 13-23.
[http://dx.doi.org/10.1016/0168-1699(93)90026-W]
[18]
De Micco, V.; Amitrano, C.; Mastroleo, F.; Aronne, G.; Battistelli, A.; Carnero-Diaz, E.; De Pascale, S.; Detrell, G.; Dussap, C.G.; Ganigué, R.; Jakobsen, Ø.M.; Poulet, L.; Van Houdt, R.; Verseux, C.; Vlaeminck, S.E.; Willaert, R.; Leys, N. Plant and microbial science and technology as cornerstones to bioregenerative life support systems in space. NPJ Microgravity, 2023, 9(1), 69.
[http://dx.doi.org/10.1038/s41526-023-00317-9] [PMID: 37620398]
[19]
Gago, J.; Núñez, M.L.; Landín, M.; Gallego, P.P. Artificial neural networks as an alternative to the traditional statistical methodology in plant research. J. Plant Physiol., 2010, 167(1), 23-27.
[http://dx.doi.org/10.1016/j.jplph.2009.07.007] [PMID: 19716625]
[20]
Compton, M.E. Statistical analysis of plant tissue culture data. In: Plant Tissue Culture Concepts and Laboratory Exercises; Springer, 2018; pp. 61-72.
[21]
Knief, U.; Forstmeier, W. Violating the normality assumption may be the lesser of two evils. Behav. Res. Methods, 2021, 53(6), 2576-2590.
[http://dx.doi.org/10.3758/s13428-021-01587-5] [PMID: 33963496]
[22]
Gago, J.; Landín, M.; Gallego, P.P. A neurofuzzy logic approach for modeling plant processes: A practical case of in vitro direct rooting and acclimatization of Vitis vinifera L. Plant Sci., 2010, 179(3), 241-249.
[http://dx.doi.org/10.1016/j.plantsci.2010.05.009]
[23]
Gallego, P.P.; Gago, J.; Landín, M. Artificial neural network technology to model and predict plant biology process. In: Artificial Neural Networks-Methodological and Biomedical Applications; Suzuki, K., Ed.; Intech Open Access Publisher: Croatia, 2011; pp. 197-216.
[24]
Zhao, L.; Walkowiak, S.; Fernando, W.G.D. Artificial intelligence: A promising tool in exploring the phytomicrobiome in managing disease and promoting plant health. Plants, 2023, 12(9), 1852.
[http://dx.doi.org/10.3390/plants12091852] [PMID: 37176910]
[25]
Sharma, V.; Tsai, M.L.; Chen, C.W.; Sun, P.P.; Nargotra, P.; Dong, C.D. Advances in machine learning technology for sustainable biofuel production systems in lignocellulosic biorefineries. Sci. Total Environ., 2023, 886, 163972.
[http://dx.doi.org/10.1016/j.scitotenv.2023.163972] [PMID: 37164089]
[26]
Hesami, M.; Naderi, R.; Najafabadi, Y.M.; Rahmati, M. Data-driven modeling in plant tissue culture. J. Appl. Environ. Biol. Sci., 2017, 7(8), 37-44.
[27]
Hesami, M.; Naderi, R.; Tohidfar, M. Modeling and optimizing in vitro sterilization of chrysanthemum via multilayer perceptron-non-dominated sorting genetic algorithm-II (MLP-NSGAII). Front. Plant Sci., 2019, 10, 282.
[http://dx.doi.org/10.3389/fpls.2019.00282] [PMID: 30923529]
[28]
Carabantes, M. Black-box artificial intelligence: An epistemological and critical analysis. AI Soc., 2020, 35(2), 309-317.
[http://dx.doi.org/10.1007/s00146-019-00888-w]
[29]
Ji, B.; Xuan, L.; Zhang, Y.; Mu, W.; Paek, K.Y.; Park, S.Y.; Wang, J.; Gao, W. Application of data modeling, instrument engineering and nanomaterials in selected medid the scientific recinal plant tissue culture. Plants, 2023, 12(7), 1505.
[http://dx.doi.org/10.3390/plants12071505] [PMID: 37050131]
[30]
Ertel, W. Introduction to artificial intelligence; Springer, 2018.
[31]
Sarker, I.H. AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Comput. Sci., 2022, 3(2), 158.
[http://dx.doi.org/10.1007/s42979-022-01043-x] [PMID: 35194580]
[32]
Quazi, S. Artificial intelligence and machine learning in precision and genomic medicine. Med. Oncol., 2022, 39(8), 120.
[http://dx.doi.org/10.1007/s12032-022-01711-1] [PMID: 35704152]
[33]
Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Shamma, A.O.; Santamaría, J.; Fadhel, M.A.; Amidie, A.M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data, 2021, 8(1), 53.
[http://dx.doi.org/10.1186/s40537-021-00444-8] [PMID: 33816053]
[34]
Prakash, O.; Mehrotra, S.; Krishna, A.; Mishra, B.N. A neural network approach for the prediction of in vitro culture parameters for maximum biomass yields in hairy root cultures. J. Theor. Biol., 2010, 265(4), 579-585.
[http://dx.doi.org/10.1016/j.jtbi.2010.05.020] [PMID: 20561985]
[35]
Dias, F.M.; Antunes, A.; Mota, A.M. Artificial neural networks: A review of commercial hardware. Eng. Appl. Artif. Intell., 2004, 17(8), 945-952.
[http://dx.doi.org/10.1016/j.engappai.2004.08.011]
[36]
Ding, S.; Li, H.; Su, C.; Yu, J.; Jin, F. Evolutionary artificial neural networks: A review. Artif. Intell. Rev., 2013, 39(3), 251-260.
[http://dx.doi.org/10.1007/s10462-011-9270-6]
[37]
Cabaneros, S.M.; Calautit, J.K.; Hughes, B.R. A review of artificial neural network models for ambient air pollution prediction. Environ. Model. Softw., 2019, 119, 285-304.
[http://dx.doi.org/10.1016/j.envsoft.2019.06.014]
[38]
Dayhoff, J.E.; DeLeo, J.M. Artificial neural networks. Cancer, 2001, 91(S8), 1615-1635.
[http://dx.doi.org/10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L] [PMID: 11309760]
[39]
Grossi, E.; Buscema, M. Introduction to artificial neural networks. Eur. J. Gastroenterol. Hepatol., 2007, 19(12), 1046-1054.
[http://dx.doi.org/10.1097/MEG.0b013e3282f198a0] [PMID: 17998827]
[40]
Lee, D.H.; Kim, Y.T.; Lee, S.R. Shallow landslide susceptibility models based on artificial neural networks considering the factor selection method and various non-linear activation functions. Remote Sens., 2020, 12(7), 1194.
[http://dx.doi.org/10.3390/rs12071194]
[41]
Karlik, B.; Olgac, A.V. Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int J Artif Intelligence Exp Syst, 2011, 1(4), 111-122.
[42]
Funahashi, K.I. On the approximate realization of continuous mappings by neural networks. Neural Netw., 1989, 2(3), 183-192.
[http://dx.doi.org/10.1016/0893-6080(89)90003-8]
[43]
Gardner, M.W.; Dorling, S.R. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ., 1998, 32(14-15), 2627-2636.
[http://dx.doi.org/10.1016/S1352-2310(97)00447-0]
[44]
Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random forests and decision trees. Int J Computer Sci Issues, 2012, 9(5), 272.
[45]
Zarbakhsh, S.; Shahsavar, A.R. Artificial neural network-based model to predict the effect of γ-aminobutyric acid on salinity and drought responsive morphological traits in pomegranate. Sci. Rep., 2022, 12(1), 16662.
[http://dx.doi.org/10.1038/s41598-022-21129-z] [PMID: 36198905]
[46]
Abiodun, OI; Jantan, A; Omolara, AE; Dada, KV; Umar, AM; Linus, OU; Arshad, H; Kazaure, AA; Gana, UM; Kiru, MU Comprehensive review of artificial neural network applications to pattern recognition. IEEE Access, 2019, 7, 158820-158846.
[http://dx.doi.org/10.1109/ACCESS.2019.2945545]
[47]
Brownlee, J. Supervised and unsupervised machine learning algorithms., 2023. Available from: https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/ (Accessed on: 5th November 2023).
[48]
Types of learning rules in ANN. Available from: https://www.geeksforgeeks.org/types-of-learning-rules-in-ann/ (Accessed on: 5th November 2023).
[49]
Dharwal, R.; Kaur, L. Applications of artificial neural networks: A review. Indian J. Sci. Technol., 2016, 9(1), 1-8.
[http://dx.doi.org/10.17485/ijst/2016/v9i47/106807]
[50]
Ahsan, M.M.; Luna, S.A.; Siddique, Z. Machine-learning-based disease diagnosis: A comprehensive review. Health Care, 2022, 10(3), 541.
[http://dx.doi.org/10.3390/healthcare10030541] [PMID: 35327018]
[51]
Brownlee, J. How to code a neural network with backpropagation in python (from scratch). 2023. Available from: https://machinelearningmastery.com/implement-backpropagation-algorithm-scratch-python/ (Accessed on: 5th November 2023).
[52]
Moreno, J.M.; Sánchez, J.M.; Espitia, H.E. Use of computational intelligence techniques to predict flooding in places adjacent to the magdalena river. Heliyon, 2020, 6(9), e04872.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04872] [PMID: 32984593]
[53]
Alzubi, J.; Nayyar, A.; Kumar, A. Machine learning from theory to algorithms: An overview. J. Phys., 2018, 1142(1), 012012.
[54]
Taye, M.M. Understanding of machine learning with deep learning: Architectures, workflow, applications and future directions. Computers, 2023, 12(5), 91.
[http://dx.doi.org/10.3390/computers12050091]
[55]
Hassani, S.; Dackermann, U. A systematic review of optimization algorithms for structural health monitoring and optimal sensor placement. Sensors, 2023, 23(6), 3293.
[http://dx.doi.org/10.3390/s23063293] [PMID: 36992004]
[56]
MacKay, K.; Kusalik, A. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data. Brief. Funct. Genomics, 2020, 19(4), 292-308.
[http://dx.doi.org/10.1093/bfgp/elaa004] [PMID: 32353112]
[57]
Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn., 2002, 46(1/3), 389-422.
[http://dx.doi.org/10.1023/A:1012487302797]
[58]
Burgos-Artizzu, X.P.; Ribeiro, A.; Guijarro, M.; Pajares, G. Real-time image processing for crop/weed discrimination in maize fields. Comput. Electron. Agric., 2011, 75(2), 337-346.
[http://dx.doi.org/10.1016/j.compag.2010.12.011]
[59]
Tufail, S.; Riggs, H.; Tariq, M.; Sarwat, A.I. Advancements and challenges in machine learning: A comprehensive review of models, libraries, applications, and algorithms. Electronics, 2023, 12(8), 1789.
[http://dx.doi.org/10.3390/electronics12081789]
[60]
Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens., 2018, 39(9), 2784-2817.
[http://dx.doi.org/10.1080/01431161.2018.1433343]
[61]
Pirooznia, M.; Deng, Y. SVM Classifier – A comprehensive java interface for support vector machine classification of microarray data. BMC Bioinformatics, 2006, 7(S4), S25.
[http://dx.doi.org/10.1186/1471-2105-7-S4-S25] [PMID: 17217518]
[62]
Nguyen, T.M.T.; Bui, L.D.; Do, T.N. Decision trees using local support vector regression models for large datasets. J. Inform. Telecommun., 2020, 4(1), 17-35.
[http://dx.doi.org/10.1080/24751839.2019.1686682]
[63]
Yang, Z.R. Biological applications of support vector machines. Brief. Bioinform., 2004, 5(4), 328-338.
[http://dx.doi.org/10.1093/bib/5.4.328] [PMID: 15606969]
[64]
Zhao, W.; Lai, X.; Liu, D.; Zhang, Z.; Ma, P.; Wang, Q.; Zhang, Z.; Pan, Y. Applications of support vector machine in genomic prediction in pig and maize populations. Front. Genet., 2020, 11, 598318.
[http://dx.doi.org/10.3389/fgene.2020.598318] [PMID: 33343636]
[65]
Support vector machine algorithm. Available from: https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
[66]
Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297.
[http://dx.doi.org/10.1007/BF00994018]
[67]
Aria, M.; Cuccurullo, C.; Gnasso, A. A comparison among interpretative proposals for Random Forests. Mach. Learn. Appl., 2021, 6, 100094.
[http://dx.doi.org/10.1016/j.mlwa.2021.100094]
[68]
Fu, M.; Zhang, C.; Hu, C.; Wu, T.; Dong, J.; Zhu, L. Achieving verifiable decision tree prediction on hybrid blockchains. Entropy, 2023, 25(7), 1058.
[http://dx.doi.org/10.3390/e25071058] [PMID: 37510005]
[69]
Akkad, K.; Mehboob, H.; Alyamani, R.; Tarlochan, F. A machine-learning-based approach for predicting mechanical performance of semi-porous hip stems. J. Funct. Biomater., 2023, 14(3), 156.
[http://dx.doi.org/10.3390/jfb14030156] [PMID: 36976080]
[70]
An, Q.; Rahman, S.; Zhou, J.; Kang, J.J. A comprehensive review on machine learning in healthcare industry: Classification, restrictions, opportunities and challenges. Sensors, 2023, 23(9), 4178.
[http://dx.doi.org/10.3390/s23094178] [PMID: 37177382]
[71]
Corchado, J.M.; Aiken, J. Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Trans. Syst. Man Cybern. C, 2002, 32(4), 307-313.
[http://dx.doi.org/10.1109/TSMCC.2002.806072]
[72]
Elbaz, K.; Shen, S.L.; Zhou, A.; Yuan, D.J.; Xu, Y.S. Optimization of EPB shield performance with adaptive neuro-fuzzy inference system and genetic algorithm. Appl. Sci., 2019, 9(4), 780.
[http://dx.doi.org/10.3390/app9040780]
[73]
Jamshidi, S.; Yadollahi, A.; Arab, M.M.; Soltani, M.; Eftekhari, M.; Shiri, J. High throughput mathematical modeling and multi-objective evolutionary algorithms for plant tissue culture media formulation: Case study of pear rootstocks. PLoS One, 2020, 15(12), e0243940.
[http://dx.doi.org/10.1371/journal.pone.0243940] [PMID: 33338074]
[74]
Du, C.T.T.; Wolfe, P.M. The amalgamation of neural networks and fuzzy logic systems - A survey. Computers Indust Training, 1995, 29(1-4), 193-197.
[75]
Mathur, N.; Glesk, I.; Buis, A. Comparison of adaptive neuro-fuzzy inference system (ANFIS) and Gaussian processes for machine learning (GPML) algorithms for the prediction of skin temperature in lower limb prostheses. Med. Eng. Phys., 2016, 38(10), 1083-1089.
[http://dx.doi.org/10.1016/j.medengphy.2016.07.003] [PMID: 27452775]
[76]
Hesami, M.; Jones, A.M.P. Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Appl. Microbiol. Biotechnol., 2020, 104(22), 9449-9485.
[http://dx.doi.org/10.1007/s00253-020-10888-2] [PMID: 32984921]
[77]
Arab, M.M.; Yadollahi, A.; Eftekhari, M.; Ahmadi, H.; Akbari, M.; Khorami, S.S. Modeling and optimizing a new culture medium for in vitro rooting of G× N15 Prunus rootstock using artificial neural network genetic algorithm. Sci. Rep., 2018, 8(1), 9977.
[http://dx.doi.org/10.1038/s41598-018-27858-4] [PMID: 29311619]
[78]
Haq, E.; Ahmad, I.; Hussain, A.; Almanjahie, I.M. A novel selection approach for genetic algorithms for global optimization of multimodal continuous functions. Comput. Intell. Neurosci., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/8640218] [PMID: 31885532]
[79]
Hassanat, A.; Almohammadi, K.; Alkafaween, E.; Abunawas, E.; Hammouri, A.; Prasath, V.B.S. Choosing mutation and crossover ratios for genetic algorithms - A review with a new dynamic approach. Information, 2019, 10(12), 390.
[http://dx.doi.org/10.3390/info10120390]
[80]
Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimedia Tools Appl., 2021, 80(5), 8091-8126.
[http://dx.doi.org/10.1007/s11042-020-10139-6] [PMID: 33162782]
[81]
Parvaze, S.; Kumar, R.; Khan, J.N.; Ansari, A.N.; Parvaze, S.; Vishwakarma, D.K.; Elbeltagi, A.; Kuriqi, A. Optimization of water distribution systems using genetic algorithms: A review. Arch. Comput. Methods Eng., 2023, 30(7), 4209-4244.
[http://dx.doi.org/10.1007/s11831-023-09944-7]
[82]
Ivashchuk, O.A.; Fedorova, V.I.; Shcherbinina, N.V.; Maslova, E.V.; Shamraeva, E.O.; Zhuravlev, M.D. Microclonal propagation of plant process modeling and optimization of its parameters based on neural network. Drug Invent. Today, 2018, 10(3), 1-6.
[83]
Aasim, M.; Katırcı, R.; Akgur, O.; Yildirim, B.; Mustafa, Z.; Nadeem, M.A.; Baloch, F.S.; Karakoy, T.; Yılmaz, G. Machine learning (ML) algorithms and artificial neural network for optimizing in vitro germination and growth indices of industrial hemp (Cannabis sativa L.). Ind. Crops Prod., 2022, 181, 114801.
[http://dx.doi.org/10.1016/j.indcrop.2022.114801]
[84]
Pepe, M.; Hesami, M.; Jones, A.M.P. Machine Learning-Mediated development and optimization of disinfection protocol and scarification method for improved in vitro germination of cannabis seeds. Plants, 2021, 10(11), 2397.
[http://dx.doi.org/10.3390/plants10112397] [PMID: 34834760]
[85]
Rezaei, H.; Mirzaie-asl, A.; Abdollahi, M.R.; Tohidfar, M. Comparative analysis of different artificial neural networks for predicting and optimizing in vitro seed germination and sterilization of petunia. PLoS One, 2023, 18(5), e0285657.
[http://dx.doi.org/10.1371/journal.pone.0285657] [PMID: 37167278]
[86]
Lata, H.; Chandra, S.; Khan, I.A.; ElSohly, M.A. In vitro propagation of Cannabis sativa L. and evaluation of regenerated plants for genetic fidelity and cannabinoids content for quality assurance. Methods Mol. Biol., 2016, 1391, 275-288.
[http://dx.doi.org/10.1007/978-1-4939-3332-7_19] [PMID: 27108324]
[87]
Hesami, M.; Naderi, R.; Tohidfar, M.; Najafabadi, Y.M. Application of adaptive neuro-fuzzy inference system-nondominated sorting genetic algorithm-II (ANFIS-NSGAII) for modeling and optimizing somatic embryogenesis of Chrysanthemum. Front. Plant Sci., 2019, 10, 869.
[http://dx.doi.org/10.3389/fpls.2019.00869] [PMID: 31333705]
[88]
Hameg, R.; Arteta, T.A.; Landin, M.; Gallego, P.P.; Barreal, M.E. Modeling and optimizing culture medium mineral composition for in vitro propagation of Actinidia arguta. Front. Plant Sci., 2020, 11, 554905.
[http://dx.doi.org/10.3389/fpls.2020.554905] [PMID: 33424873]
[89]
Jamshidi, S.; Yadollahi, A.; Ahmadi, H.; Arab, M.M.; Eftekhari, M. Predicting in vitro culture medium macro-nutrients composition for pear rootstocks using regression analysis and neural network models. Front. Plant Sci., 2016, 7, 274.
[http://dx.doi.org/10.3389/fpls.2016.00274] [PMID: 27066013]
[90]
Jamshidi, S.; Yadollahi, A.; Arab, M.M.; Soltani, M.; Eftekhari, M.; Sabzalipoor, H.; Sheikhi, A.; Shiri, J. Combining gene expression programming and genetic algorithm as a powerful hybrid modeling approach for pear rootstocks tissue culture media formulation. Plant Methods, 2019, 15(1), 136.
[http://dx.doi.org/10.1186/s13007-019-0520-y] [PMID: 31832078]
[91]
Nezami-Alanagh, E.; Garoosi, G.A.; Maleki, S.; Landín, M.; Gallego, P.P. Predicting optimal in vitro culture medium for Pistacia vera micropropagation using neural networks models. Plant Cell Tissue Organ Cult., 2017, 129(1), 19-33.
[http://dx.doi.org/10.1007/s11240-016-1152-9]
[92]
Nezami-Alanagh, E.; Garoosi, G.A.; Landín, M.; Gallego, P.P. Combining DOE with neurofuzzy logic for healthy mineral nutrition of pistachio rootstocks in vitro culture. Front. Plant Sci., 2018, 9, 1474.
[http://dx.doi.org/10.3389/fpls.2018.01474] [PMID: 30374362]
[93]
Mohd, Z.R.; Arun, K.K. Micropropagation of an endangered medicinal herb Chlorophytum borivilianum Sant. et Fernand. in bioreactor. Afr. J. Biotechnol., 2014, 13(17), 1772-1778.
[http://dx.doi.org/10.5897/AJB2013.12904]
[94]
Mehrotra, S.; Prakash, O.; Mishra, B.N.; Dwevedi, B. Efficiency of neural networks for prediction of in vitro culture conditions and inoculum properties for optimum productivity. Plant Cell Tissue Organ Cult., 2008, 95(1), 29-35.
[http://dx.doi.org/10.1007/s11240-008-9410-0]
[95]
Ntanos, E.; Tsafouros, A.; Denaxa, N.K.; Kosta, A.; Bouchagier, P.; Roussos, P.A. Mitigation of high solar irradiance and heat stress in kiwifruit during summer via the use of alleviating products with different modes of action—Part 1 Effects on leaf physiology and biochemistry. Agriculture, 2022, 12(12), 2121.
[http://dx.doi.org/10.3390/agriculture12122121]
[96]
Mehrotra, S.; Prakash, O.; Khan, F.; Kukreja, A.K. Efficiency of neural network-based combinatorial model predicting optimal culture conditions for maximum biomass yields in hairy root cultures. Plant Cell Rep., 2013, 32(2), 309-317.
[http://dx.doi.org/10.1007/s00299-012-1364-3] [PMID: 23143691]
[97]
Mansouri, A.; Fadavi, A.; Mortazavian, S.M.M. An artificial intelligence approach for modeling volume and fresh weight of callus – A case study of cumin (Cuminum cyminum L.). J. Theor. Biol., 2016, 397, 199-205.
[http://dx.doi.org/10.1016/j.jtbi.2016.03.009] [PMID: 26987421]
[98]
Munasinghe, S.P.; Somaratne, S.; Weerakoon, S.R.; Ranasinghe, C. Prediction of chemical composition for callus production in Gyrinopswalla Gaetner through machine learning. Inf. Process. Agric., 2020, 7(2), 1-12.
[99]
Niazian, M.; Noori, S.S.A.; Abdipour, M. Modeling the seed yield of Ajowan (Trachyspermum ammi L.) using artificial neural network and multiple linear regression models. Ind. Crops Prod., 2018, 117, 224-234.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.013]
[100]
Guan, Y.; Li, S.G.; Fan, X.F.; Su, Z.H. Application of somatic embryogenesis in woody plants. Front. Plant Sci., 2016, 7, 938.
[http://dx.doi.org/10.3389/fpls.2016.00938] [PMID: 27446166]
[101]
Fehér, A. Callus, Dedifferentiation, totipotency, somatic embryogenesis: what these terms mean in the era of molecular plant biology? Front. Plant Sci., 2019, 10, 536.
[http://dx.doi.org/10.3389/fpls.2019.00536] [PMID: 31134106]
[102]
Schultheis, J.; Cantliffe, D.; Chee, R. Optimizing sweet potato [Ipomoea batatas (L.) Lam. root and plantlet formation by selection of proper embryo developmental stage and size, and gel type for fluidized sowing. Plant Cell Rep., 1990, 9(7), 356-359.
[http://dx.doi.org/10.1007/BF00232398] [PMID: 24227054]
[103]
Ruan, R.; Xu, J.; Zhang, C.; Chi, C.M.; Hu, W.S. Classification of plant somatic embryos by using neural network classifiers. Biotechnol. Prog., 1997, 13(6), 741-746.
[http://dx.doi.org/10.1021/bp9700972]
[104]
Uozumi, N.; Yoshino, T.; Shiotani, S.; Suehara, K.I.; Arai, F.; Fukuda, T.; Kobayashi, T. Application of image analysis with neural network for plant somatic embryo culture. J. Ferment. Bioeng., 1993, 76(6), 505-509.
[http://dx.doi.org/10.1016/0922-338X(93)90249-8]
[105]
Zhang, C.; Timmis, R.; Hu, W.S. A neural network-based pattern recognition system for somatic embryos of Douglas Fir. Plant Cell Tissue Organ Cult., 1999, 56(1), 25-35.
[http://dx.doi.org/10.1023/A:1006287917534]
[106]
Kaur, K.; Dolker, D.; Behera, S.; Pati, P.K. Critical factors influencing in vitro propagation and modulation of important secondary metabolites in Withania somnifera (L.) dunal. Plant Cell Tissue Organ Cult., 2022, 149(1-2), 41-60.
[http://dx.doi.org/10.1007/s11240-021-02225-w] [PMID: 35039702]
[107]
Abdalla, N.; El-Ramady, H.; Seliem, M.K.; El-Mahrouk, M.E.; Taha, N.; Bayoumi, Y.; Shalaby, T.A.; Dobránszki, J. An academic and technical overview on plant micropropagation challenges. Horticulturae, 2022, 8(8), 677.
[http://dx.doi.org/10.3390/horticulturae8080677]
[108]
Honda, H.; Ito, T.; Yamada, J.; Hanai, T.; Matsuoka, M.; Kobayashi, T. Selection of embryogenic sugarcane callus by image analysis. J. Biosci. Bioeng., 1999, 87(5), 700-702.
[http://dx.doi.org/10.1016/S1389-1723(99)80138-8] [PMID: 16232542]
[109]
Honda, H.; Takikawa, N.; Noguchi, H.; Hanai, T.; Kobayashi, T. Image analysis associated with a fuzzy neural network and estimation of shoot length of regenerated rice callus. J. Ferment. Bioeng., 1997, 84(4), 342-347.
[http://dx.doi.org/10.1016/S0922-338X(97)89256-2]
[110]
Meher, PK; Gupta, A; Rustgi, S; Mir, RR; Kumar, A; Kumar, J; Balyan, HS; Gupta, PK Evaluation of eight Bayesian genomic prediction models for three micronutrient traits in bread wheat (Triticum aestivum L.). Plant Genom., 2023, 2023
[111]
Fakhrzad, F.; Jowkar, A.; Hosseinzadeh, J. Mathematical modeling and optimizing the in vitro shoot proliferation of wallflower using multilayer perceptron non-dominated sorting genetic algorithm-II (MLP-NSGAII). PLoS One, 2022, 17(9), e0273009.
[http://dx.doi.org/10.1371/journal.pone.0273009] [PMID: 36083887]
[112]
Prasad, V.S.S.; Gupta, S.D. Applications and potentials of artificial neural networks in plant tissue culture. In: Plant tissue culture engineering; Springer: Dordrecht, 2008; pp. 47-67.
[113]
Alanagh, E.N.; Garoosi, G.; Haddad, R.; Maleki, S.; Landín, M.; Gallego, P.P. Design of tissue culture media for efficient Prunus rootstock micropropagation using artificial intelligence models. Plant Cell Tissue Organ Cult., 2014, 117(3), 349-359.
[http://dx.doi.org/10.1007/s11240-014-0444-1]
[114]
Perraki, A.; Cacas, J.L.; Crowet, J.M.; Lins, L.; Castroviejo, M.; German-Retana, S.; Mongrand, S.; Raffaele, S. Plasma membrane localization of Solanum tuberosum remorin from group 1, homolog 3 is mediated by conformational changes in a novel C-terminal anchor and required for the restriction of potato virus X movement Plant Physiol., 2012, 160(2), 624-637.
[http://dx.doi.org/10.1104/pp.112.200519] [PMID: 22855937]
[115]
Akin, M.; Eyduran, E.; Reed, B.M. Use of RSM and CHAID data mining algorithm for predicting mineral nutrition of hazelnut. Plant Cell Tissue Organ Cult., 2017, 128(2), 303-316.
[http://dx.doi.org/10.1007/s11240-016-1110-6]
[116]
Prasad, A.; Prakash, O.; Mehrotra, S.; Khan, F.; Mathur, A.K.; Mathur, A. Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum biomass accumulation in multiple shoot cultures of Centella asiatica. Protoplasma, 2017, 254(1), 335-341.
[http://dx.doi.org/10.1007/s00709-016-0953-3] [PMID: 27068291]
[117]
Webber, J.B.; Wada, S.; Stockwell, V.O.; Wiman, N.G. Susceptibility of some Corylus avellana L. cultivars to Xanthomonas arboricola pv. corylina. Front. Plant Sci., 2021, 12, 800339.
[http://dx.doi.org/10.3389/fpls.2021.800339] [PMID: 34975992]
[118]
Maleki, S.; Zanjani, M.B.; Kohnehrouz, B.B.; Landin, M.; Gallego, P.P. Computer-Based tools unmask critical mineral nutrient interactions in hoagland solution for healthy kiwiberry plant acclimatization. Front. Plant Sci., 2021, 12, 723992.
[http://dx.doi.org/10.3389/fpls.2021.723992] [PMID: 34777411]
[119]
Khvatkov, P.; Firsov, A.; Shvedova, A.; Shaloiko, L.; Kozlov, O.; Chernobrovkina, M.; Pushin, A.; Tarasenko, I.; Chaban, I.; Dolgov, S. Development of Wolffia arrhiza as a producer for recombinant human granulocyte colony-stimulating factor. Front Chem., 2018, 6, 304.
[http://dx.doi.org/10.3389/fchem.2018.00304] [PMID: 30140670]
[120]
García-Pérez, P.; Lozano-Milo, E.; Landin, M.; Gallego, P.P. Machine learning unmasked nutritional imbalances on the medicinal plant Bryophyllum sp. cultured in vitro. Front. Plant Sci., 2020, 11, 576177.
[http://dx.doi.org/10.3389/fpls.2020.576177] [PMID: 33329638]
[121]
Zhang, Z.; Wen, Y.; Yuan, L.; Zhang, Y.; Liu, J.; Zhou, F.; Wang, Q.; Hu, X. Genome-Wide identification, characterization, and expression analysis related to low-temperature stress of the CmGLP gene family in Cucumis melo L. Int. J. Mol. Sci., 2022, 23(15), 8190.
[http://dx.doi.org/10.3390/ijms23158190] [PMID: 35897766]
[122]
Solangi, N.; Jatoi, M.A.; Markhand, G.S.; Abul-Soad, A.A.; Solangi, M.A.; Jatt, T.; Mirbahar, A.A.; Mirani, A.A. Optimizing tissue culture protocol for in vitro shoot and root development and acclimatization of date palm (Phoenix dactylifera L) plantlets. Erwerbs-Obstbau, 2022, 64(1), 97-106.
[http://dx.doi.org/10.1007/s10341-021-00622-1]
[123]
Kirtis, A.; Aasim, M.; Katırcı, R. Application of artificial neural network and machine learning algorithms for modeling the in vitro regeneration of chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult., 2022, 150(1), 141-152.
[http://dx.doi.org/10.1007/s11240-022-02255-y]
[124]
Viswanathan, P.; Gosukonda, J.S.; Sherman, S.H.; Joshee, N.; Gosukonda, R.M. Prediction of in vitro organogenesis of Bacopa monnieri using artificial neural networks and regression models. Heliyon, 2022, 8(12), e11969.
[http://dx.doi.org/10.1016/j.heliyon.2022.e11969] [PMID: 36544836]
[125]
Osama, K.; Somvanshi, P.; Pandey, A.K.; Mishra, B.N. Modelling of nutrient mist reactor for hairy root growth using artificial neural network. Eur. J. Sci. Res., 2013, 97(4), 516-526.
[126]
Verma, P.; Anjum, S.; Khan, S.A.; Roy, S.; Odstrcilik, J.; Mathur, A.K. Envisaging the regulation of alkaloid biosynthesis and associated growth kinetics in hairy roots of Vinca minor through the function of artificial neural network. Appl. Biochem. Biotechnol., 2016, 178(6), 1154-1166.
[http://dx.doi.org/10.1007/s12010-015-1935-1] [PMID: 26634841]
[127]
Hill, K.; Schaller, G.E. Enhancing plant regeneration in tissue culture. Plant Signal. Behav., 2013, 8(10), e25709-25709.
[http://dx.doi.org/10.4161/psb.25709] [PMID: 23887495]
[128]
Tani, E.; Chronopoulou, E.; Labrou, N.; Sarri, E.; Goufa, M.; Vaharidi, X.; Tornesaki, A.; Psychogiou, M.; Bebeli, P.; Abraham, E. Growth, Physiological, biochemical, and transcriptional responses to drought stress in seedlings of Medicago sativa L., Medicago arborea L. and their hybrid (Alborea). Agronomy, 2019, 9(1), 38.
[http://dx.doi.org/10.3390/agronomy9010038]
[129]
Mridula, M.R.; Nair, A.S.; Kumar, K.S. Genetic programming based models in plant tissue culture: An addendum to traditional statistical approach. PLOS Comput. Biol., 2018, 14(2), e1005976.
[http://dx.doi.org/10.1371/journal.pcbi.1005976] [PMID: 29485995]
[130]
Gago, J.; Martínez-Núñez, L.; Landín, M.; Flexas, J.; Gallego, P.P. Modeling the effects of light and sucrose on in vitro propagated plants: A multiscale system analysis using artificial intelligence technology. PLoS One, 2014, 9(1), e85989.
[http://dx.doi.org/10.1371/journal.pone.0085989] [PMID: 24465829]
[131]
Holzinger, A.; Keiblinger, K.; Holub, P.; Zatloukal, K.; Müller, H. AI for life: Trends in artificial intelligence for biotechnology. N. Biotechnol., 2023, 74, 16-24.
[http://dx.doi.org/10.1016/j.nbt.2023.02.001] [PMID: 36754147]
[132]
Mitra, S.; Murthy, G.S. Bioreactor control systems in the biopharmaceutical industry: A critical perspective. Syst. Microbiol. Biomanuf., 2022, 2(1), 91-112.
[http://dx.doi.org/10.1007/s43393-021-00048-6]
[133]
Ciccone, F.; Bacciaglia, A.; Ceruti, A. Optimization with artificial intelligence in additive manufacturing: A systematic review. J. Braz. Soc. Mech. Sci. Eng., 2023, 45(6), 303.
[http://dx.doi.org/10.1007/s40430-023-04200-2]
[134]
Ozsari, S.; Güzel, M.S.; Yılmaz, D.; Kamburoğlu, K. A comprehensive review of artificial intelligence based algorithms regarding temporomandibular joint related diseases. Diagnostics, 2023, 13(16), 2700.
[http://dx.doi.org/10.3390/diagnostics13162700] [PMID: 37627959]
[135]
Xiaolai, L; Jianjun, Z; Beidou, C; Boyang, H Leaf vegetable water planting nutrient solution and preparation method thereof. CN Patent 116655419A, 2023.
[136]
Xiaolai, L; Jianjun, Z; Beidou, C; Boyang, H Bag-removing-free earthing cultivation technical method, device, equipment and storage medium for tiger milk mushrooms. CN Patent 116508579A, 2023.
[137]
Zhang, J; Wu, H Plant stem cell line and establishment method and application thereof. CN Patent 116445393A, 2023.
[138]
Zeng, Y; Chen, F; Huang, Q; Lei, Z; Li, J; Li, Q; Li, W; Liu, Y; Zhang, L Instant transformation method of sunflower exogenous gene. CN Patent 116732086A, 2023.
[139]
Lulu, C; Zhe, S; Changgeng, T; Shanggang, L; Huawei, Q Quick preparation and long-term preservation method of sweet potato germplasm resource test-tube plantlet. CN Patent 116686714A, 2023.
[140]
Luqi, H; Lanping, G; Chengcai, Z; Sheng, W; Hongyang, W; Binbin, Y; Xiaoyu, D Culture method of adventitious roots of rhizoma atractylodis. CN Patent 116724891A, 2023.
[141]
Gao, J; Pei, H; Qin, X; Xie, H Greenhouse pepper planting method for combating continuous cropping hurdles. AU Patent 2020100875A4, 2020.
[142]
Li, Q; Liu, W; Guo, J; Li, Z; Yu, G; Cui, X; You, X; Cao, X; Huang, R. Tissue culture method for Thai green pepper grass. CN Patent 111919752A, 2020.
[143]
Zhu, C; Hou, Z Integrated solution for rooting, seedling exercising and domesticating of tissue culture seedlings. CN Patent 110754360A, 2019.
[144]
The aeroponic method of ganoderma lucidum. CN Patent 108782007A, 2019.
[145]
Wang, Z; Zhang, J; Ma, H; Zhang, H; Tan, Y Preparation method and application of mesenchyme stem cell scaffold-free threedimensional gel. CN Patent 110747165A, 2019.
[146]
Genty, N.R.; Dominic, J.M.J. Automatically optimises plant growth conditions based on artificial intelligence models to maximise the quality of the harvest. US Patent 11308715B2, 2018.
[147]
Li, Z; Hui, Q; Fu, J; Ren, Z; Zhang, M. A kind of mating system of leech. CN Patent 109169525A, 2018.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy