Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

An Overview of the Deubiquitinase USP53: A Promising Diagnostic Marker and Therapeutic Target

Author(s): Guangce Xia, Yulin Guo, Jiajia Zhang, Meng Han*, Xiangchao Meng* and Ji Lv

Volume 25, Issue 9, 2024

Published on: 03 June, 2024

Page: [708 - 718] Pages: 11

DOI: 10.2174/0113892037292440240518194922

Price: $65

Abstract

Ubiquitination and deubiquitination are important mechanisms to maintain normal physiological activities, and their disorders or imbalances can lead to various diseases. As a subgroup of deubiquitinases (DUBs), the ubiquitin-specific peptidase (USP) family is closely related to many biological processes. USP53, one of the family members, is widely expressed in human tissues and participates in a variety of life activities, such as cell apoptosis, nerve transmission, and bone remodeling. Mutations in the USP53 gene can cause cholestasis and deafness and may also be a potential cause of schizophrenia. Knockout of USP53 can alleviate neuropathic pain induced by chronic constriction injury. Loss of USP53 up-regulates RANKL expression, promotes the cytogenesis and functional activity of osteoclasts, and triggers osteodestructive diseases. USP53 plays a tumor-suppressive role in lung cancer, renal clear cell carcinoma, colorectal cancer, liver cancer, and esophageal cancer but reduces the radiosensitivity of cervical cancer and esophageal cancer to induce radioresistance. Through the in-depth combination of literature and bioinformatics, this review suggested that USP53 may be a good potential biomarker or therapeutic target for diseases.

Graphical Abstract

[1]
Duechler, M.; Leszczyńska, G.; Sochacka, E.; Nawrot, B. Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell. Mol. Life Sci., 2016, 73(16), 3075-3095.
[http://dx.doi.org/10.1007/s00018-016-2217-y] [PMID: 27094388]
[2]
Chen, K.; Zhao, B.S.; He, C. Nucleic Acid Modifications in regulation of gene expression. Cell Chem. Biol., 2016, 23(1), 74-85.
[http://dx.doi.org/10.1016/j.chembiol.2015.11.007] [PMID: 26933737]
[3]
Iglesias-Platas, I.; Monk, D. Nongenomic regulation of gene expression. Curr. Opin. Pediatr., 2016, 28(4), 521-528.
[http://dx.doi.org/10.1097/MOP.0000000000000365] [PMID: 27139000]
[4]
Corbett, A.H. Post-transcriptional regulation of gene expression and human disease. Curr. Opin. Cell Biol., 2018, 52, 96-104.
[http://dx.doi.org/10.1016/j.ceb.2018.02.011] [PMID: 29518673]
[5]
Wang, S.; Osgood, A.O.; Chatterjee, A. Uncovering post-translational modification-associated protein–protein interactions. Curr. Opin. Struct. Biol., 2022, 74, 102352.
[http://dx.doi.org/10.1016/j.sbi.2022.102352] [PMID: 35334254]
[6]
Manna, S.; Mishra, J.; Baral, T.; Kirtana, R.; Nandi, P.; Roy, A.; Chakraborty, S.; Niharika; Patra, S.K. Epigenetic signaling and crosstalk in regulation of gene expression and disease progression. Epigenomics, 2023, 15(14), 723-740.
[http://dx.doi.org/10.2217/epi-2023-0235] [PMID: 37661861]
[7]
Li, W.; Li, F.; Zhang, X.; Lin, H.K.; Xu, C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct. Target. Ther., 2021, 6(1), 422.
[http://dx.doi.org/10.1038/s41392-021-00825-8] [PMID: 34924561]
[8]
Lee, J.M.; Hammarén, H.M.; Savitski, M.M.; Baek, S.H. Control of protein stability by post-translational modifications. Nat. Commun., 2023, 14(1), 201.
[http://dx.doi.org/10.1038/s41467-023-35795-8] [PMID: 36639369]
[9]
Baker, H.A.; Bernardini, J.P. It’s not just a phase; ubiquitination in cytosolic protein quality control. Biochem. Soc. Trans., 2021, 49(1), 365-377.
[http://dx.doi.org/10.1042/BST20200694] [PMID: 33634825]
[10]
Roberts, J.Z.; Crawford, N.; Longley, D.B. The role of Ubiquitination in Apoptosis and Necroptosis. Cell Death Differ., 2022, 29(2), 272-284.
[http://dx.doi.org/10.1038/s41418-021-00922-9] [PMID: 34912054]
[11]
Li, Y.; Li, S.; Wu, H. Ubiquitination-Proteasome System (UPS) and autophagy two main protein degradation machineries in response to cell stress. Cells, 2022, 11(5), 851.
[http://dx.doi.org/10.3390/cells11050851] [PMID: 35269473]
[12]
Sun, T.; Liu, Z.; Yang, Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol. Cancer, 2020, 19(1), 146.
[http://dx.doi.org/10.1186/s12943-020-01262-x] [PMID: 33004065]
[13]
Schauer, N.J.; Magin, R.S.; Liu, X.; Doherty, L.M.; Buhrlage, S.J. Advances in Discovering Deubiquitinating Enzyme (DUB) inhibitors. J. Med. Chem., 2020, 63(6), 2731-2750.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01138] [PMID: 31682427]
[14]
Zhao, J.; Guo, J.; Wang, Y.; Ma, Q.; Shi, Y.; Cheng, F.; Lu, Q.; Fu, W.; Ouyang, G.; Zhang, J.; Xu, Q.; Hu, X. Research progress of DUB enzyme in hepatocellular carcinoma. Front. Oncol., 2022, 12, 920287.
[http://dx.doi.org/10.3389/fonc.2022.920287] [PMID: 35875077]
[15]
Mennerich, D.; Kubaichuk, K.; Kietzmann, T. DUBs, hypoxia, and cancer. Trends Cancer, 2019, 5(10), 632-653.
[http://dx.doi.org/10.1016/j.trecan.2019.08.005] [PMID: 31706510]
[16]
Miekus, K.; Kotlinowski, J.; Lichawska-Cieslar, A.; Rys, J.; Jura, J. Activity of MCPIP1 RNase in tumor associated processes. J. Exp. Clin. Cancer Res., 2019, 38(1), 421.
[http://dx.doi.org/10.1186/s13046-019-1430-6] [PMID: 31639017]
[17]
Calistri, A.; Munegato, D.; Toffoletto, M.; Celestino, M.; Franchin, E.; Comin, A.; Sartori, E.; Salata, C.; Parolin, C.; Palù, G. Functional interaction between the ESCRT-I component TSG101 and the HSV-1 tegument ubiquitin specific protease. J. Cell. Physiol., 2015, 230(8), 1794-1806.
[http://dx.doi.org/10.1002/jcp.24890] [PMID: 25510868]
[18]
Snyder, N.A.; Silva, G.M. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J. Biol. Chem., 2021, 297(3), 101077.
[http://dx.doi.org/10.1016/j.jbc.2021.101077] [PMID: 34391779]
[19]
Liu, J.; Cheng, Y.; Zheng, M.; Yuan, B.; Wang, Z.; Li, X.; Yin, J.; Ye, M.; Song, Y. Targeting the ubiquitination/deubiquitination process to regulate immune checkpoint pathways. Signal Transduct. Target. Ther., 2021, 6(1), 28.
[http://dx.doi.org/10.1038/s41392-020-00418-x] [PMID: 33479196]
[20]
Park, H.B.; Kim, J.W.; Baek, K.H. Regulation of Wnt signaling through ubiquitination and deubiquitination in cancers. Int. J. Mol. Sci., 2020, 21(11), 3904.
[http://dx.doi.org/10.3390/ijms21113904] [PMID: 32486158]
[21]
Li, Y.; Reverter, D. Molecular mechanisms of DUBs regulation in signaling and disease. Int. J. Mol. Sci., 2021, 22(3), 986.
[http://dx.doi.org/10.3390/ijms22030986] [PMID: 33498168]
[22]
Han, S.; Wang, R.; Zhang, Y.; Li, X.; Gan, Y.; Gao, F.; Rong, P.; Wang, W.; Li, W. The role of ubiquitination and deubiquitination in tumor invasion and metastasis. Int. J. Biol. Sci., 2022, 18(6), 2292-2303.
[http://dx.doi.org/10.7150/ijbs.69411] [PMID: 35414786]
[23]
Liu, N.; Lin, M.M.; Wang, Y. The emerging roles of E3 ligases and DUBs in neurodegenerative diseases. Mol. Neurobiol., 2023, 60(1), 247-263.
[http://dx.doi.org/10.1007/s12035-022-03063-3] [PMID: 36260224]
[24]
Hu, Y.; Li, X.; Wang, D.; Mao, X. mascRNA alleviates STING-TBK1 signaling-mediated immune response through promoting ubiquitination of STING. Mol. Immunol., 2023, 154, 45-53.
[http://dx.doi.org/10.1016/j.molimm.2022.12.012] [PMID: 36603304]
[25]
Sun, J.; Shi, X.; Mamun, M.; Gao, Y. The role of deubiquitinating enzymes in gastric cancer (Review). Oncol. Lett., 2019, 19(1), 30-44.
[http://dx.doi.org/10.3892/ol.2019.11062] [PMID: 31897112]
[26]
Cruz, L.; Soares, P.; Correia, M. Ubiquitin-specific proteases: Players in cancer cellular processes. Pharmaceuticals (Basel), 2021, 14(9), 848.
[http://dx.doi.org/10.3390/ph14090848] [PMID: 34577547]
[27]
Komander, D.; Clague, M.J.; Urbé, S. Breaking the chains: Structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol., 2009, 10(8), 550-563.
[http://dx.doi.org/10.1038/nrm2731] [PMID: 19626045]
[28]
Chen, S.; Liu, Y.; Zhou, H. Advances in the development Ubiquitin-Specific Peptidase (USP) inhibitors. Int. J. Mol. Sci., 2021, 22(9), 4546.
[http://dx.doi.org/10.3390/ijms22094546] [PMID: 33925279]
[29]
Huang, M.L.; Shen, G.T.; Li, N.L. Emerging potential of ubiquitin-specific proteases and ubiquitin-specific proteases inhibitors in breast cancer treatment. World J. Clin. Cases, 2022, 10(32), 11690-11701.
[http://dx.doi.org/10.12998/wjcc.v10.i32.11690] [PMID: 36405275]
[30]
Kitamura, H. Ubiquitin-Specific Proteases (USPs) and metabolic disorders. Int. J. Mol. Sci., 2023, 24(4), 3219.
[http://dx.doi.org/10.3390/ijms24043219] [PMID: 36834633]
[31]
Davis, M.I.; Pragani, R.; Fox, J.T.; Shen, M.; Parmar, K.; Gaudiano, E.F.; Liu, L.; Tanega, C.; McGee, L.; Hall, M.D.; McKnight, C.; Shinn, P.; Nelson, H.; Chattopadhyay, D.; D’Andrea, A.D.; Auld, D.S.; DeLucas, L.J.; Li, Z.; Boxer, M.B.; Simeonov, A. Small molecule inhibition of the Ubiquitin-specific Protease USP2 accelerates cyclin D1 degradation and leads to cell cycle arrest in colorectal cancer and mantle cell lymphoma models. J. Biol. Chem., 2016, 291(47), 24628-24640.
[http://dx.doi.org/10.1074/jbc.M116.738567] [PMID: 27681596]
[32]
Das, S.; Chandrasekaran, A.P.; Suresh, B.; Haq, S.; Kang, J.H.; Lee, S.J.; Kim, J.; Kim, J.; Lee, S.; Kim, H.H.; Kim, K.S.; Ramakrishna, S. Genome-scale screening of deubiquitinase subfamily identifies USP3 as a stabilizer of Cdc25A regulating cell cycle in cancer. Cell Death Differ., 2020, 27(11), 3004-3020.
[http://dx.doi.org/10.1038/s41418-020-0557-5] [PMID: 32415280]
[33]
Bonacci, T.; Emanuele, M.J. Dissenting degradation: Deubiquitinases in cell cycle and cancer. Semin. Cancer Biol., 2020, 67(Pt 2), 145-158.
[http://dx.doi.org/10.1016/j.semcancer.2020.03.008] [PMID: 32201366]
[34]
Yan, C.; Yuan, J.; Xu, J.; Zhang, G.; Li, X.; Zhang, B.; Hu, T.; Huang, X.; Mao, Y.; Song, G. Ubiquitin-specific peptidase 39 regulates the process of proliferation and migration of human ovarian cancer via p53/p21 pathway and EMT. Med. Oncol., 2019, 36(11), 95.
[http://dx.doi.org/10.1007/s12032-019-1308-7] [PMID: 31637536]
[35]
Wang, C.L.; Wang, J.Y.; Liu, Z.Y.; Ma, X.M.; Wang, X.W.; Jin, H.; Zhang, X.P.; Fu, D.; Hou, L.J.; Lu, Y.C. Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis, 2014, 35(7), 1500-1509.
[http://dx.doi.org/10.1093/carcin/bgu015] [PMID: 24445145]
[36]
Mungamuri, S.K.; Qiao, R.F.; Yao, S.; Manfredi, J.J.; Gu, W.; Aaronson, S.A. USP7 enforces heterochromatinization of p53 target promoters by protecting SUV39H1 from MDM2-mediated degradation. Cell Rep., 2016, 14(11), 2528-2537.
[http://dx.doi.org/10.1016/j.celrep.2016.02.049] [PMID: 26971997]
[37]
Wang, S-A.; Wang, Y-C.; Chuang, Y-P.; Huang, Y-H.; Su, W-C.; Chang, W-C.; Hung, J-J. EGF-mediated inhibition of ubiquitin-specific peptidase 24 expression has a crucial role in tumorigenesis. Oncogene, 2017, 36(21), 2930-2945.
[http://dx.doi.org/10.1038/onc.2016.445] [PMID: 27991932]
[38]
Weber, A.; Heinlein, M.; Dengjel, J.; Alber, C.; Singh, P.K.; Häcker, G. The deubiquitinase Usp27x stabilizes the BH 3‐only protein Bim and enhances apoptosis. EMBO Rep., 2016, 17(5), 724-738.
[http://dx.doi.org/10.15252/embr.201541392] [PMID: 27013495]
[39]
Liang, J.R.; Martinez, A.; Lane, J.D.; Mayor, U.; Clague, M.J.; Urbé, S. USP 30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep., 2015, 16(5), 618-627.
[http://dx.doi.org/10.15252/embr.201439820] [PMID: 25739811]
[40]
Zhao, B.; Schlesiger, C.; Masucci, M.G.; Lindsten, K. The ubiquitin specific protease 4 (USP4) is a new player in the Wnt signalling pathway. J. Cell. Mol. Med., 2009, 13(8b), 1886-1895.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00682.x] [PMID: 20141612]
[41]
Yang, Z.; Xian, H.; Hu, J.; Tian, S.; Qin, Y.; Wang, R.F.; Cui, J. USP18 negatively regulates NF-κB signaling by targeting TAK1 and NEMO for deubiquitination through distinct mechanisms. Sci. Rep., 2015, 5(1), 12738.
[http://dx.doi.org/10.1038/srep12738] [PMID: 26240016]
[42]
Liu, H.; Zhang, H.; Wang, X.; Tian, Q.; Hu, Z.; Peng, C.; Jiang, P.; Wang, T.; Guo, W.; Chen, Y.; Li, X.; Zhang, P.; Pei, H. The deubiquitylating enzyme USP4 cooperates with CtIP in DNA double-strand break end resection. Cell Rep., 2015, 13(1), 93-107.
[http://dx.doi.org/10.1016/j.celrep.2015.08.056] [PMID: 26387952]
[43]
He, J.; Zhu, Q.; Wani, G.; Sharma, N.; Han, C.; Qian, J.; Pentz, K.; Wang, Q.; Wani, A.A. Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis. J. Biol. Chem., 2014, 289(39), 27278-27289.
[http://dx.doi.org/10.1074/jbc.M114.589812] [PMID: 25118285]
[44]
Sy, S.M.H.; Jiang, J.; O, W.S.; Deng, Y.; Huen, M.S.Y. The ubiquitin specific protease USP34 promotes ubiquitin signaling at DNA double-strand breaks. Nucleic Acids Res., 2013, 41(18), 8572-8580.
[http://dx.doi.org/10.1093/nar/gkt622] [PMID: 23863847]
[45]
Young, M.J.; Hsu, K.C.; Lin, T.E.; Chang, W.C.; Hung, J.J. The role of ubiquitin-specific peptidases in cancer progression. J. Biomed. Sci., 2019, 26(1), 42.
[http://dx.doi.org/10.1186/s12929-019-0522-0] [PMID: 31133011]
[46]
Chen, R.; Pang, X.; Li, L.; Zeng, Z.; Chen, M.; Zhang, S. Ubiquitin-specific proteases in inflammatory bowel disease-related signalling pathway regulation. Cell Death Dis., 2022, 13(2), 139.
[http://dx.doi.org/10.1038/s41419-022-04566-6] [PMID: 35145062]
[47]
Xu, Q.; Liu, M.; Gu, J.; Ling, S.; Liu, X.; Luo, Z.; Jin, Y.; Chai, R.; Ou, W.; Liu, S.; Liu, N. Ubiquitin-specific protease 7 regulates myocardial ischemia/reperfusion injury by stabilizing Keap1. Cell Death Discov., 2022, 8(1), 291.
[http://dx.doi.org/10.1038/s41420-022-01086-2] [PMID: 35710902]
[48]
Liu, X.; Balaraman, K.; Lynch, C.C.; Hebron, M.; Wolf, C.; Moussa, C. Novel ubiquitin specific protease-13 inhibitors alleviate neurodegenerative pathology. Metabolites, 2021, 11(9), 622.
[http://dx.doi.org/10.3390/metabo11090622] [PMID: 34564439]
[49]
Benassi, B.; Flavin, R.; Marchionni, L.; Zanata, S.; Pan, Y.; Chowdhury, D.; Marani, M.; Strano, S.; Muti, P.; Blandino, G.; Loda, M. MYC is activated by USP2a-mediated modulation of microRNAs in prostate cancer. Cancer Discov., 2012, 2(3), 236-247.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0219] [PMID: 22585994]
[50]
Zhang, C.; Lu, J.; Zhang, Q.W.; Zhao, W.; Guo, J.H.; Liu, S.L.; Wu, Y.L.; Jiang, B.; Gao, F.H. USP7 promotes cell proliferation through the stabilization of Ki-67 protein in non-small cell lung cancer cells. Int. J. Biochem. Cell Biol., 2016, 79, 209-221.
[http://dx.doi.org/10.1016/j.biocel.2016.08.025] [PMID: 27590858]
[51]
Georges, A.; Marcon, E.; Greenblatt, J.; Frappier, L. Identification and characterization of USP7 targets in cancer cells. Sci. Rep., 2018, 8(1), 15833.
[http://dx.doi.org/10.1038/s41598-018-34197-x] [PMID: 30367141]
[52]
Xu, Y.; Lu, S. Metformin inhibits esophagus cancer proliferation through upregulation of USP7. Cell. Physiol. Biochem., 2013, 32(5), 1178-1186.
[http://dx.doi.org/10.1159/000354517]
[53]
Liu, W-T.; Huang, K-Y.; Lu, M-C.; Huang, H-L.; Chen, C-Y.; Cheng, Y-L.; Yu, H-C.; Liu, S-Q.; Lai, N-S.; Huang, H-B. TGF-β upregulates the translation of USP15 via the PI3K/AKT pathway to promote p53 stability. Oncogene, 2017, 36(19), 2715-2723.
[http://dx.doi.org/10.1038/onc.2016.424] [PMID: 27893708]
[54]
Zhu, J.; Luo, Z.; Pan, Y.; Zheng, W.; Li, W.; Zhang, Z.; Xiong, P.; Xu, D.; Du, M.; Wang, B.; Yu, J.; Zhang, J.; Liu, J. H19/miR‐148a/USP4 axis facilitates liver fibrosis by enhancing TGF‐β signaling in both hepatic stellate cells and hepatocytes. J. Cell. Physiol., 2019, 234(6), 9698-9710.
[http://dx.doi.org/10.1002/jcp.27656] [PMID: 30362572]
[55]
Eichhorn, P.J.A.; Rodón, L.; Gonzàlez-Juncà, A.; Dirac, A.; Gili, M.; Martínez-Sáez, E.; Aura, C.; Barba, I.; Peg, V.; Prat, A.; Cuartas, I.; Jimenez, J.; García-Dorado, D.; Sahuquillo, J.; Bernards, R.; Baselga, J.; Seoane, J. USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat. Med., 2012, 18(3), 429-435.
[http://dx.doi.org/10.1038/nm.2619] [PMID: 22344298]
[56]
Deng, T.; Zhong, P.; Lou, R.; Yang, X. RNF220 promotes gastric cancer growth and stemness via modulating the USP22/wnt/β-catenin pathway. Tissue Cell, 2023, 83, 102123.
[http://dx.doi.org/10.1016/j.tice.2023.102123] [PMID: 37295272]
[57]
Gregory, S.; Xu, Y.; Xie, P.; Fan, J.; Gao, B.; Mani, N.; Iyer, R.; Tang, A.; Wei, J.; Chaudhuri, S.M.; Wang, S.; Liu, H.; Zhang, B.; Fang, D. The ubiquitin-specific peptidase 22 is a deubiquitinase of CD73 in breast cancer cells. Am. J. Cancer Res., 2022, 12(12), 5564-5575.
[PMID: 36628293]
[58]
Bai, Z.; Du, Y.; Cong, L.; Cheng, Y. The USP22 promotes the growth of cancer cells through the DYRK1A in pancreatic ductal adenocarcinoma. Gene, 2020, 758, 144960.
[http://dx.doi.org/10.1016/j.gene.2020.144960] [PMID: 32687947]
[59]
Kosinsky, R.L.; Helms, M.; Zerche, M.; Wohn, L.; Dyas, A.; Prokakis, E.; Kazerouni, Z.B.; Bedi, U.; Wegwitz, F.; Johnsen, S.A. USP22-dependent HSP90AB1 expression promotes resistance to HSP90 inhibition in mammary and colorectal cancer. Cell Death Dis., 2019, 10(12), 911.
[http://dx.doi.org/10.1038/s41419-019-2141-9] [PMID: 31801945]
[60]
Kazmierczak, M.; Harris, S.L.; Kazmierczak, P.; Shah, P.; Starovoytov, V.; Ohlemiller, K.K.; Schwander, M. Progressive hearing loss in mice carrying a mutation in Usp53. J. Neurosci., 2015, 35(47), 15582-15598.
[http://dx.doi.org/10.1523/JNEUROSCI.1965-15.2015] [PMID: 26609154]
[61]
Hariri, H.; Kose, O.; Bezdjian, A.; Daniel, S.J.; St-Arnaud, R. USP53 regulates bone homeostasis by controlling Rankl expression in osteoblasts and bone marrow adipocytes. J. Bone Miner. Res., 2020, 38(4), 578-596.
[http://dx.doi.org/10.1002/jbmr.4778] [PMID: 36726200]
[62]
Quesada, V.; Díaz-Perales, A.; Gutiérrez-Fernández, A.; Garabaya, C.; Cal, S.; López-Otín, C. Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Biochem. Biophys. Res. Commun., 2004, 314(1), 54-62.
[http://dx.doi.org/10.1016/j.bbrc.2003.12.050] [PMID: 14715245]
[63]
Luck, K.; Kim, D.K.; Lambourne, L.; Spirohn, K.; Begg, B.E.; Bian, W.; Brignall, R.; Cafarelli, T.; Campos-Laborie, F.J.; Charloteaux, B.; Choi, D.; Coté, A.G.; Daley, M.; Deimling, S.; Desbuleux, A.; Dricot, A.; Gebbia, M.; Hardy, M.F.; Kishore, N.; Knapp, J.J.; Kovács, I.A.; Lemmens, I.; Mee, M.W.; Mellor, J.C.; Pollis, C.; Pons, C.; Richardson, A.D.; Schlabach, S.; Teeking, B.; Yadav, A.; Babor, M.; Balcha, D.; Basha, O.; Bowman-Colin, C.; Chin, S.F.; Choi, S.G.; Colabella, C.; Coppin, G.; D’Amata, C.; De Ridder, D.; De Rouck, S.; Duran-Frigola, M.; Ennajdaoui, H.; Goebels, F.; Goehring, L.; Gopal, A.; Haddad, G.; Hatchi, E.; Helmy, M.; Jacob, Y.; Kassa, Y.; Landini, S.; Li, R.; van Lieshout, N.; MacWilliams, A.; Markey, D.; Paulson, J.N.; Rangarajan, S.; Rasla, J.; Rayhan, A.; Rolland, T.; San-Miguel, A.; Shen, Y.; Sheykhkarimli, D.; Sheynkman, G.M.; Simonovsky, E.; Taşan, M.; Tejeda, A.; Tropepe, V.; Twizere, J.C.; Wang, Y.; Weatheritt, R.J.; Weile, J.; Xia, Y.; Yang, X.; Yeger-Lotem, E.; Zhong, Q.; Aloy, P.; Bader, G.D.; De Las Rivas, J.; Gaudet, S.; Hao, T.; Rak, J.; Tavernier, J.; Hill, D.E.; Vidal, M.; Roth, F.P.; Calderwood, M.A. A reference map of the human binary protein interactome. Nature, 2020, 580(7803), 402-408.
[http://dx.doi.org/10.1038/s41586-020-2188-x] [PMID: 32296183]
[64]
Yachie, N.; Petsalaki, E.; Mellor, J.C.; Weile, J.; Jacob, Y.; Verby, M.; Ozturk, S.B.; Li, S.; Cote, A.G.; Mosca, R.; Knapp, J.J.; Ko, M.; Yu, A.; Gebbia, M.; Sahni, N.; Yi, S.; Tyagi, T.; Sheykhkarimli, D.; Roth, J.F.; Wong, C.; Musa, L.; Snider, J.; Liu, Y.C.; Yu, H.; Braun, P.; Stagljar, I.; Hao, T.; Calderwood, M.A.; Pelletier, L.; Aloy, P.; Hill, D.E.; Vidal, M.; Roth, F.P. Pooled‐matrix protein interaction screens using Barcode Fusion Genetics. Mol. Syst. Biol., 2016, 12(4), 863.
[http://dx.doi.org/10.15252/msb.20156660] [PMID: 27107012]
[65]
Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res., 2015, 43(D1), D512-D520.
[http://dx.doi.org/10.1093/nar/gku1267] [PMID: 25514926]
[66]
Pardo, J.V.; Sheikh, S.A.; Aslam, F.; Yasin, S.; Kanwal, A.; Naz, S.A. A USP53 p.Cys228Arg variant is associated with autosomal recessive psychosis. Authorea, 2021.
[http://dx.doi.org/10.22541/au.162670946.66965381/v1]
[67]
Zhao, X.; Wu, X.; Wang, H.; Yu, H.; Wang, J. USP53 promotes apoptosis and inhibits glycolysis in lung adenocarcinoma through FKBP51‐AKT1 signaling. Mol. Carcinog., 2020, 59(8), 1000-1011.
[http://dx.doi.org/10.1002/mc.23230] [PMID: 32511815]
[68]
Maddirevula, S.; Alhebbi, H.; Alqahtani, A.; Algoufi, T.; Alsaif, H.S.; Ibrahim, N.; Abdulwahab, F.; Barr, M.; Alzaidan, H.; Almehaideb, A.; AlSasi, O.; Alhashem, A.; Hussaini, H.A.; Wali, S.; Alkuraya, F.S. Identification of novel loci for pediatric cholestatic liver disease defined by KIF12, PPM1F, USP53, LSR, and WDR83OS pathogenic variants. Genet. Med., 2019, 21(5), 1164-1172.
[http://dx.doi.org/10.1038/s41436-018-0288-x] [PMID: 30250217]
[69]
Gezdirici, A.; Kalaycik Şengül, Ö.; Doğan, M.; Özgüven, B.Y.; Akbulut, E. Biallelic novel USP53 splicing variant disrupting the gene function that causes cholestasis phenotype and review of the literature. Mol. Syndromol., 2022, 13(6), 471-484.
[http://dx.doi.org/10.1159/000523937] [PMID: 36660033]
[70]
Alhebbi, H.; Peer-Zada, A.A.; Al-Hussaini, A.A.; Algubaisi, S.; Albassami, A.; AlMasri, N.; Alrusayni, Y.; Alruzug, I.M.; Alharby, E.; Samman, M.A.; Ayoub, S.Z.; Maddirevula, S.; Peake, R.W.A.; Alkuraya, F.S.; Wali, S.; Almontashiri, N.A.M. New paradigms of USP53 disease: Normal GGT cholestasis, BRIC, cholangiopathy, and responsiveness to rifampicin. J. Hum. Genet., 2021, 66(2), 151-159.
[http://dx.doi.org/10.1038/s10038-020-0811-1] [PMID: 32759993]
[71]
Bull, L.N.; Ellmers, R.; Foskett, P.; Strautnieks, S.; Sambrotta, M.; Czubkowski, P.; Jankowska, I.; Wagner, B.; Deheragoda, M.; Thompson, R.J. Cholestasis due to USP53 deficiency. J. Pediatr. Gastroenterol. Nutr., 2021, 72(5), 667-673.
[http://dx.doi.org/10.1097/MPG.0000000000002926] [PMID: 33075013]
[72]
Zhang, J.; Yang, Y.; Gong, J.Y.; Li, L.T.; Li, J.Q.; Zhang, M.H.; Lu, Y.; Xie, X.B.; Hong, Y.R.; Yu, Z.; Knisely, A.S.; Wang, J.S. Low‐GGT intrahepatic cholestasis associated with biallelic USP53 variants: Clinical, histological and ultrastructural characterization. Liver Int., 2020, 40(5), 1142-1150.
[http://dx.doi.org/10.1111/liv.14422] [PMID: 32124521]
[73]
Vij, M.; Sankaranarayanan, S. Biallelic mutations in Ubiquitin-specific peptidase 53 (USP53) causing progressive intrahepatic cholestasis. Report of a case with review of literature. Pediatr. Dev. Pathol., 2022, 25(2), 207-212.
[http://dx.doi.org/10.1177/10935266211051175] [PMID: 34809518]
[74]
Porta, G.; Rigo, P.S.M.; Porta, A.; Pugliese, R.P.S.; Danesi, V.L.B.; Oliveira, E.; Borges, C.C.V.; Ribeiro, C.; Miura, I.K. Progressive familial intrahepatic cholestasis associated with USP53 gene mutation in a Brazilian child. J. Pediatr. Gastroenterol. Nutr., 2021, 72(5), 674-676.
[http://dx.doi.org/10.1097/MPG.0000000000003110] [PMID: 33661244]
[75]
Shatokhina, O.; Semenova, N.; Demina, N.; Dadali, E.; Polyakov, A.; Ryzhkova, O. A two-year clinical description of a patient with a rare type of low-GGT cholestasis caused by a novel variant of USP53. Genes (Basel), 2021, 12(10), 1618.
[http://dx.doi.org/10.3390/genes12101618] [PMID: 34681012]
[76]
Tamura, A.; Tsukita, S. Paracellular barrier and channel functions of TJ claudins in organizing biological systems: Advances in the field of barriology revealed in knockout mice. Semin. Cell Dev. Biol., 2014, 36, 177-185.
[http://dx.doi.org/10.1016/j.semcdb.2014.09.019] [PMID: 25305579]
[77]
Liu, Z.Y.; Song, Z.W.; Guo, S.W.; He, J.S.; Wang, S.Y.; Zhu, J.G.; Yang, H.L.; Liu, J.B. CXCL12/CXCR4 signaling contributes to neuropathic pain via central sensitization mechanisms in a rat spinal nerve ligation model. CNS Neurosci. Ther., 2019, 25(9), 922-936.
[http://dx.doi.org/10.1111/cns.13128] [PMID: 30955244]
[78]
Tibbs, G.R.; Posson, D.J.; Goldstein, P.A. Voltage-gated ion channels in the PNS: Novel therapies for neuropathic pain? Trends Pharmacol. Sci., 2016, 37(7), 522-542.
[http://dx.doi.org/10.1016/j.tips.2016.05.002] [PMID: 27233519]
[79]
Li, Q.; Li, R.; Chu, X.; An, X.; Chen, M.; Yu, Y.; Zhang, L.; Chen, L.; Zhu, X. Ubiquitin specific peptidase 53 promotes chronic constriction injury induced neuropathic pain through the RhoA/ROCK pathway. Acta Neurobiol. Exp. (Warsz.), 2022, 82(4), 468-476.
[http://dx.doi.org/10.55782/ane-2022-045] [PMID: 36748970]
[80]
Bousman, C.A.; Luza, S.; Mancuso, S.G.; Kang, D.; Opazo, C.M.; Mostaid, M.S.; Cropley, V.; McGorry, P.; Shannon Weickert, C.; Pantelis, C.; Bush, A.I.; Everall, I.P. Elevated ubiquitinated proteins in brain and blood of individuals with schizophrenia. Sci. Rep., 2019, 9(1), 2307.
[http://dx.doi.org/10.1038/s41598-019-38490-1] [PMID: 30783160]
[81]
Moustafa, A.A.; Hewedi, D.H.; Eissa, A.M.; Frydecka, D.; Misiak, B.Å. Homocysteine levels in schizophrenia and affective disorders-focus on cognition. Front. Behav. Neurosci., 2014, 8, 343.
[http://dx.doi.org/10.3389/fnbeh.2014.00343] [PMID: 25339876]
[82]
Hariri, H.; St-Arnaud, R. Expression and role of ubiquitin-specific peptidases in osteoblasts. Int. J. Mol. Sci., 2021, 22(14), 7746.
[http://dx.doi.org/10.3390/ijms22147746] [PMID: 34299363]
[83]
Hariri, H.; Addison, W.N.; St-Arnaud, R. Ubiquitin specific peptidase Usp53 regulates osteoblast versus adipocyte lineage commitment. Sci. Rep., 2021, 11(1), 8418.
[http://dx.doi.org/10.1038/s41598-021-87608-x] [PMID: 33875709]
[84]
Kurban, M.; Kim, C.A.; Kiuru, M.; Fantauzzo, K.; Cabral, R.; Abbas, O.; Levy, B.; Christiano, A.M. Copy number variations on chromosome 4q26-27 are associated with Cantu syndrome. Dermatology, 2011, 223(4), 316-320.
[http://dx.doi.org/10.1159/000333800] [PMID: 22310962]
[85]
Baek, D.; Park, K.H.; Lee, K.M.; Jung, S.; Joung, S.; Kim, J.; Lee, J.W. Ubiquitin-specific protease 53 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. J. Cell Deat and Dis., 2021, 12(34), 03517.
[http://dx.doi.org/10.1038/s41419-021-03517-x]
[86]
Leiter, A.; Veluswamy, R.R.; Wisnivesky, J.P. The global burden of lung cancer: current status and future trends. Nat. Rev. Clin. Oncol., 2023, 20(9), 624-639.
[http://dx.doi.org/10.1038/s41571-023-00798-3] [PMID: 37479810]
[88]
Yu, J.; Qin, B.; Wu, F.; Qin, S.; Nowsheen, S.; Shan, S.; Zayas, J.; Pei, H.; Lou, Z.; Wang, L. Regulation of Serine-Threonine Kinase Akt Activation by NAD + -Dependent Deacetylase SIRT7. Cell Rep., 2017, 18(5), 1229-1240.
[http://dx.doi.org/10.1016/j.celrep.2017.01.009] [PMID: 28147277]
[89]
Chen, Y.; Liu, Z.; Wang, Y.; Zhuang, J.; Peng, Y.; Mo, X.; Chen, J.; Shi, Y.; Yu, M.; Cai, W.; Li, Y.; Zhu, X.; Yuan, W.; Li, Y.; Li, F.; Zhou, Z.; Dai, G.; Ye, X.; Wan, Y.; Jiang, Z.; Zhu, P.; Fan, X.; Wu, X. FKBP51 induces p53 dependent apoptosis and enhances drug sensitivity of human non small cell lung cancer cells. Exp. Ther. Med., 2020, 19(3), 2236-2242.
[http://dx.doi.org/10.3892/etm.2020.8450] [PMID: 32104289]
[90]
Wang, H.; Unternaehrer, J.J. Epithelial‐mesenchymal transition and cancer stem cells: At the crossroads of differentiation and dedifferentiation. Dev. Dyn., 2019, 248(1), 10-20.
[http://dx.doi.org/10.1002/dvdy.24678] [PMID: 30303578]
[91]
Kase, A.M.; George, D.J.; Ramalingam, S. Clear cell renal cell carcinoma: From biology to treatment. Cancers (Basel), 2023, 15(3), 665.
[http://dx.doi.org/10.3390/cancers15030665] [PMID: 36765622]
[92]
Gui, D.; Dong, Z.; Peng, W.; Jiang, W.; Huang, G.; Liu, G.; Ye, Z.; Wang, Y.; Xu, Z.; Fu, J.; Luo, S.; Zhao, Y. Ubiquitin‐specific peptidase 53 inhibits the occurrence and development of clear cell renal cell carcinoma through NF‐κB pathway inactivation. Cancer Med., 2021, 10(11), 3674-3688.
[http://dx.doi.org/10.1002/cam4.3911] [PMID: 33973730]
[93]
Pavitra, E.; Kancharla, J.; Gupta, V.K.; Prasad, K.; Sung, J.Y.; Kim, J.; Tej, M.B.; Choi, R.; Lee, J.H.; Han, Y.K.; Raju, G.S.R.; Bhaskar, L.V.K.S.; Huh, Y.S. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed. Pharmacother., 2023, 163, 114822.
[http://dx.doi.org/10.1016/j.biopha.2023.114822] [PMID: 37146418]
[94]
Schubert, M.; Bauerschlag, D.O.; Muallem, M.Z.; Maass, N.; Alkatout, I. Challenges in the diagnosis and individualized treatment of cervical cancer. Medicina (Kaunas), 2023, 59(5), 925.
[http://dx.doi.org/10.3390/medicina59050925] [PMID: 37241157]
[95]
Zhou, Q.; Yao, X.; Wu, C.; Chen, S.; Fan, D. Knockdown of Ubiquitin-Specific protease 53 Enhances the radiosensitivity of human cervical squamous cell carcinoma by regulating DNA damage-binding protein 2. Technol. Cancer Res. Treat., 2020, 19, 32508265.
[http://dx.doi.org/10.1177/1533033820929792] [PMID: 32508265]
[96]
Kim, B.J.; Hanna, M.H. Colorectal cancer in young adults. J. Surg. Oncol., 2023, 127(8), 1247-1251.
[http://dx.doi.org/10.1002/jso.27320] [PMID: 37222697]
[97]
Shen, W.B.; Zhi, J.J.; Jiang, H.H.; Cui, L. Expression of ubiquitin-specific protease 53 in colorectal cancer and its inhibitory effect on HCT116 cells. Zhongguo Zhongliu Shengwu Zhiliao Zazhi, 2014, 24(4), 423-428.
[http://dx.doi.org/10.3872/j.issn.1007-385X.2017.04.015]
[98]
Gao, Y.X.; Ning, Q.Q.; Yang, P.X.; Guan, Y.Y.; Liu, P.X.; Liu, M.L.; Qiao, L.X.; Guo, X.H.; Yang, T.W.; Chen, D.X. Recent advances in recurrent hepatocellular carcinoma therapy. World J. Hepatol., 2023, 15(4), 460-476.
[http://dx.doi.org/10.4254/wjh.v15.i4.460] [PMID: 37206651]
[99]
Yao, Y.; Ma, W.; Guo, Y.; Liu, Y.; Xia, P.; Wu, X.; Chen, Y.; Wang, K.; Mei, C.; Wang, G.; Li, X.; Zhang, Z.; Chen, X.; Yuan, Y. USP53 plays an antitumor role in hepatocellular carcinoma through deubiquitination of cytochrome c. Oncogenesis, 2022, 11(1), 31.
[http://dx.doi.org/10.1038/s41389-022-00404-8] [PMID: 35654790]
[100]
Sheikh, M.; Roshandel, G.; McCormack, V.; Malekzadeh, R. Current status and future prospects for esophageal cancer. Cancers (Basel), 2023, 15(3), 765.
[http://dx.doi.org/10.3390/cancers15030765] [PMID: 36765722]
[101]
Cheng, W.; Tang, Y.; Tong, X.; Zhou, Q.; Xie, J.; Wang, J.; Han, Y.; Ta, N.; Ye, Z. USP53 activated by H3K27 acetylation regulates cell viability, apoptosis and metabolism in esophageal carcinoma via the AMPK signaling pathway. Carcinogenesis, 2022, 43(4), 349-359.
[http://dx.doi.org/10.1093/carcin/bgab123] [PMID: 34919659]
[102]
Cameron, B.D.; Sekhar, K.R.; Ofori, M.; Freeman, M.L. The role of Nrf2 in the response to normal tissue radiation injury. Radiat. Res., 2018, 190(2), 99-109.
[http://dx.doi.org/10.1667/RR15059.1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy