Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

In-Vitro Study of HIV-derived Reverse Transcriptase Inhibition

In Press, (this is not the final "Version of Record"). Available online 03 June, 2024
Author(s): Hussan Ibne Shoukani*, Khudija tul Kubra and Bashir Ahmad
Published on: 03 June, 2024

Article ID: e030624230615

DOI: 10.2174/0122113525287587240515044540

Price: $95

Abstract

Introduction: HIV utilizes a reverse transcriptase (RT) enzyme to convert the HIVRNA into DNA. Inhibition of the reverse transcription mechanism of HIV-RT may serve as a potential therapeutic approach to impede the proliferation of HIV in those who are infected. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a type of medication that directly and non-competitively bind to the allosteric site of HIV-RT, inhibiting its polymerase activity.

Aim: This study was aimed at the synthesis of hydrazine derivatives and their evaluation for HIV- reverse transcriptase inhibition using RT-qPCR-based assay.

Objective: The objective of this study was to determine the HIV- reverse transcriptase inhibition using chemical compounds as non-nucleoside reverse transcriptase inhibitors in RT-qPCR.

Methods: This study involved the synthesis of five distinct hydrazine derivatives, which were subsequently tested for their capacity to inhibit HIV-RNA polymerization by targeting HIVderived reverse transcriptase. For the determination of the study assay, commercially available HIV-RT was subjected to treatment with derivatives and utilized in an RT-qPCR experiment to determine the activity or inhibitory effects of HIV-RT for HIV-RNA polymerization.

Results: The in-vitro assay results demonstrated a reduction in viral load due to suppression of reverse transcriptase activity when compared to the pre-quantified values obtained from untreated RT. Among the five compounds, 4-N, N-dimethylamino benzaldehyde hydrazine (C18H22N4) had the highest ability to suppress HIV-RT. This molecule reduced HIV-RNA reverse transcription by more than 90% during RT-qPCR, which is a novel and promising strategy.

Conclusion: N, N-dimethylamino benzaldehyde hydrazine (C18H22N4) can suppress the activity of HIV-RT, and this effect becomes more pronounced as the concentration of the compound increases.

[1]
Engelman, A.; Cherepanov, P. The structural biology of HIV-1: Mechanistic and therapeutic insights. Nat. Rev. Microbiol., 2012, 10(4), 279-290.
[http://dx.doi.org/10.1038/nrmicro2747] [PMID: 22421880]
[2]
Esposito, F.; Corona, A.; Tramontano, E. HIV-1 reverse transcriptase still remains a new drug target: Structure, function, classical inhibitors, and new inhibitors with innovative mechanisms of actions. Mol. Biol. Int., 2012, 2012, 586401.
[3]
Deeks, S.G.; Overbaugh, J.; Phillips, A.; Buchbinder, S. HIV infection. Nat. Rev. Dis. Primers, 2015, 1(1), 15035.
[http://dx.doi.org/10.1038/nrdp.2015.35] [PMID: 27188527]
[4]
Maartens, G.; Celum, C.; Lewin, S.R. HIV infection: Epidemiology, pathogenesis, treatment, and prevention. Lancet, 2014, 384(9939), 258-271.
[http://dx.doi.org/10.1016/S0140-6736(14)60164-1] [PMID: 24907868]
[5]
Sharma, KK; Przybilla, F; Restle, T; Godet, J; Mély, Y FRET-based assay to screen inhibitors of HIV-1 reverse transcriptase and nucleocapsid protein. Nucleic aci. res., 2016, 44(8), 74.
[http://dx.doi.org/10.1093/nar/gkv1532]
[6]
Divita, G.; Baillon, J.G.; Rittinger, K.; Chermann, J.C.; Goody, R.S. Interface peptides as structure-based human immunodeficiency virus reverse transcriptase inhibitors. J. Biol. Chem., 1995, 270(48), 28642-28646.
[http://dx.doi.org/10.1074/jbc.270.48.28642] [PMID: 7499382]
[7]
Sluis-Cremer, N.; Arion, D.; Parniak, M.A. Molecular mechanisms of HIV-1 resistance to nucleoside reverse transcriptase inhibitors (NRTIs). Cel. Molecu. Life. Sci. CMLS, 2000, 571408-571422.
[8]
Ding, J.; Das, K.; Hsiou, Y.; Zhang, W.; Arnold, E.; Yadav, P.N.; Hughes, S.H. Structural studies of HIV-1 reverse transcriptase and implications for drug design. Struc.Based.Drug Des., 2018, 8, 41-82.
[9]
Sarafianos, S.G.; Marchand, B.; Das, K.; Himmel, D.M.; Parniak, M.A.; Hughes, S.H.; Arnold, E. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J. Mol. Biol., 2009, 385(3), 693-713.
[http://dx.doi.org/10.1016/j.jmb.2008.10.071] [PMID: 19022262]
[10]
Tan, J.J.; Cong, X.J.; Hu, L.M.; Wang, C.X.; Jia, L.; Liang, X.J. Therapeutic strategies underpinning the development of novel techniques for the treatment of HIV infection. Drug Discov. Today, 2010, 15(5-6), 186-197.
[http://dx.doi.org/10.1016/j.drudis.2010.01.004] [PMID: 20096804]
[11]
Landovitz, R.J.; Scott, H.; Deeks, S.G. Prevention, treatment and cure of HIV infection. Nat. Rev. Microbiol., 2023, 21(10), 657-670.
[http://dx.doi.org/10.1038/s41579-023-00914-1] [PMID: 37344551]
[12]
Pauwels, R. New non-nucleoside reverse transcriptase inhibitors (NNRTIs) in development for the treatment of HIV infections. Curr. Opin. Pharmacol., 2004, 4(5), 437-446.
[http://dx.doi.org/10.1016/j.coph.2004.07.005] [PMID: 15351347]
[13]
Sluis-Cremer, N.; Tachedjian, G. Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors. Virus Res., 2008, 134(1-2), 147-156.
[http://dx.doi.org/10.1016/j.virusres.2008.01.002] [PMID: 18372072]
[14]
Jacobo-Molina, A.; Arnold, E. HIV reverse transcriptase structure-function relationships. Biochemistry, 1991, 30(26), 6351-6361.
[http://dx.doi.org/10.1021/bi00240a001] [PMID: 1711368]
[15]
Jochmans, D. Novel HIV-1 reverse transcriptase inhibitors. Virus Res., 2008, 134(1-2), 171-185.
[http://dx.doi.org/10.1016/j.virusres.2008.01.003] [PMID: 18308412]
[16]
Ammaranond, P.; Sanguansittianan, S. Mechanism of HIV antiretroviral drugs progress toward drug resistance. Fundam. Clin. Pharmacol., 2012, 26(1), 146-161.
[http://dx.doi.org/10.1111/j.1472-8206.2011.01009.x] [PMID: 22118474]
[17]
Ilina, T.; Parniak, M.A. Inhibitors of HIV-1 reverse transcriptase. Adv. Pharmacol., 2008, 56, 121-167.
[http://dx.doi.org/10.1016/S1054-3589(07)56005-9] [PMID: 18086411]
[18]
Himmel, D.M.; Maegley, K.A.; Pauly, T.A.; Bauman, J.D.; Das, K.; Dharia, C.; Clark, A.D., Jr; Ryan, K.; Hickey, M.J.; Love, R.A.; Hughes, S.H.; Bergqvist, S.; Arnold, E. Structure of HIV-1 reverse transcriptase with the inhibitor β-Thujaplicinol bound at the RNase H active site. Structure, 2009, 17(12), 1625-1635.
[http://dx.doi.org/10.1016/j.str.2009.09.016] [PMID: 20004166]
[19]
Lurie, A.; Fink, C.; Gosselin, G.; Dekaban, G.A.; Dikeakos, J.D. Inhibitors of HIV-1 Nef: Applications and developments for a practical cure. Virologie, 2022, 26(1), 17-33.
[http://dx.doi.org/10.1684/vir.2022.0940] [PMID: 35766095]
[20]
Zhou, Z.; Lin, X.; Madura, J.D. HIV-1 RT nonnucleoside inhibitors and their interaction with RT for antiviral drug development. Infect. Disord. Drug Targ., 2006, 6(4), 391-413.
[21]
Xavier, RUIZ F.; Arnold, E. Evolving understanding of HIV-1 reverse transcriptase structure, function, inhibition, and resistance. Curr. Opin. Struct. Biol., 2020, 61, 113-123.
[http://dx.doi.org/10.1016/j.sbi.2019.11.011] [PMID: 31935541]
[22]
Pata, J.D.; Stirtan, W.G.; Goldstein, S.W.; Steitz, T.A. Structure of HIV-1 reverse transcriptase bound to an inhibitor active against mutant reverse transcriptases resistant to other nonnucleoside inhibitors. Proc. Natl. Acad. Sci., 2004, 101(29), 10548-10553.
[http://dx.doi.org/10.1073/pnas.0404151101] [PMID: 15249669]
[23]
Amblard, F.; Patel, D.; Michailidis, E.; Coats, S.J.; Kasthuri, M.; Biteau, N.; Tber, Z.; Ehteshami, M.; Schinazi, R.F. HIV nucleoside reverse transcriptase inhibitors. Eur. J. Med. Chem., 2022, 240, 114554.
[http://dx.doi.org/10.1016/j.ejmech.2022.114554] [PMID: 35792384]
[24]
Torbett, B.E.; Goodsell, D.S.; Richman, D.D. The Future of HIV-1 Therapeutics: Resistance Is Futile? In: Drug Resistance, Virology, Infectious Diseases; Springer, 2015; pp. 1-254.
[http://dx.doi.org/10.1007/978-3-319-18518-7]
[25]
Liang, C.; Xia, J.; Lei, D.; Li, X.; Yao, Q.; Gao, J. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin. Eur. J. Med. Chem., 2014, 74, 742-750.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.040] [PMID: 24176732]
[26]
Brahmayya, M.; Dai, S.A.; Suen, S.Y. Synthesis of 5-substituted-3H-[1,3,4]-oxadiazol-2-one derivatives: A carbon dioxide route (CDR). RSC Advances, 2015, 5(80), 65351-65357.
[http://dx.doi.org/10.1039/C5RA08910G]
[27]
Kalsi, P. S. Spectroscopy of organic compounds; New age international, 2007, pp. 1-652.
[28]
Liao, L.; Li, Z.; Hu, W.; Huang, Y.; Liu, B.; Wang, L.; Wang, M.; Wang, J. Design, synthesis and evaluation of a novel fluorescent probe to accurately detect H 2 S in lysosomes. Tetrahedron Lett., 2018, 59(27), 2683-2687.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.083]
[29]
Li, Y.; Kong, D.; Wu, H. Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Ind. Crops Prod., 2013, 41, 269-278.
[http://dx.doi.org/10.1016/j.indcrop.2012.04.056]
[30]
Sierra, S.; Walter, H. Targets for inhibition of HIV replication: entry, enzyme action, release and maturation. Intervirology, 2012, 55(2), 84-97.
[http://dx.doi.org/10.1159/000331995] [PMID: 22286875]
[31]
Sluis-Cremer, N.; Temiz, N.; Bahar, I. Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding. Curr. HIV Res., 2004, 2(4), 323-332.
[http://dx.doi.org/10.2174/1570162043351093] [PMID: 15544453]
[32]
Rodgers, D.W.; Gamblin, S.J.; Harris, B.A.; Ray, S.; Culp, J.S.; Hellmig, B.; Woolf, D.J.; Debouck, C.; Harrison, S.C. The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proc. Natl. Acad. Sci., 1995, 92(4), 1222-1226.
[http://dx.doi.org/10.1073/pnas.92.4.1222] [PMID: 7532306]
[33]
Brigneti, G.; Voinnet, O.; Li, W.X.; Ji, L.H.; Ding, S.W.; Baulcombe, D.C. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J., 1998, 17(22), 6739-6746.
[http://dx.doi.org/10.1093/emboj/17.22.6739] [PMID: 9822616]
[34]
Esnouf, R.M.; Stuart, D.I.; De Clercq, E.; Schwartz, E.; Balzarini, J. Models which explain the inhibition of reverse transcriptase by HIV-1-specific (thio)carboxanilide derivatives. Biochem. Biophys. Res. Commun., 1997, 234(2), 458-464.
[http://dx.doi.org/10.1006/bbrc.1997.6552] [PMID: 9177293]
[35]
Ding, J.; Hughes, S.H.; Arnold, E. Protein–nucleic acid interactions and DNA conformation in a complex of human immunodeficiency virus type 1 reverse transcriptase with a double-stranded DNA template-primer. Biopolymers, 1997, 44(2), 125-138.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1997)44:2<125::AID-BIP2>3.0.CO;2-X] [PMID: 9354757]
[36]
Levinson, W. Levinson’s Review of Medical Microbiology & Immunology. In: A Guide to Clinical Infectious Diseases, 18thEdition; MCGRAW HILL ACCESS, 2014.
[37]
Clumeck, N. Current use of anti-HIV drugs in AIDS. J. Antimicrob. Chemother., 1993, 32(Suppl. A), 133-138.
[http://dx.doi.org/10.1093/jac/32.suppl_A.133] [PMID: 8407695]
[38]
De Clercq, E. Emerging anti-HIV drugs. Expert Opin. Emerg. Drugs, 2005, 10(2), 241-274.
[http://dx.doi.org/10.1517/14728214.10.2.241] [PMID: 15934866]
[39]
Andrade, C.H.; Freitas, L.M.; Oliveira, V. Twenty-six years of HIV science: An overview of anti-HIV drugs metabolism. Braz. J. Pharm. Sci., 2011, 47(2), 209-230.
[http://dx.doi.org/10.1590/S1984-82502011000200003]
[40]
Himmel, D.M.; Sarafianos, S.G.; Dharmasena, S.; Hossain, M.M.; McCoy-Simandle, K.; Ilina, T.; Clark, A.D., Jr; Knight, J.L.; Julias, J.G.; Clark, P.K.; Krogh-Jespersen, K.; Levy, R.M.; Hughes, S.H.; Parniak, M.A.; Arnold, E. HIV-1 reverse transcriptase structure with RNase H inhibitor dihydroxy benzoyl naphthyl hydrazone bound at a novel site. ACS Chem. Biol., 2006, 1(11), 702-712.
[http://dx.doi.org/10.1021/cb600303y] [PMID: 17184135]
[41]
Ratner, L.; Haseltine, W.; Patarca, R.; Livak, K.J.; Starcich, B.; Josephs, S.F.; Doran, E.R.; Rafalski, J.A.; Whitehorn, E.A.; Baumeister, K.; Ivanoff, L.; Petteway, S.R., Jr; Pearson, M.L.; Lautenberger, J.A.; Papas, T.S.; Ghrayeb, J.; Chang, N.T.; Gallo, R.C.; Wong-Staal, F. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature, 1985, 313(6000), 277-284.
[http://dx.doi.org/10.1038/313277a0] [PMID: 2578615]
[42]
Singh, K.; Sarafianos, S.G.; Sönnerborg, A. Long-acting anti-HIV drugs targeting HIV-1 reverse transcriptase and integrase. Pharmaceuticals, 2019, 12(2), 62.
[http://dx.doi.org/10.3390/ph12020062] [PMID: 31010004]
[43]
Kang, J.X.; Zhao, G.K.; Yang, X.M.; Huang, M.X.; Hui, W.Q.; Zeng, R.; Ouyang, Q. Recent advances on dual inhibitors targeting HIV reverse transcriptase associated polymerase and ribonuclease H. Eur. J. Med. Chem., 2023, 250, 115196.
[http://dx.doi.org/10.1016/j.ejmech.2023.115196] [PMID: 36787657]
[44]
Shen, L.; Peterson, S.; Sedaghat, A.R.; McMahon, M.A.; Callender, M.; Zhang, H.; Zhou, Y.; Pitt, E.; Anderson, K.S.; Acosta, E.P.; Siliciano, R.F. Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat. Med., 2008, 14(7), 762-766.
[http://dx.doi.org/10.1038/nm1777] [PMID: 18552857]
[45]
Behja, W.; Jemal, M. Anti-HIV drug discovery, development and synthesis of delavirdine. Int. Res. J. Pure Appl. Chem., 2019, 20(3), 1-16.
[http://dx.doi.org/10.9734/irjpac/2019/v20i330137]
[46]
Marino-Merlo, F.; Frezza, C.; Papaianni, E.; Valletta, E.; Mastino, A.; Macchi, B. Development and evaluation of a simple and effective RT-qPCR inhibitory assay for detection of the efficacy of compounds towards HIV reverse transcriptase. Appl. Microbiol. Biotechnol., 2017, 101(22), 8249-8258.
[http://dx.doi.org/10.1007/s00253-017-8544-6] [PMID: 28963576]
[47]
Okello, J.B.A.; Rodriguez, L.; Poinar, D.; Bos, K.; Okwi, A.L.; Bimenya, G.S.; Sewankambo, N.K.; Henry, K.R.; Kuch, M.; Poinar, H.N. Quantitative assessment of the sensitivity of various commercial reverse transcriptases based on armored HIV RNA. PLoS One, 2010, 5(11), e13931.
[http://dx.doi.org/10.1371/journal.pone.0013931] [PMID: 21085668]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy